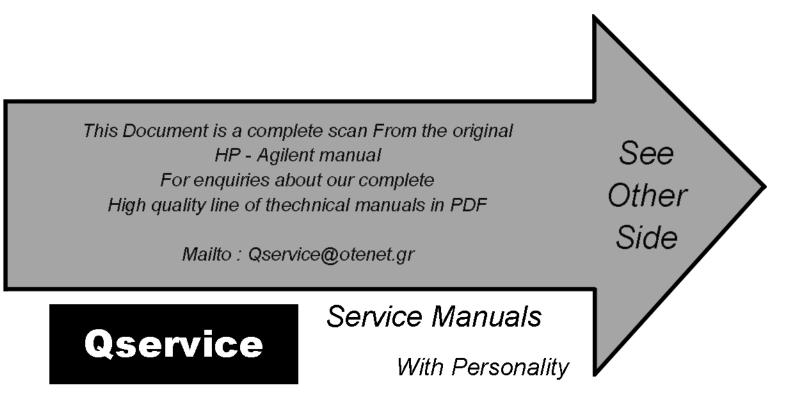
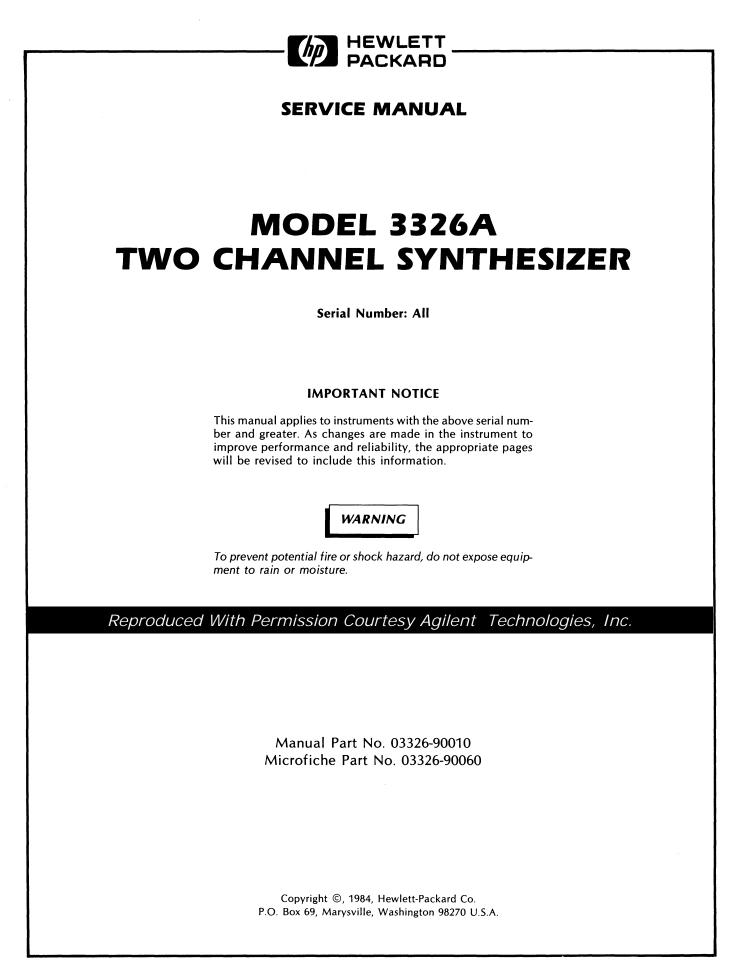
SERVICE MANUAL


3326A TWO-CHANNEL SYNTHESIZER


Reproduced With Permission Courtesy Agilent Technologies, Inc.

For the most complete, Accurate, and legible service manuals For obsolete test equipment

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY

This Hewlett-Packard product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by -hp-. Buyer shall prepay shipping charges to -hp- and -hp- shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to -hp- from another country.

HP software and firmware products which are designated by HP for use with a hardware product, when properly installed on that hardware product, are warranted not to fail to execute their programming instructions due to defects in materials and workmanship. If HP receives notice of such defects during their warranty period, HP shall repair or replace software media and firmware which do not execute their programming instructions due to such defects. HP does not warrant that the operation of the software, firmware or hardware shall be uninterrupted or error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HEWLETT-PACKARD SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

ASSISTANCE

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

SAFETY SUMMARY

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements. This is a Safety Class 1 instrument.

GROUND THE INSTRUMENT

To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three conductor ac power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

KEEP AWAY FROM LIVE CIRCUITS

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.

DANGEROUS PROCEDURE WARNINGS

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed.

WARNING

Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting.

SAFETY SYMBOLS

General Definitions of Safety Symbols Used On Equipment or In Manuals.

Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect against damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding 1000 volts must be so marked).

Protective conductor terminal. For protection against electrical shock in case of a fault. Used with field wiring terminals to indicate the terminal which must be connected to ground before operating equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common, as well as providing protection against electrical shock in case of a fault. A terminal marked with this symbol must be connected to ground in the manner described in the installation (operating) manual, and before operating the equipment.

 \rightarrow OR \rightarrow Frame or chassis terminal. A connection to the frame (chassis) of the equipment which normally includes all exposed metal structures.

- Alternating current (power line).
- Direct current (power line).

Alternating or direct current (power line).

The WARNING sign denotes a hazard. It calls attention to a procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in injury or death to personnel.

CAUTION

WARNING

/!\

OR

The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product.

N O T E: The NOTE sign denotes important information. It calls attention to procedure, practice, condition or the like, which is essential to highlight.

TABLE OF CONTENTS

SECTION I GENERAL INFORMATION

Sub-Section	Title Pag	e
1-1	Introduction	1
1-2	Instruments Covered by This Manual1-	4
1-3	General Description1-	4
1-4	Power Requirements1-	-5
1-5	Power Cables	-5
1-6	Line Voltage and Fuse Selection1-	6
1-7	Operation	-8
1-8	Options	1
1-9	Installation of Field Installable Options1-1	1
1-10	Specifications	2
1-11	Accessories Supplied	2
1-12	Accessories Available	2
1-13	Warranty	3
1-14	Service and User Aids1-1	3
1-15	Grounding	4
1-16	Recommended Test Equipment	4
1-17	Operator Maintenance	5
1-18	Safety Considerations	6

List of Tables

Number	Title	Page
1-1	Manual Section Descriptions	1-2
1-2	Hardware Options	1-11
1-3	Accessories Supplied	1-12
1-4	Accessories Available	1-13
1-5	Specifications	1-17
1-6	Recommended Test Equipment	1-22

List of Figures

Number	Title	Page
1-1	HP 3326A Two-Channel Synthesizer	1-1
1-2	HP 3326A Manual Flow Chart	1-3
1-3	Serial Number Plate	1-4
1-4	Line Voltage Ranges	1-5
1-5	Power Cables Available	
1-6	Power Selector	1-8
1-7	Front Panel Features	1-9
1-8	Rear Panel Features	1-10

SECTION II PERFORMANCE TESTS

Sub-Section	Title	Page
2-1	Introduction	2-1
2-2	Specifications	2-1
2-3	Equipment Required	2-1
2-4	Test Record	2-1
2-5	Calibration Cycle	2-1
2-6	Operational Verification Tests	2-1
2-7	Minimizing Spectrum Analyzer Introduced Distortion	2-2
2-8	Preset State	2-2
2-9	High Voltage Tests	2-3
2-10	Repairs for Failed Performance Tests	2-4
2-11	Frequency Accuracy	2-8
2-12	Harmonic Distortion	2-9
2-13	Spurious Signals	2-14
2-14	Combiner IM Distortion	2-16
2-15	Return Loss	2-21
2-16	Channel Isolation	2-24
2-17	Sine Wave Amplitude Accuracy	2-27
2-18	Square Wave/Pulse Amplitude Accuracy	2-31
2-19	High Voltage Amplitude Accuracy	2-35
2-20	Combiner Amplitude Accuracy	2-39
2-21	Integrated Phase Noise	2-41
2-22	Square Wave Overshoot and Rise/Fall Time	2-43
2-23	Square Wave Symmetry and Pulse Width Accuracy	2-46
2-24	DC Only Accuracy	2-48
2-25	DC Offset Accuracy	2-51
2-26	Phase Offset Accuracy	2-52
2-27	Amplitude Modulation	2-56
2-28	Phase Modulation	2-60
2-29	Sync A Output	2-65
2-30	X-Drive Linearity	2-66

List of Tables

Number	Title	Page
2-1	Operation Verification Tests	2-2
2-2	HP 3326A Preset State	2-3
2-3	Repairs for Failed Performance Tests	
	Performance Test Record	2-69

List of Figures

Number	Title	Page
2-1	Frequency Accuracy Test	2-8
2-2	Harmonic Distortion Test Figure	. 2-10
2-3	Spurious Signals Test	. 2-14
2-4	Combiner IM Distortion Test	. 2-17
2-5	Return Loss Test	. 2 - 22
2-6	Channel Isolation Test	. 2-24
2-7	Amplitude Accuracy Test	. 2-28
2-8	Square Wave/Pulse Amplitude Accuracy Test	. 2-32
2-9	High Voltage Amplitude Accuracy Test	. 2-36
2-10	Combiner Amplitude Accuracy Test	. 2-40
2-11	Integrated Phase Noise Test	. 2-42
2-12	Square Wave Overshoot and Rise/Fall Time Test	. 2-44
2-13	Square Wave Symmetry and Pulse Width Accuracy Test	. 2-46
2-14	DC Only Accuracy Test	. 2-49
2-15	DC Offset Accuracy Test	. 2-51
2-16	Phase Offset Accuracy Test	. 2-53
2-17	Amplitude Modulation Test	. 2-57
2-18	Phase Modulation Test	. 2-61
2-19	Sync A Output Test	. 2-65
2-20	X-Drive Linearity Test	. 2-66

SECTION III ADJUSTMENTS

Sub-Section	Title Page
3-1	Introduction
3-2	Safety Considerations
3-3	Factory Selected Components
3-4	Repairs for Failed Adjustments
3-5	Post-Repair Adjustments
3-6	Adjustment #1, +15 V
3-7	Adjustment #2, Oven Freq
3-8	Adjustment #3, Freq Center
3-9	Adjustment #4, VCO Freq
3-10	Adjustment #5, 100 kHz
3-11	Adjustment #6, APIs
3-12	Adjustment #7, V Ref
3-13	Adjustment #8, Peak Detect Gain
3-14	Adjustment #9, A and B Offset
3-15	Adjustment #10, 2:1 Spur
3-16	Adjustment #11, 2nd Harmonic
3-17	Adjustment #12, DC Offset
3-18	Adjustment #13, Flatness
3-19	Adjustment #14, Overshoot
3-20	Adjustment #15, HV Overshoot
3-21	Adjustment #16, Bias
3-22	Adjustment #17, Battery Check

List of Tables

Number	Title	Page
3-1	Adjustment List	3-1
3-2	Repairs for Failed Adjustments	3-4
3-3	Post-Repair Adjustments	3-5

List of Figures

Number	Title	Page
3-1	Adjustment Order	3-2
3-2	Adjustment #1 Location	3-7
3-3	Adjustment #2 Location	3-8
3-4	Adjustment #3 Location	3-9
3-5	Adjustment #4 Location	. 3-11
3-6	Adjustment #5 Location	. 3-13
3-7	Adjustment #6 Location	. 3-14
3-8	Adjustment #7 Location	. 3-15
3-9	Equipment Setup for Measuring Vdc	. 3-17
3-10	Adjustment #8 Location	. 3-18
3-11	Adjustment #9 Location	. 3-19
3-12	Adjustment #10 Location	. 3-20
3-13	Adjustment #11 Location	. 3-22
3-14	Adjustment #12 Location	. 3-23
3-15	Adjustment #13 Location	. 3-25
3-16	Adjustment #14 Location	. 3-27
3-17	Square Wave Shape	. 3-27
3-18	Adjustment #15 Setup	. 3-29
3-19	Adjustment #15 Location	. 3-30
3-20	High Voltage Square Wave Shape	. 3-30
3-21	Adjustment #16 Location	
3-22	Third Harmonic Distortion at 13 MHz	. 3-32
3-23	Adjustment #17 Location	. 3-33

SECTION IV REPLACEABLE PARTS

Sub-Section	Title Page	е
4-1	Introduction4-	1
4-2	Replaceable Parts List	1
4-3	Ordering Information	8

List of Tables

Number	Title	Page
4-1	Reference Designations and Abbreviations	4-2
4-2	Manufacturers Code List	
4-3	Replaceable Parts	

SECTION V BACKDATING

Sub-Section	Title Pa	ge
5-1	Introduction	5-1
5-2	Manual Changes Supplement	5-1

SECTION VI SERVICE

Fault Isolation to the Board Level

Sub-Section	Title Pa	ge
6-1	Introduction	5-1
6-2	Safety Considerations	5-2
6-3	Getting Started	5-3
6-4	Identical Boards	5-3
6-5	Waveform Comparison	5 -8
6-6	Hidden Front Panel Commands	5 -8
6-7	Overall Theory of Operation	5-9
6-8	Self Test Error Codes6-	21
6-9	User Self Tests	28
6-10	Continuously Monitored Parameters	-28
6-11	Service Self Tests	·29
6-12	Instrument Turn-on Hierarchy6-	43
6-13	Fault Isolation Tests6	43

List of Tables

Number	Title	Page
6-1	Section Organization	6-1
6-2	Power Supply Signals for Service Self Tests	6-3
6-3	Identical Boards	6-7
6-4	Hidden Commands	<i>.</i> 6 -8
6-5	Frequency Ranges of Main Signals in Different Modes	6-16
6-6	DC Offset as a Function of AC Amplitude	6-18
6-7	HP 3326A Self Tests	6-21
6-8	Service Self Tests Execution	6-21
6-9	Service Self Tests Error Codes	6-24
6-10	Error Codes for Continuously Monitored Parameters	6-29
6-11	Service Self Tests Execution	6-30
6-12	Remote Self Test Operation	6-30
6-13	Fault Isolation Test Equipment	6-48
6-14	Fault Isolation Tests	

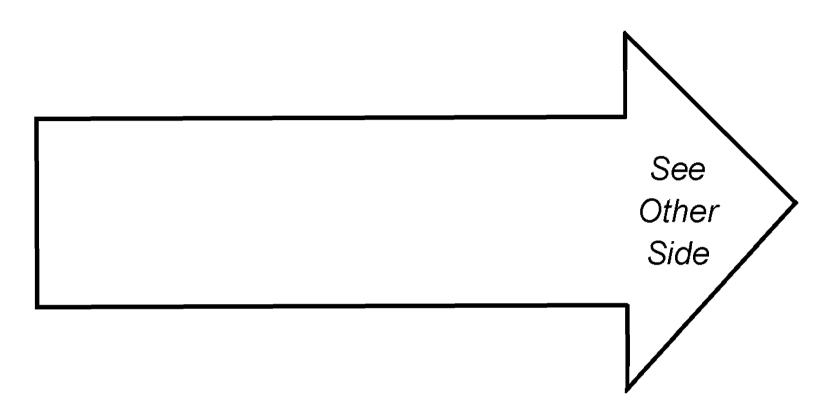
List of Figures

Number	Title	Page
6-1	Fault Isolation Flow Chart	. 6-4
6-2	Troubleshooting a Turn-on Failure	. 6-5
6-3	Locations of Identical Boards	6-7
6-4	Two-Channel Mode Simplified Block Diagram	6-10
6-5	Two-Phase Mode Simplified Block Diagram	6-11
6-6	Two-Tone Mode Simplified Block Diagram	6-12
6-7	Pulse Mode Simplified Block Diagram	6-12
6-8	RF Switch Configurations	6-16
6-9	How to Use Table 6-9	6-23
6-10	Instrument Turn-on Hierarchy Flow Chart	6-45
6-11	How to Use Table 6-14	6-47
6-12	Fault Isolation Test Signal Locations	6-48

Board Level Repair

6-14	Introduction	6-67
6-15	PC Board Cross Reference	6-69
6-16	Troubleshooting Hints	6-69
6-17	Safety Considerations	6-70
6-18	Logic Conventions	6-71
6-19	Logic Symbology	6-71
6-20	Channel A and Channel B HV Amplifier, A1 and A11 (Optio	n 002) .6-74
6-21	Channel A and Channel B Attenuator, A2 and A12	6-81
6-22	Channel A and Channel B Output Amplifier, A3 and A13	6-91
6-23	Channel A and Channel B Preamplifier, A4 and A14	6-97
6-24	Channel A and Channel B Mixer, A5 and A15	6-105
6-25	Channel A and Channel B Modulator, A6 and A16	6-113
6-26	Offset, A21	6-119
6-27	Level/AM, A22	6-127
6-28	Square, A23	6-137
6-29	RF Switch, A24	6-143
6-30	Fractional-N Local Oscillators	6-151
6-31	Calibrator, P/O A36	6-193
6-32	Reference, A50	6-209
6-33	Controller and HP-IB Support, A61 and A63	6-217
6-34	Keyboard, A62	6-249
6-35	Power Supply, A70	6-257
6-36	Front and Rear ESD, A72 and A75	6-265
6-37	Oven Reference, A80 (Option 001)	6-267
6-38	Motherboard, A99	6-273

List of Tables


Number	Title	Page
6-15	Post-Repair Adjustments	. 6-68
6-16	PC Board Cross Reference	. 6-69
6-17	Logic Voltage Levels	
6-18	General Schematic Notes	. 6-73
6-19	Level Control	. 6-83
6-20	Function Control	. 6-84
6-21	Calibration Control	. 6-85
6-22	Function Control	6-100
6-23	Function Control	6-121
6-24	Strobe Control Sub-block Troubleshooting	6-122
6-25	A Control Sub-block Troubleshooting	6-122
6-26	A Offset Sub-block Troubleshooting	6-123
6-27	Channel Output vs. Modulation Input Signal	6-128
6-28	Level/AM Output Signal Voltage Levels	6-128
6-29	Function Control	
6-30	A and B Level Control Sub-block Troubleshooting	6-131
6-31	Channel A Level Sub-block Troubleshooting	6-132
6-32	RF Switch control Lines and Inputs	6-144
6-33	Fractional-N LO Boards Cross Reference	6-159
6-34	Fractional-N Fault Isolation Tests	6-159
6-35	VCO Tuning Range	6-162
6-36	S-H Buffer Sub-block Test	6-167
6-37	Function Control	6-168
6-38	N# Latch Test	6-178
6-39	Calibration Control	6-195
6-40	Detector Function vs. Control Line State	6-196
6-41	Relay and Analog Switch Configurations for Internal Phase	
	Calibration Control and Peak Detection	6-202
6-42	Counter Clock Source Timing	6-219
6-43	Address Line Signatures	6-224
6-44	ROM1 Signatures	6-225
6-45	ROM2 Signatures	6-225
6-46	I/O Enable Signatures	6-226
6-47	NMOS RAM Signatures	6-227
6-48	CMOS RAM Signatures	6-228
6-49	Keyboard Signatures From the Controller Board	6-228
6-50	Keyboard Signatures	6-229
6-51	HP-IB Signatures	
6-52	Instrument Bus Signatures	6-230
6-53	Signatures for Boards on the Instrument Bus	6-231
6-54	HP-IB Support Connection Table	6-238
6-55	Keyboard Connection Table	6-238
6-56	Motherboard Connection Table	
6-57	Controller Connection Table	
6-58	HP-IB Output Connection Table	
6-59	Controller Connection Table	
6-60	Power Supply Voltage Levels	
6-61	PC Board Cross Reference	6-275

List of Figures

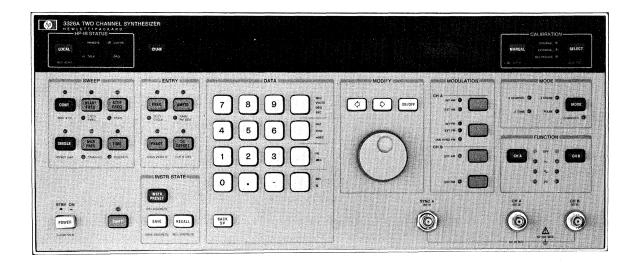
Number	Title	Page
6-13	Reference Designators	
6-14	High Voltage Amplifier Block Diagram	6-74
6-15	High Voltage Amplifier Schematic	6-79
6-16	Channel A Attenuator Schematic	6-87
6-17	Channel B Attenuator Schematic	6-89
6-18	Output Amplifier Block Diagram	6-91
6-19	Output Amplifier Schematic	
6-20	Preamplifier Block Diagram	6-97
6-21	Preamplifier Schematic	6-103
6-22	Mixer Block Diagram	
6-23	Output Buffer Expanded Block Diagram	
6-24	Mixer Board Waveforms	
6-25	Mixer Schematic	
6-26	Modulator Board Waveforms	
6-27	Modulator Schematic	
6-28	Offset Schematic	
6-29	Level/AM Schematic	
6-30	Square Board Waveforms	
6-31	Square Schematic	
6-32	RF Switch Board Waveforms	
6-33	RF Switch Schematic	
6-34	HP 3326A Fractional-N Simplified Block Diagram	
6-35	Phase-Locked Loop Block Diagram	
6-36	Phase-Locked Loop with Sample and Hold Block Diagram	
6-37	Fractional-N Phase-Locked Loop Block Diagram	
6-38	Integrator Output with API Applied	
6-39	Integrator Output	
6-40	Pulse-Remove Command	
6-41	Phase Accumulation in the Fractional-N IC	
6-42	Divide-by-N Counter Block Diagram	
6-43	HP 3326A Fractional-N Block Diagram	
6-44	VCO Tuning Graph	
6-45	VCO Board Waveforms	
6-46	VCO Schematic	
6-47	VCO Control Board Waveforms	
•	VCO Control Schematic	
6-48	VCO Tuning Graph	
6-49	Phase Detector Board Waveforms	
6-50	Phase Detector Board Waverorins	
6-51	HP 3326A Fractional-N Local Oscillator Timing	
6-52	Fractional-N Digital Board Waveforms	
6-53		
6-54	Fractional-N Digital Schematic	
6-55	VCO ÷ 2 Board Waveforms	
6-56	VCO ÷ 2 Schematic	
6-57	Fractional-N Decoder Schematic	
6-58	Calibrator Board Signal Paths	. 0-194
6-59	Timing Diagram for the Phase Cal Path	. 0-198
6-60a	Duty Cycle and DC Components of Phase Detector Outputs vs. Phase of Inputs	6-199
		.0155

Number	List of Figures	Page
6-60b	Comparator Output vs. Phase of Inputs	
6-61	Peak Detector and DAC Timing Diagram	
6-62	Calibrator Board Waveforms	
6-63	Calibrator Schematic	
6-64	Reference Board Block Diagram	
6-65	Reference Board Waveforms	
6-66	Reference Schematic	
6-67	Instrument Bus Timing Diagram	6-220
6-68	Free Run SA Test Setup	
6-69	Interface SA Test Setup	
6-70	X-Drive Test Setup	6-234
6-71	X-Drive Test Waveforms	6-235
6-72	Controller and HP-IB Support Schematic	6-243
6-73	Keyboard Timing Diagram	6-249
6-74	Keyboard Waveforms	6-253
6-75	Keyboard Schematic	
6-76	Power Supply Hierarchy	
6-77	Power Supply Schematic	6-263
6-78	Front ESD Schematic	
6-79	Rear ESD Schematic	6-266
6-80	Oven Reference Board Waveforms	6-268
6-81	Oven Reference Schematic	6-271
6-82	Motherboard Component Locator	6-274
6-83	Cable Routing Diagram	
6-84	Overall Block Diagram Waveforms	
6-85	Overall Block Diagram	

APPENDIX A GLOSSARY OF SIGNAL NAMES

SECTION I GENERAL INFORMATION

SECTION I GENERAL INFORMATION


Sub-Section	Title Pa	ıge
1-1	Introduction	1-1
1-2	Instruments Covered by This Manual	1-4
1-3	General Description	1-4
1-4	Power Requirements	1-5
1-5	Power Cables	1-5
1-6	Line Voltage and Fuse Selection	1-6
1-7	Operation	1-8
1-8	Options	-11
1-9	Installation of Field Installable Options	-11
1-10	Specifications	-12
1-11	Accessories Supplied	-12
1-12	Accessories Available	-12
1-13	Warranty	-13
1-14	Service and User Aids	-13
1-15	Grounding	-14
1-16	Recommended Test Equipment	-14
1-17	Operator Maintenance	-15
1-18	Safety Considerations	-16

SECTION I GENERAL INFORMATION

1-1 INTRODUCTION

This service manual contains all the information required by service technicians to test, adjust, and service the HP 3326A Two-Channel Synthesizer (shown in Figure 1-1). Information required to service the two options which alter the HP 3326A's electrical specifications — namely, the high stability frequency reference (Option 001) and the high voltage output (Option 002) — is included in this manual. The rear panel outputs (Option 003) has no effect on the instrument performance or specifications. An instrument with Option 003 is tested in the same manner as a standard instrument.

The manual is divided by topics into six sections, as listed in Table 1-1. For repairs, the problem board will be found by consulting the fault isolation to the board level part of the "Service" section. The board level repair part of the "Service" section will help to isolate a printed circuit board's defective functional sub-block. For certification, the "Performance Tests" section should be used first. If a test fails, the "Adjustments" section and/or board level repair part of the "Service" section should be consulted. Figure 1-2 shows the flow of this manual.

Figure 1-1. HP 3326A Two-Channel Synthesizer

Be careful to read sub-section 1-18, "Safety Considerations," before initiating any troubleshooting procedures.

Additional copies of this service manual and the latest manual change supplements can be obtained by ordering the manual part number listed on the title page. The microfiche part number listed on the title page can be used to order 4 by 6 inch microfiche transparencies of the manual. The microfiche package also includes the latest manual change supplements.

General Information Performance Tests	 Specifications Test equipment Options Option installation Front and rear panel features Maintenance Safety considerations Procedures to verify specifications
Performance Tests	- Procedures to verify specifications
	in Table 1-5
Adjustments	 Procedures to adjust to specifications in Table 1-5 Safety considerations
Replaceable Parts	 Ordering information for all parts in HP 3326A (including options)
Backdating	 Changes which adapt the manual to older units
Service Fault Isolation to the Board Level Board Level Repair	 Self test descriptions Procedures to isolate a fault to the board level Overall instrument theory of operation Safety considerations Individual circuit board troubleshooting data Board level theory of operation
	Backdating Service Fault Isolation to the Board Level

Table 1-1. Manual Section Descriptions

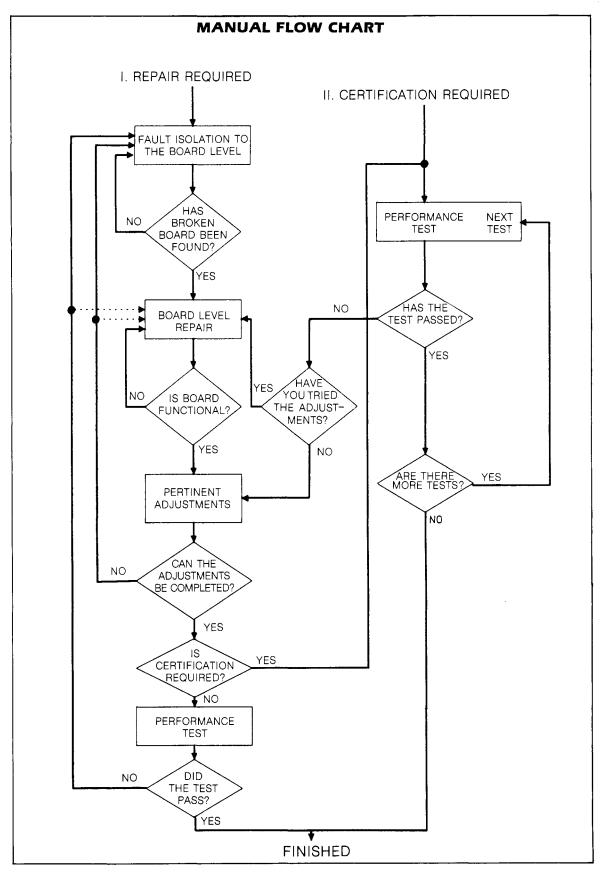


Figure 1-2. HP 3326A Manual Flow Chart

1-2 INSTRUMENTS COVERED BY THIS MANUAL

The HP 3326A identification serial number is located on the rear panel (Figure 1-3). The first four digits and the letter constitute the serial number prefix. The letter designates the country in which the instrument was manufactured (A = USA; G = West Germany; J = Japan; U = United Kingdom). The prefix is the same for all identical instruments and changes only when a major instrument change is made. The last five digits of the serial number form a sequential suffix that is unique to each instrument.

Figure 1-3. Serial Number Plate

The contents of this manual apply to all instruments. When changes have been made to the instrument, including serial number prefix changes, a yellow Manual Changes supplement that defines the changes and explains how to adapt the manual to the newer instruments will be available. In addition, backdating information contained in Section V will adapt the service manual for instruments with serial numbers other than those listed on the title page.

In addition to change information, the Manual Changes supplement may contain information for correcting errors in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is keyed to this manual's part number, which appears on the title page. Complimentary copies of the supplement are available from Hewlett-Packard.

For information concerning a serial number prefix not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard sales and service office. Addresses are listed at the back of this manual.

1-3 GENERAL DESCRIPTION

The HP 3326A is an HP-IB (Hewlett-Packard Interface Bus) programmable, precision two channel synthesizer covering the frequency range dc to 13 MHz. The variety of features found in the HP 3326A is made possible by having two independently controlled sources in one instrument. Capabilities are grouped into four operating modes: two-channel, two-phase, two-tone and pulse. A variety of modulations and waveforms are provided in each of these modes.

For a complete instrument description, refer to the HP 3326A Two-Channel Synthesizer Operating Manual.

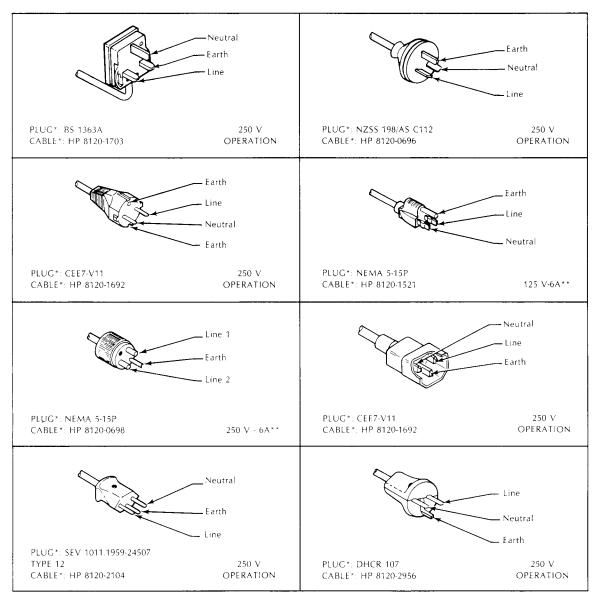
1-4 POWER REQUIREMENTS

CAUTION

Before applying ac line power to the HP 3326A, ensure the voltage selector on the HP 3326A rear panel is set for the proper line voltage and the correct line fuse is installed in the fuse holder. Procedures for changing the line voltage selector and fuse are contained in sub-section 1-6, "Line Voltage and Fuse Selection."

The HP 3326A can operate from any single phase ac power source supplying 100 V, 120 V, 220 V or 240 V (-10% to +5%) in the frequency range from 48 to 66 Hz (see Figure 1-4). Power consumption is less than 290 VA when on (with all options), and less than 15 VA in standby.

Selector Voltage	Voltage Range
100	90-105V
120	108-126V
220	198-231V
240	216-252V


Figure 1-4. Line Voltage Ranges

1-5 POWER CABLES

In accordance with international safety standards, this instrument is equipped with a threewire power cable. When connected to an appropriate power line outlet, this cable grounds the instrument cabinet. The type of power cable shipped with each instrument depends on the country of destination. Refer to Figure 1-5 for the connector configurations and HP part numbers of the available power cables.

WARNING

The power cable plug must be inserted into a socket outlet provided with a protective earth terminal. Defeating the protection of the grounded instrument cabinet can subject the operator to lethal voltages.

*The number shown for the plug is the industry identifier for the plug only.

The number shown for the cable is an HP part number for a complete cable including the plug. **UL listed for use in the United States of America.

Figure 1-5. Power Cables Available

1-6 LINE VOLTAGE AND FUSE SELECTION

CAUTION

The line voltage should be set to the line voltage of the power source. Also ensure that the common connection of the power outlet is connected to a protective earth contact.

WARNING

Line voltage is present with the instrument even when the POWER switch is in STANDBY position. To prevent electrical shock, use care when working in the vicinity of the input power circuits.

WARNING

To protect operating personnel, the HP 3326A chassis and cabinet must be grounded. The HP 3326A is equipped with a threewire power cord which, when plugged into an appropriate receptacle, grounds the instrument. The offset pin on the power plug is the ground connection.

An interruption of this protective conductor inside or outside the instrument or disconnection of the protective earth terminal is likely to make the apparatus dangerous. Intentional interruption is prohibited.

Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

The line voltage selector is set at the factory to correspond to the most commonly used line voltage of the country of destination. The line voltage selected for the HP 3326A is indicated on the line voltage selector. Refer to Figure 1-4 for the line voltage ranges and Figure 1-6 for setting the line voltage and selecting the appropriate fuse.

To change the line voltage:

- Remove the power cord.
- Pry open the power selector cover with a small, flat bladed screwdriver.
- Remove the cylindrical line voltage selector.
- Reinstall the cylindrical line voltage selector and ensure the required voltage label is facing out of the power selector.
- Close the power selector by pushing firmly on the black cover.
- Check that the correct line voltage appears through the window in the power selector cover.

To check or replace the fuse:

- Remove the power cord.
- Pry open the power selector cover with a small, flat bladed screwdriver.
- Pull the white fuse holder out of the power selector and remove the fuse from the fuse holder.
- To reinstall the fuse, insert a fuse with the proper rating into the fuse holder. Align the white arrow on the top of the fuse holder with the two white arrows on the power selector cover. All three white arrows should point in the same direction. Push the fuse holder into the power selector.

• Close the power selector by pushing firmly on the black cover.

• As a safety precaution, check that the correct line voltage appears through the window in the power selector cover.

	Fuse Selection	
Line Voltage	Fuse	HP Part Number
100V/120V	3.0 A 250 V Normal BLOW	2110-0003
220V/240V	2 A 250 V Normal BLOW	2110-0002
	ALIGNMENT ARROWS	INE VOLTAGE BELECTOR ELECTOR EZOVac

Figure 1-6. Power Selector

1-7 OPERATION

Front panel controls, indicators and connectors are shown and described in Figure 1-7. Rear panel controls and connectors are shown and described in Figure 1-8. Error codes displayed on the front panel as a result of internal calibrations and tests are explained in fault isolation to the board level part of Section VI.

For complete operating instructions, refer to the HP 3326A Two-Channel Synthesizer Operating Manual.

1 STATUS

Display panel displays frequency (up to 11 digits), amplitude, phase offset, dc offset, sweep frequencies and time, marker frequency, and HP-IB address values, as well as error messages.

CHAN key selects channel for display and modification.

CH A and CH B indicators indicate channel selected for display and modification.

HV-A and HV-B indicators illuminate when the high voltage option is enabled.

Ø OFFSET indicator illuminates when a phase offset exists for channel B relative to channel A.

EXT REF indicator illuminates when the HP 3326A is operating with an external frequency reference or high stability frequency option (Option 001).

Frequency, amplitude, offset, time, phase, duty cycle, modulation level, memory location, and HP-IB address values are entered with the numeric keypad followed by a units suffix.

BACK SP key removes the least significant digit from the display during data entry.

3 HP-IB STATUS

REMOTE, LISTEN, TALK, and SRQ status indicators provide an indication of HP-IB operation.

LOCAL key switches HP 3326A control from remote operation to front panel operation unless local lockout is in effect.

BUS ADRS key enables display or modification of the HP-IB address stored in nonvolatile memory

CONT and SINGLE keys select either continuous or single frequency sweeps. During discrete frequency sweeps, the SINGLE key steps through the sweep elements.

START FREQ and STOP FREQ keys allow entry or modification of the frequency sweep start and stop frequencies.

MKR-CF key centers the sweep span around the marker frequency

CNTR FREQ and SPAN keys allow entry or modification of the frequency sweep start and stop frequencies in terms of sweep center frequency and sweep span.

The maximum peak voltage (ac + dc) that can be safely applied between the chassis and the outer conductor of the HP 3326A input and output connectors is ±42 Vpk.

MKR FREQ key allows entry or modification of a marker frequency

TIME key allows entry or modification of the frequency sweep sweep time. For discrete frequency sweeps, time is the dwell time for each discrete frequency sweep element.

RESET SWEEP key resets the frequency sweep circuits.

TRIANGLE key selects triangle (indicator illuminated) or ramp (indicator extinguished) linear frequency sweeps. The ramp sweep function sweeps from start to stop frequency, while the triangle sweep function sweeps from start to stop to start frequencies.

DISCRETE key enables discrete frequency sweeps (frequency hopping). Discrete frequency sweeps sequence through the discrete frequency sweep elements stored with the SAVE DIS-CRETE key

5 ENTRY

FREQ key allows entry or modification of frequency values.

AMPTD key allows entry or modification of amnlitude values.

DUTY CYCLE key allows entry or modification of the square wave duty cycle

% AM/PM DEV key allows entry or modification of percent of AM modulation or PM deviation.

STATUS

PHASE key allows entry or modification of phase values

DC OFFSET key allows entry or modification of dc offset values

ASGN ZERO ϕ key assigns a zero value to phase offset without changing the phase of the output.

CLR & OFS key restores the channel B phase offset value without changing the phase of the

6 INSTR STATE

output

Mode

INSTR PRESET key sets the following setup:

Mode	2 CHANNEL
Combined operation	Off
Frequency A and B	1000 Hz
Amplitude A and B	100 mVpp
Phase	0°
Duty cycle	50 %
DC offset A and B	0 V
Modulation	Off
Modulation level	30%
Sweep	Off
	Ramp
	13 MHz span
	1 s. sweep
	6.5 MHz marker
Function A and B	Sine wave
High voltage	Off
Calibration	Internal
Autocalibration	Off

SAVE and RECALL keys save and recall setups from nonvolatile memory registers 0 - 9. Register 0 contains the last setup prior to removing power

CLR DISCRETE key erases all discrete frequency sweep elements stored in memory.

7 POWER/SHIFT

POWER KEY applies power to the entire HP 3326A when ON (depressed). In STBY, power is applied only to the high stability frequency reference option (Option 001) when the HP 3326A is connected to a suitable power source.

CLEAR MEM key clears the contents of internal memory if the key is held down when power is applied.

SHIFT key enables the front panel keys to select the alternate functions printed in blue.

8 MODIFY

Rotary knob modifies frequency, amplitude, phase, offset, duty cycle, modulation level and time values when enabled by arrow keys or ON kev.

 \leftarrow and \rightarrow keys enable the rotary knob and select display (flashing) digit modified

ON/OFF key enables and disables the modify function and flashing digit.

9 MODULATION

Modulation keys select internal and external AM and PM sources. Internal modulation uses channel B to modulate channel A. External modulation inputs are on the rear panel.

INT AM, INT PM, EXT AM, EXT PM, and (AB) SYNC PM indicators illuminate to indicate the type of modulation selected with the modulation keys.

MANUAL key initiates an HP 3326A calibration.

AUTO key enables automatic calibration.

INTERNAL, EXTERNAL, and MULTIPHASE indicators illuminate to indicate the phase calibration source selected with the SELECT key.

SELECT key selects the HP 3326A phase calibration source. Multiphase and external phase calibration inputs are on the rear panel.

SELF TEST key initiates a self test.

MODE key selects the 2 CHANNEL, 2 PHASE, 2 TONE, or PULSE operating modes. The 2 CHANNEL mode provides two independent

HP-IB STATUS	3326A TWO CHANNEL SYN Hyferrain 1 a tha An an a Hyferrain 1 a tha An an a Hyferrain 1 a tha An	THESIZER			
SWEEP	debronzenna SwiEP value Balan				
ENTRY			78903		OKA
	 564 🗃 🖨			0	
INSTR STATE	and the analysis of the state o	ana ang a sa s		U	···· • • • • • •
POWER/SHIFT		E			×4 9

sources, the 2 PHASE mode provides two tracking sources with a phase offset, the 2 TONE mode provides two tracking sources with a frequency offset, and the PULSE mode provides a pulse signal and its complement.

2 CHANNEL, 2 PHASE, 2 TONE, or PULSE indicators illuminate to indicate the the mode selected

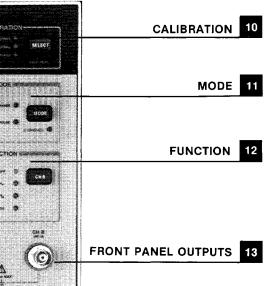
COMBINED key combines channel A and B to produce a composite output at channel A.

12 FUNCTION

CH A and CH B keys select the function outputs for each channe

~. L. and DC indicators indicate function selected with CH A and CH B keys.

HV keys enable the high voltage option for low impedance outputs with levels up to 40 Vpp.


13 FRONT PANEL OUTPUTS

SYNC A output provides a TTL square wave with same frequency as channel A. SYNC A output impedance is 50 Ω.

CH A and CH B outputs provide standard impedance of 50 Ω. High voltage output impedance is less than 2 Ω to 50 kHz and less than 10 Ω to 1 MHz.

MODIFY 8

MODULATION 9

1. MODULATION INPUTS

4

ground.

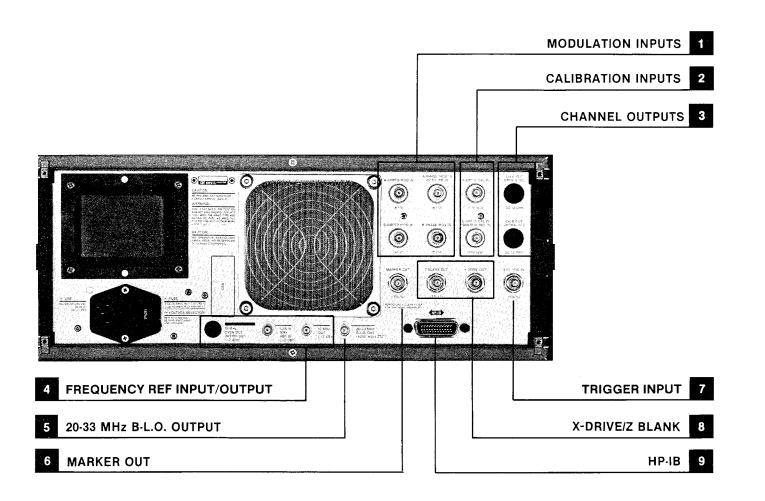
ground.

to chassis ground.

6 MARKER OUT

A-AMPTD MOD IN and B-AMPTD MOD IN connectors provide the input to externally modulate the amplitude of the channel A and B outputs (100 kHz maximum modulation frequency). 1 Vdc (-1 Vdc for channel B) corresponds to 100% modulation.

A-PHASE MOD IN/SYNC PM IN and B-PHASE MOD IN connectors provide the input to externally phase modulate the channel A and B outputs (5 kHz maximum modulation frequency). ±1 Vdc corresponds to $\pm 360^{\circ}$ modulation.



A-EXT PHASE CAL IN and B-EXT PHASE CAL **IN/ MULTI** ϕ **REF IN** connectors allow the HP 3326A to sense phase externally for an external or multiphase calibration. These inputs require a 1 kHz to 13.1 MHz signal with an amplitude of 3 to 10 Vpp.

CH A OUT OPT 003 and CH B OUT OPT 003 are optional rear panel outputs for channel A and В.

MARKER OUT TTL level signal provides a negative going transition at the frequency entered with the MKR FREQ key.

FREQUENCY REF INPUT/OUTPUT

1, 2, 5, 10 MHz REF IN connector allows the HP 3326A to phase-lock to a stable frequency reference. This input is referenced to chassis

10 MHz OUT connector provides 10 MHz square wave (>3 dBm 50 Ω) as a frequency reference for other instruments. This output is referenced

10 MHz OVEN OUTPUT Option 001 provides a high stability frequency reference when connected to 1, 2, 5, 10 MHz REF IN. The 10 MHz OVEN OUTPUT is a square wave (>3 dBm 50 Ω). This output is referenced to chassis

5 20-33 MHz B-L.O. OUTPUT

20-33 MHz B-L.O. OUTPUT provides an output offset from the channel B frequency by 20 MHz. This output is referenced to chassis ground.

7 EXT TRIG INPUT

EXT TRIG IN allows external triggering of sweeps on negative edge transition of a TTL signal.

8 X-DRIVE/Z-BLANK OUTPUTS

X-DRIVE provides linear 0 to 10 V ramp proportional to sweep time.

Z-BLANK TTL output drops low at start of sweep during frequency sweeps, capable of sinking current (100 mA maximum) from a positive source.

HP-IB connector allows remote operation of the HP 3326A with an external controller. This connector is referenced to chassis ground.

1-8 OPTIONS

Listed below are the three options which electrically alter the HP 3326A. Option 001 and Option 002 also alter the HP 3326A's electrical specifications. Option 003 has no effect on the specifications. Instructions on how to install these options are included in an installation note provided in the field installable options kits.

Option 001, High Stability Frequency Reference

Option 001 provides improved frequency stability and integrated phase noise characteristics. Details on the repair of the option are given in the board level repair part of the "Service" section, under "Oven Reference, A80." The HP part number of the field installable kit is 03326-88801.

Option 002, High Voltage Output

Option 002 increases the output level by a factor of four and expands the allowable dc offset range. Details on the repair of this option are given in board level repair part of the "Service" section, under "HV Amplifier, A1 and A11." The HP part number of the field installable kit is 03326-88802.

Option 003, Rear Panel Outputs

Channel A (CH A) and channel B (CH B) output connectors are provided on the rear panel. The channel A synchronous output connector (SYNC A) remains positioned on the front panel. Instrument specifications do not change. The HP part number of the field installable kit is 03326-88803.

Table 1-2 lists the available standard exterior hardware options.

Table 1-2. Hardware Options

Option	Description	HP Part Number		
Option 907	Front Handle Kit	5061-0090		
Option 908	Rack Flange Kit	5061-0078		
Option 909	Rack Flange/Front Handle Kit	5061-0084		
Option 910	Extra Operating Manual	03326-90000		
Option 914	Delete Service Manual			
	Option 907 Option 908 Option 909 Option 910	Option 907Front Handle KitOption 908Rack Flange KitOption 909Rack Flange/Front Handle KitOption 910Extra Operating Manual		

1-9 INSTALLATION OF FIELD INSTALLABLE OPTIONS

Only trained service technicians should install these options since it necessitates removal of the instrument covers. To avoid electrical shock, make sure the power cable is disconnected before removing the instrument cover.

Save Switch

The HP 3326A will be in the PRESET condition when power is applied to the instrument if the save switch on the controller board (the third switch on A61S1) is in the OPEN position. If the save switch is in the NOT OPEN position, the instrument will be in the same state when power is applied as it was when power was turned off (i.e. the last instrument state will be "saved").

Options 001, 002, and 003

Instructions for installing the high stability frequency reference, high voltage outputs, and rear panel outputs options are located in an installation note. This note is included in the field installable option kits. For quick reference, put the installation note at the end of "General Information."

1-10 SPECIFICATIONS

The HP 3326A specifications are listed in Table 1-5. The specifications describe the instrument's warranted performance. Unless otherwise stated, the specifications apply to the channel A and channel B outputs in all modes, with combined operation off. A warmup period of 30 minutes is required, unless otherwise noted.

Supplemental characteristics are intended to provide additional information by giving typical, non-warranted, performance specifications. These supplemental characteristics are denoted as "typical," "nominal," or "approximate."

1-11 ACCESSORIES SUPPLIED

The HP 3326A is supplied with the accessories listed in Table 1-3.

NOTE

The service manual is not included with the HP 3326A if Option 914 is requested. Option 914 deletes the service manual from the product.

Table 1-3. Accessories Supplied

Accessory	Quantity	HP Part Number
Operating Manual	1	03326-90000
ervice Manual	1	03326-90010
Line Power Cord	1	See Figure 1-5

1-12 ACCESSORIES AVAILABLE

The Hewlett-Packard accessories listed in Table 1-4 are available for use with the HP 3326A:

Table 1-4. Accessories Available

Accessory	Model/HP Part Number	Description
Ground Isolator	15507A	Breaks signal grounds between input and output connectors.
50 Ohm Feed Through Termination	11048C	Terminates outputs in 50Ω .
Transit Case	9211-2656	Provides rugged protection, transportation, and storage.
Service Accessory Kit	03326-84401	Required for servicing. Kit includes two printed circuit board extenders and adapter cables.

1-13 WARRANTY

The HP 3326A. Two-Channel Synthesizer is warranted and certified as indicated in the "Preface" of this manual. For further information, contact the nearest Hewlett-Packard sales and service office; addresses are provided at the back of this manual.

1-14 SERVICE AND USER AIDS

Hewlett-Packard provides several documents helpful to the user and to the repair technician.

Product Notes

These notes provide product-specific application information, as well as discussions of the HP 3326A Two-Channel Synthesizer's specifications and characteristics. Contact the nearest Hewlett-Packard sales and service office for ordering information.

Programming Notes

Detailed information on using the HP 3326A over the Hewlett-Packard Instrument Bus (HP-IB) is contained in these documents. An HP-IB introductory operating guide and a quick reference guide are contained in the operating manual. The introductory operating guide may be purchased separately.

Service Notes

Hewlett-Packard makes design improvements to its current line of instruments on a continuing basis. Many of these improvements can be incorporated in instruments produced earlier. Modification and general service information is passed on in the form of Service Notes. To obtain the Service Notes, contact the nearest Hewlett-Packard sales and service office.

Service Accessory Kit

A kit containing the unique accessories needed to service the HP 3326A is available for purchase from your local Hewlett-Packard sales and service office. Order HP part number 03326-84401.

1-15 GROUNDING

There are two distinct grounds in the HP 3326A: CGND and GND. CGND, or chassis ground, is connected to the protective earth ground of the power plug. The following parts of the instrument are connected to chassis ground:

- HP-IB connector, pins 12 (shield), 18-24
- Instrument chassis, frame, covers, all exposed metal surfaces
- Four rear panel output connectors (the shields of these connectors are connected to CGND at the rear panel)

20-33MHz B-L.O. OUT 10MHz OUT 1,2,5,10MHz REF IN 10MHz OVEN OUT, OPTION 001

The rest of the instrument uses GND, an isolated ground. GND is connected to CGND through varistors and capacitors on several boards in the instrument. See the power supply (A70) schematic for the details.

The maximum safe float voltage for the connectors on the HP 3326A is 42 Vpk.

WARNING

DO NOT interrupt the protective earth ground or float the HP 3326A above the specified 42 Vpk maximum. This action could expose the operator to potentially hazardous voltages!

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement. The use of repaired fuses and the short-circuiting of fuse holders must be avoided.

1-16 RECOMMENDED TEST EQUIPMENT

Table 1-6 lists the test equipment and accessories needed to test, adjust, and repair the HP 3326A Two-Channel Synthesizer, including Option 001 and Option 002.

NOTE

The performance tests, adjustments, fault isolation procedures, and repair procedures are written for the recommended test equipment. Substituting alternate test equipment may require that some procedures be modified.

1-17 OPERATOR MAINTENANCE

Operator maintenance is limited to replacing the line fuse and cleaning the fan filter. There are no operator controls inside the HP 3326A.

Only trained service personnel should perform any instrument repair. Refer to the safety symbol chart in the "Preface" for all applicable instrument and manual safety symbols.

WARNING

Under no circumstances should an operator remove any covers, screws, shields, or in any other way enter the HP 3326A. There are no operator controls inside the HP 3326A Two-Channel Synthesizer.

Fuse

The main ac line fuse is located on the rear panel power module. See Figure 1-6 for fuse location and the fuse part numbers corresponding to various line voltages. Replacement instructions are given in sub-section 1-6, "Line Voltage and Fuse Selection."

WARNING

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement. The use of repaired fuses and the short-circuiting of fuse holders must be avoided.

Fan

The cooling fan's air filter is located on the rear panel. To service the filter, remove the power cable and remove the four knurled nuts that hold the filter to the rear panel. Clean the filter using a solution of warm water and a mild soap or replace the filter. The air filter should be cleaned every 30 days.

Cleaning Solvents

Unplug the instrument power cord before cleaning any portion of the instrument. Use only non-abrasive, non-corrosive cleansers. A solution of warm water and mild soap is recommended.

1-18 SAFETY CONSIDERATIONS

The HP 3326A is a Safety Class I instrument (provided with a protective earth contact). Before applying power to the instrument or removing any of the covers, review the warnings and cautions found on the instrument and in this manual.

Refer to the safety symbol chart in the "Preface" for all applicable instrument and manual safety symbols.

The operator should not remove the instrument covers for any reason. Any adjustment, maintenance, or repair of the opened instrument must be carried out only by a skilled technician who is aware of the hazard involved. The opening of covers or removal of parts may expose parts with harmful voltages. Unless otherwise stated, the following specifications apply to the Channel A and Channel B outputs in all modes, with the internal combiner and all modulation off, and outputs terminated in 50 ohms. For tabular data, specifications apply at and above the stated frequency or amplitude range.

SPECIFICATIONS describe the instrument's warranted performance after a warm-up period of 30 minutes (except where noted). SUPPLEMENTAL CHAR-ACTERISTICS are intended to provide information useful in applying the instrument by giving typical, but non-warranted, performance parameters. Supplemental characteristics are denoted as typical, nominal, or approximate.

MODES

TWO-CHANNEL: Channels A and B are independent

TWO-PHASE: Channels A and B are the same frequency, with a calibrated phase difference between them.

TWO-TONE: Channel B frequency must be within 100 kHz of the Channel A frequency.

PULSE: Channel B is the complement of the Channel A output.

WAVEFORMS

Sine, Square, Pulse and DC,

FREQUENCY

RANGE: DC to 13 MHz. RESOLUTION: 1 µHz below 100 kHz. 1 mHz at or above 100 kHz.

ACCURACY: ± 5 × 10⁻⁶ of selected value, 20°C to 30°C, at time of frequency reference calibration with standard instrument. **STABILITY:** ±5×10⁻⁶/year. 20°C to 30°C, with standard instrument.

MAIN SIGNAL OUTPUTS (Channels A and B, all waveforms unless noted)

IMPEDANCE: $50\Omega \pm 1\Omega$. DC to 100 kHz RETURN LOSS: >20 dB. 100 kHz to 13 MHz

CHANNEL ISOLATION: >80 dB below the larger signal, or < – 90 dBm, which-ever is greater. 10 Hz to 13 MHz, sine wave only. Two-Channel and Two-Tone modes. For square wave and DC. *typically* > 80 dB to 5 MHz. *typically* > 65 dB to 13 MHz. CONNECTOR: Front panel BNC (rear panel if Option 003).

FLOATING: Both outputs share the same ground and may be floated up to ±42 V peak (AC + DC)

AC AMPLITUDE (All Waveforms) RANGE (WITHOUT DC OFFSET):

Function

Units	Sir	ne	Square	
Displayed	min	max	min	max
peak-to-peak	1.000 mV	10.00 V	1.000mV *	10.00V *
rms	0.354 mV	3.54 V	0.500 mV	5.00 V
$dBm(50\Omega)$	- 56.02	+ 23.98	- 53.01	+ 26.99
dBV	- 69.03	+ 10.97	- 66.02	+ 13.98
	* also app	lies to BES		

pulse mode

0.1% of value for peak-to-peak entry. 0.3% of value for rms entry. and 0.01 dB for dBm or dBV entry.

ACCURACY: Relative to selected value after performing self-calibration. Sina Waya

Sine wave.	0.001 Hz	100 kHz	1 MH	z 13 MHz
+ 23.98 dBm	0.001 HZ			
+ 3.98 dBm	<u>±0.1</u>	aB :	±0.3 dB	± 0.6 dB
- 36.02 dBm	± 0.2	dB :	±0.5 dB	± 0.8 dB + 1.0 dB
– 56.02 dBm	-			± 1.0 0B

Square Wave and Pulse (50% duty cycle):

(50 /0 000	y cycle).				
10.00 Vpp	0.001 Hz	100	Hz	1 MHz	13 MHz
1.00 Vpp	± 1.00	% *	± 3.0%	±	6.0%
100 mVnn	± 2.0°	% *	± 5.0%	±	8.0%

100 mVpp * Also for 5% to 95% duty cycle in pulse mode

WAVEFORM CHARACTERISTICS

SINE WAVE SPECTRAL PURITY:

Harmonic Distortion: Harmonically related signals will be less than the follow-

ing levels relative to the fundamental, or < - 90 dBm, whichever is greater

+ 23.98 dBm	10 Hz	50 kHz	100 kHz	1 MHz	13 MHz
+ 13.98 dBm	- 80	dBc – 71	0 dBc - 5 0 dBc - 6	55 dBc -	- 30 dBc
– 56.02 dBm					00 020

Spurious: In Two-Channel mode, all nonharmonically related output signals (10 Hz* to 40 MHz) will be less than the following levels relative to the fundamental or < - 90 dBm. whichever is greater

Channel Frequency	Spurious Level
10 Hz to 1 MHz	– 80 dBc
1 MHz to 13 MHz	– 70 dBc

1 MHz to 13 MHz Ground isolation must be maintained. Integrated Phase Noise: For a 30 kHz band centered on a 10 MHz carrier (excluding ±1 Hz about the carrier)

With option 001: < -63 dBc. With standard instrument: *typically* < -60 dBc.

SQUARE WAVE AND PULSE CHARACTERISTICS:

Rise/fall time: ≤15 ns 10% to 90% at full output at 1 MHz

Overshoot: ≤5% of peak-to-peak ampli-tude at full output at 1 MHz.

Square Wave symmetry: $\leq \pm 1\%$ of period + 6ns

Pulse Width range: 1% to 99% of period or 20 ns, whichever is greate

Pulse Width resolution: 0.1% of period. Pulse Width accuracy: $\leq \pm 1\%$ of period + 20 ns

DC ONLY

RANGE: 0 to ± 5.0 V. RESOLUTION: 3 digits or 10 mV. ACCURACY (AFTER PERFORMING SELF-CALIBRATION): ± 75 mV.

SPECIFICATIONS

Cal

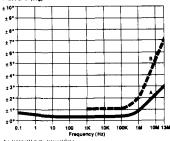
			n DC Offset is a function amplitude.	
_ AC Ampl	itude	Max AC +	DC Max DC Offset	
1.0 to 10.0 V 0.1 to 1.0 V 10 mV to 10 1 mV to 10 r	op 0 mVpp	± 5.0 V ± 0.5 V ± 50 mV ± 5 mV	± 4.5 V ± 0.45 V ± 45 mV ± 4.5 mV	
	DC AC	LUTION: 4 CURACY (A CALIBRAT	AFTER PERFORMING	
* midpoint between peaks	Function			
at 50% duty cycle	Sine	Nave	Square Wave*/Pulse*	
10 Hz to 50 kHz	±2.0% o	f max DC	±2.0% of max DC	
50 kHz to 1 MHz	±2.0% o	f max DC	$\pm 6.0\%$ of max DC	
1 MHz to 13 MHz	±5.0% o	f max DC	\pm 6.0% of max DC	
	The fol Phase the Tv defined rising e	Offset betwe vo-Phase i d as the diffe idge (using t	cifications apply to the een Channels A and B in mode only. Phase is erence in rising edge to he midpoint as the refer- e and square waves.	

RANGE: ± 720°. RESOLUTION: 0.01°

ABSOLUTE ACCURACY: in degrees with the following output waveforms on Channels A and B, equal amplitude levels, and either internal phase calibration or external phase calibration (using a power splitter and equal length cables).

Sine/Sine Outputs:

Mode	0.1 Hz	<u>10 Hz</u>	_1	k <u>Hz</u>	100	<u>kHz 1</u>	MHz	13 MHz
Internal	1 ±0.	5°	±0.2°	±0	.2°	± 0.3°		± 2.0°
Internal ²	² <u>±</u> 0.	8°	±0.4°	±0	.4°	±0.5°		<u>+</u> 3.0°
External	1	N/A_		<u>±0</u>	.2°	±0.3°		<u>±</u> 2.0°


1 = Both amplitude levels between 1 V to

10 Vpp (+3.98 to +23.98 dBm). 2 = Both amplitude levels between 0.1 V

to'10 Vpp (-16.02 to +23.98 dBm)

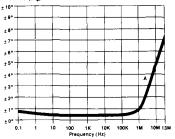
Typical performance

UNEQUAL LEVELS (Sine/Sine Mode) ee Error (deg

A) Unequal Levels, Internal Cal 1 B) Unequal Levels, External Cal

Square/Square Outputs:

Cal Mode 0.1	<u>Hz 10 Hz</u>	<u>1 kHz</u>	1 <u>00 kH</u> ;	<u>z 1 MHz</u>	13 MHz
Internal	± 0.5°	±0.2°	±0.2°	± 0.7°	± 5.0°
Internál ²	± 0.8°	±0.4°	±0.4°	± 1.0°	± 7.0°
External ¹	N/A		<u>+</u> 0.2°	±0.7°	±5.0°


= Both amplitude levels between 1 V to 10 Vpp (+6.99 to +26.99 dBm).

2 = Both amplitude levels between 0.1 V

to 10 Vpp (-13.01 to +26.99 dBm).

Typical Performance

UNEQUAL LEVELS (Square/Square Mode) Phase Error (deg)

A) Unequal Levels. Internal Ca

STABILITY WITH TEMPERATURE: typically ±0.3°phase/°C, 20°C to 30°C. STABILITY WITH TIME: typically \pm 0.1°/10 min after a 30 min warm-up, \pm 0.02°/10 min after a 1 hr warm-up.

AMPLITUDE MODULATION

The following specifications apply to the Channel A and Channel B outputs with external modulation or to the Channel A output with internal modulation (Channel B is the modulation source). External amplitude modulation is allowed in any mode while internal amplitude modulation is allowed only in the Two-Channel mode.

WAVEFORMS: Sine, square, or pulse (pulse allowed in external only) CARRIER FREQUENCY RANGE: DC to

13 MHz. MODULATION FREQUENCY RANGE:

DC to 100 kHz

MODULATION DEPTH: 0 to 100%. The following specifications apply at

10 MHz carrier frequency, 1 kHz modulation rate

Envelope Distortion: < - 46 dB at 80% AM depth Incidental PM; < 5° peak at 50% ÅM depth

Modulation Depth Accuracy (internal only): ±5% of setting at 80% AM depth

Modulation Depth Resolution (internal only): 0.1%

EXTERNAL MODULATION:

Channel A sensitivity: approximately -1.0 V for 0%, +1.0 V for 100%.

Channel B sensitivity: approximately + 1.0 V for 0%, - 1.0 V for 100%. Input impedance: 10 kn nominal

SPECIFICATIONS

PHASE MODULATION The following specifications apply to the

Channel A and Channel B outputs with external and synchronous phase modulation, and to the Channel A output with internal phase modulation (Channel B is the modulation source). External and synchronous PM are allowed in any mode while internal PM is allowed only in the Two-Channel mode

WAVEFORMS: Sine, square, or pulse (pulse allowed in external only)

CARRIER FREQUENCY RANGE: DC to 13 MHz

MODULATION FREQUENCY RE-SPONSE: DC to 200 Hz: ± 0.5dB DC to 5 kHz: See typical plot PHASE DEVIATION: ± 360°

DISTORTION (10 MHz CARRIER FRE-QUENCY, 1 kHz MODULATION RATE):

 \leq -50 dB for less than \pm 45° peak deviation,

≤ -37 dB at ±90° peak deviation Incidental AM: < 0.5% at 360° peak

INTERNAL MODULATION:

Phase deviation resolution: 1° Phase deviation accuracy: ± 5% of setting, 200 Hz rate, ≥45° phase deviation. EXTERNAL AND SYNCHRONOUS MODULATION:

Sensitivity: approximately 360°/V. Input impedance: >4 kΩ nominal.

FREQUENCY SWEEP

SWEEP TYPES:

Linear sweep: User selectable Start/Stop Frequencies and Sweep Time.

Discrete sweep: 1 to 63 user selectable sequential elements. Each element con-sists of Channel A and B frequencies and the dwell time before switching to the next element

LINEAR SWEEP:

Sweep forms: Triangle, ramp.

Sweep time: 5 ms to 1000 s, limited to 5 mHz/s to 500 MHz/s sweep rates Sweep Width: 25 µHz to 13 MHz

DISCRETE SWEEP DWELL TIME: 5 ms to 1000 s between switching elements, limited to 5 mHz/s to 500 MHz/s sweep rates. PHASE CONTINUITY: Sweep is phase continuous over the full frequency range.

OUTPUT COMBINER

The following specifications apply when Channel A and B are combined on the Channel A output with the Channel B output automatically turned off and terminated in 50Ω . The combiner may be used in the Two-Channel, Two-Phase and Two-Tone modes only. DC offset is automati-cally set to 0 V when the combiner is on. FREQUENCY RANGE: DC to 13 MHz.

RETURN LOSS: > 20 dB.

AMPLITUDE: The maximum settable levels of Channels A and B are each reduced by 6.02 dB.

AMPLITUDE ACCURACY: Add the following to the amplitude accuracy of Channel A or B, given on page 10.

DC to 100 kHz	± 0.1 dB
100 kHz to 13 MHz	± 0.3 dB
INTERMODULATION	DISTORTION: In
the Two-Tone mode,	third-order inter-
modulation difference pr	
than the following leve	els relative to the
higher of the fundament	ntals, or < -90
dBm, whichever is great	ter. Both channels
must be in the indicated	d frequency band
with a minimum frequence	cy separation of 10
Hz.	

+ 17.96 dBm - 10 h	lz ·	<u>MHz</u>	13 MHz
+ 7.96 dBm	– 70 dB		45 dB
- 62.04 dBm	– 80 dB		65 dB

AUXILIARY OUTPUTS

SYNC A: Square Wave with the same frequency as Channel A.

Level: $V_{high} \ge 1.2 \text{ V}$, $V_{low} \le 0.1 \text{ V}$ into 50Ω . Output impedance: 50 nominal.

Connector: Front panel BNC

X-AXIS DRIVE: Linear ramp proportional to sweep time in linear sweep mode and discrete sweep (if dwell time is < 1000 s). Level: 0 to + 10 V DC

Linearity: ±0.2% between 10% and 90% of ram

Accuracy: ± 4% of full scale value, >10 KΩ load

Connector: Rear panel BNC

Z-AXIS BLANK: TTL compatible level that is low during sweep

Connector: Rear panel BNC.

SWEEP MARKER: TTL compatible level that makes a high-to-low transition at the selected marker frequency during linear sweep or is low during discrete frequencies, pulsing high for a minimum of 10 μ s between frequency changes.

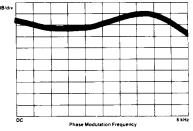
Connector: Rear panel BNC

10 MHz REFERENCE: > + 3 dBm output for frequency-locking additional instru-ments to the 3326A.

Impedance: 50 nominal

Connector: Rear panel BNC

10 MHz OVEN OUTPUT (OPTION 001 **ONLY):** > + 3 dBm internal high stability


frequency reference output for phase-locking other instruments.

Connector: Rear panel BNC

20 - 33 MHz LO OUTPUT: ≥200 mVpk square wave output that is offset 20 MHz from the channel B output frequency in the two-channel mode.

Impedance: 50 nominal, AC coupled. Connector: Rear panel BNC.

Typical PM Deviation Frequency Response

SPECIFICATIONS

AUXILIARY INPUTS

EXTERNAL REFERENCE INPUT: For

phase-locking the 3326A to an external frequency reference. Signal from 0 dBm to ± 20 dBm into 50 Ω . Reference must be 1, 2, 5 or 10 MHz \pm 10 ppm. Channel A phase stability with respect to external reference input is $\pm 1^{\circ}/^{\circ}$ C.

Connector: Rear panel BNC. With option 001 this input must be connected to the 10 MHz Oven Output.

EXTERNAL TRIGGER: TTL compatible level that initiates linear or discrete sweep on high to low transition.

Connector: Rear panel BNC.

CHANNEL A EXTERNAL PHASE CAL-IBRATION: For external or multiphase calibration.

Frequency range: 1 kHz to 13 MHz.

Amplitude range: 1 to 10 V peak-to-peak. Impedance: 50Ω nominal.

Waveform: Sine wave or square wave with

50% duty cycle.

Connector: Rear panel BNC.

CHANNEL B EXTERNAL PHASE CAL-IBRATION: For external or multiphase calibration. Specifications identical to Channel A external phase calibration input. Connector: Bea: panel BNC

CHANNEL A EXTERNAL AMPLITUDE MODULATION: See modulation specifications.

Connector: Rear panel BNC.

CHANNEL B EXTERNAL AMPLITUDE MODULATION: See modulation specifications.

Confector: Rear panel BNC.

CHANNEL A EXTERNAL PHASE MOD-ULATION/SYNCHRONOUS PHASE MODULATION: See modulation specifications.

Connector: Rear panel BNC.

CHANNEL B EXTERNAL PHASE MOD-ULATION: See modulation specifications. Connector: Rear panel BNC.

SAVE/RECALL MEMORY

Ten non-volatile memory locations.

Front panel setups can be stored in memory locations 1 through 9. Last front panel setup is saved in memory location 0 when power is removed. Use of discrete sweep overwrites memory locations 1 through 9 with the 63 discrete elements, where an element consists of Channel A and B frequencies and the dwell time between elements.

HP-IB CONTROL

CAPABILITY: Compatible with IEEE Standard 488 – 1978. Ali front panel functions, except line switch and HP-IB address, are programmable. Special HP-IB only functions include Service Requests, diagnostics, device trigger for external trigger, and front panel display secure mode. The 3326A is compatible with most HP 3325A HP-IB mnemonics.

INTERFACE FUNCTIONS: SH1,AH1.T6, L4,SR1,RL1,PP0,DC1,DT1,C0,E1. TYPICAL SWITCHING TIMES (EX-

CLUSIVE OF PROGRAMMING TIME): Frequency (to within ± 10ppm):

 \leq 10 ms for a 100 kHz step, \leq 25 ms for a 1 MHz step,

 \leq 70 ms for a 10 MHz step. Phase (to within $\pm 1^{\circ}$): \leq 15 ms.

Amplitude (to within amplitude specifications): $\leq 30 \text{ ms}$.

OPTIONS

OPTION 001 HIGH STABILITY FREQUENCY REFERENCE

Improves frequency stability and inteorated phase noise characteristics.

STABILITY: $\pm 5 \times 10^{-8}$ /week, after 72 hours continuous operation, $\pm 1 \times 10^{-7}$ /mo. after 15 days continuous operation.

WARM-UP TIME: Reference will be within $\pm 1 \times 10^{-7}$ of final value 15 minutes after turn-on at 25°C for an off time of 24 hours. **PHASE NOISE:** see Sine Wave Spectral Purity section.

OPTION 002 HIGH VOLTAGE OUTPUT

Increases output level by a factor of 4 and expands the allowable DC offset range. The following specifications apply to the Channel A and Channel B outputs in all modes with the internal combiner off.

FREQUENCY RANGE: DC to 1 MHz

OUTPUT IMPEDANCE:

DC to 50 kHz: $< 2\Omega$. 50 kHz to 1 MHz: $< 10\Omega$.

MAXIMUM OUTPUT CURRENT: ±20 mA peak.

AMPLITUDE:

Range: 4 mV to 40 Vpp without DC offset. Levels are 4 times the standard instrument ranges. Amplitude is entered in peak-topeak units only.

Accuracy: $\leq \pm 12\%$ of peak-to-peak value for sine, square, and pulse for 400 mV to 40 Vpp values.

SINE WAVE HARMONIC DISTORTION:

Harmonically related signals will be less than the following levels relative to the fundamental, into 1 k Ω , 200 pF, no DC offset.

40.00 Vpp 10	Hz 50 1	k <u>Hz 100 l</u>	<u>kHz 1 MHz</u>
12.64 Vpp	- /5 08	– 65 dB	- 40 dB
400 mVpp	- 80 dB	- 75 dB	– 55 dB

SPECIFICATIONS

SQUARE WAVE AND PULSE CHARACTERISTICS: Rise/fall time: ≤150 ns, 10% to 90% at full output with 1 k Ω, 200 pF load.

Overshoot: ≤10% of peak-to-peak amplitude at full output with 1 kg, 200 pF load. DC ONLY AND DC OFFSET

CHARACTERISTICS:

DC Only Range: 0 to ± 20 V. DC Offset Range: ± 20 V independent of the AC amplitude range. DC + AC peak must be less than 20 V.

DC Offset Accuracy: ± (140 mV + 1% of setting) for sine waves DC to 1 MHz, square waves DC to 50 kHz

OUTPUT COMBINER: The following specifications apply when Channel A and B are combined on the Channel A output (Channel B output is off). The combiner may be used in the Two-Channel. Two-Phase and Two-Tone modes. DC offset is automatically set to 0 V when the combiner is on

INTERMODULATION DISTORTION:

Third-order intermodulation difference products will be less than the following levels relative to the higher of the fundamentals (sine wave only). Both channels must be in the indicated frequency band with a minimum frequency separation of 10 Hz.

20.00 Vpp	Hz 10	0 kHz	1 MHz
6.32 Vpp	– 60 dB	- 4	0 dB
200 mVpp	– 75 dB	- 5	5 dB

OPTION 003 REAR PANEL MAIN SIGNAL OUTPUTS

Replaces front panel Channel A and B outputs with rear panel outputs.

GENERAL

OPERATING ENVIRONMENT:

Temperature: 0°C to 55°C Relative Humidity: 95%. 0°C to 40°C

Altitude: ≤4,572 m (15,000 ft). STORAGE ENVIRONMENT:

Temperature: - 40°C to + 75°C. Altitude: ≤15,240 m (50,000 ft).

POWER: 100/120/220/240V. + 5%. - 10%: 48 to 66 Hz: 120 VA. 290 VA with all options. 100 VA standby

WEIGHT: 27 kg (60 lbs.) net. 37 kg (81 lbs.) shipping

DIMENSIONS: 177 mm H × 425.5 mm W × 497.8 mm D (7'' × 16 – 3/4'' × 19 – 5/8'').

ACCESSORIES INCLUDED:

1 ea. Operating Manual (HP Part Number 03326 – 90000). 1 ea. Service Manual (HP Part Number 03326 – 90010).

ACCESSORIES AVAILABLE:

15507A Ground Isolator for breaking signal grounds between input and output connectors, thereby isolating a connector from the chassis ground.

11048C 50 Ohm Feed Thru Termination for terminating outputs in 50Ω .

11652 - 60009 50 Ohm BNC Power Splitter ter. 11667A 50 Ohm Type N Power Splitter for use in external and multiphase calibration.

03326 - 84401 Service Accessory Kit for trouble-shooting and repair of the 3326A. Includes extender boards and cables.

9211 - 2656 Transit Case for rugged protection, transportation, and storage

RELATED EQUIPMENT

1980B Oscilloscope Measurement System (DC to 100 MHz)

3561A Dynamic Signal Analyzer (125 μHz to 100 kHz)

3585A Spectrum Analyzer (20 Hz to 40 MHz)

3586C Selective Level Meter (50 Hz to 32.5 MHz)

ORDERING INFORMATION:

3326A Two-Channel Synthesizer

Option 001 High Stability Frequency Reference (to retrofit order HP Part Number 03326-88801)

Option 002

High Voltage Output (to retrofit order HP Part Number 03326-88802)

Option 003 Rear Panel Main Signal Outputs (to retrofit order HP Part Number 03326-88803)

Option 907

Front Handle Kit (to retrofit order HP Part Number 5061-0090)

Option 908 Rack Flange Kit (to retrofit order HP Part Number 5061-0078)

Option 909 Rack Flange

and Front Handle Kit (to retrofit order HP Part Number 5061-0084)

Option 910

Extra Operating Manual

Option 914 Delete Service Manual

15507A Ground Isolator

11048C 50 Ohm Feed Thru

Termination 9211-2656 Transit Case

03326-84401 Service Accessory Kit

Instrument Type	Critical Specifications	Recommended Model	Uset
AC Voltmeter	Ranges: 0.1 to 1 V Frequency range: 20 Hz to 1 MHz Input impedance: \geq 1 M Ω Meter: Log scale Accuracy (100 Hz to 10 kHz): ±1%	HP 400FL	Р
Digital Voltmeter DC function Ranges: 0.1, 1, 10, 100 V Accuracy: ±0.05% Resolution: 6 digits AC function True RMS Ranges: 1, 10, 100 V Accuracy: ±0.2% Resolution: 6 digits Crest factor: 4:1		HP 3455A HP 3456A	P,A,T
High Speed DC Digital Voltmeter	DC voltage: 0 to \pm 10 V Sample/hold measurement External trigger: Low true TTL edge triggered Trigger delay: Selectable 10 μ s to 140 μ s	HP 3437A	Ρ
Oscilloscope	Vertical Bandwidth: dc to 100 MHz Deflection: 0.01 V to 10 V/div Horizontal: Sweep: 0.05 μs to 1 s/div x10 magnification Delayed sweep	HP 1740A	P,A,T
Oscilloscope	Vertical Bandwidth: dc to 200 MHz	HP 1715A	A
Sampling Oscilloscope	Dual channel Vertical deflection: 2 mV/div Horizontal sweep: 10 ps to 50 µ/div	Tektronix 7603 with 7T11/7S11 and S-1	Р
Spectrum Analyzer			P,A,T
Electronic Counter Frequency measurement Frequency range: to 13 MHz Resolution: 8 digits Accuracy: ± 2 counts Time interval average A to B Resolution: 0.1 ns		HP 5334A	Р
Frequency Synthesizer	Frequency: 1 kHz to 20 MHz Amplitude: to +13.0 dBm Output impedance: 50 Ω Spurious: > 75 dB below fundamental	HP 3325A HP 3326A HP 3335A	P,A,T
Modulation Analyzer	Detector: Peak PM rate: 20 Hz to 100 kHz AM depth resolution: 0.1%	HP 8901A	Р

Table 1-6. Recommended Test Equipment

 $\dagger P =$ Performance tests A = Adjustments T = Troubleshooting

‡ These components are included in the Service Accessory Kit, HP part number 03326-84401.

Instrument Type	Critical Specifications	Recommended Model	Uset
Signature Analyzer	Maximum clock: > 8 MHzHP 5006/Clock setup time: < 20 ns		Т
Logic Probe	Logic one threshold: 2.0 V $+0.4$ V, -0.2 V Logic zero threshold: 0.8 V $+0.2$ V, -0.4 V	HP 545A	Т
Double Balanced Mixer	Impedance: 50 Ω Frequency: 1 MHz to 20 MHz	HP 10534A	Р
Directional Bridge	Frequency range: 100 kHz to 13 MHz Input impedance: 50 Ω	HP 8721A	Р
Thermal Converter	Input impedance: 50 Ω Voltage input: 0.5 Vrms Frequency range: 5 Hz to 13 MHz	HP 11051A	Р
50 Ω Step Attenuator	Impedance: 50 Ω Attenuation range: 0 to 40 dB	HP 355D	Р
50 Ω Feed Thru Termination	Accuracy: ±0.2% Power rating: 1 W	HP 11048C	Р
1 MHz Low Pass Filter	Cut-off frequency: 1 MHz Stopband attenuation: 50 dB by 4 MHz Stopband frequency: 4 MHz to 80 MHz		Р
	TTE Inc. 2214 S. Barry Ave. Los Angeles, Ca 90064	J903	
1 kΩ Load Voltage Divider ‡	Input resistance: 1 kΩ Output voltage: 0.053 input voltage		Р
	Resistor 52.68 Ω 0.1% 0.5 W Resistor 2 kΩ 0.1% 0.5 W (2 each) Resistor 18 kΩ 0.1% 0.125 W	HP part no. 0698-6060 HP part no. 0698-8226 HP part no. 0698-8167	
15 kHz Equivalent Noise Filter ‡	Corner frequency: 10 kHz		Р
	Capacitor 1600 pF 5% Resistor 10 kΩ 1%	HP part no. 0160-2223 HP part no. 0757-0340	
1 kΩ/50 Ω Matching Pad and Load ‡	Load: 1 kΩ, 200 pF Output impedance: 50 Ω		P,A
	Capacitor 200 pF $\pm 1\%$ Resistor 1.91 k Ω 1% 0.5 W (2 each) Resistor 52.68 Ω 0.1% 0.5 W	HP part no. 0140-0220 HP part no. 0698-3341 HP part no.	

Table 1-6. Recommended Test Equipment (Cont'd)

 $\dagger P = Performance tests A = Adjustments T = Troubleshooting$

‡ These components are included in the Service Accessory Kit, HP part number 03326-84401.

0.1% 0.5 W

0698-6060

Instrument Type	Critical Specifications	Recommended Model	Uset
1.5 Hz Low Pass Filter ‡	Cut-off frequency: ≤ 1.5 Hz		A
	Resistor 1 M Ω Capacitor 0.1 μ F	HP part no. 0698-8827 HP part no.	
		0160-4571	
BNC-to-Triax Adapter		HP part no. 1250-0595	Р
Power Splitter	50 Ω input BNC connectors	HP part no. 11652-60009	Ρ
Service Accessory Kit		HP part no. 03326-84401	P,A,T
	Kit contains: PC board extender (2 each)	HP part no.	
		03326-66591	
	Phono plug to BNC adapter cable	HP part no. 03326-61618	
	SMB to BNC adapter cable	HP part no. 03585-61616	
	SMB to SMB cable (4 each)	HP part no. 03585-61601	
	Phono cable, 12 inch, precision (4 each)	HP part no. 8120-4492	
	Phono jack to jack adapter (4 each)	HP part no. 1250-1961	
	SMB to SMB adapter (2 each)	HP part no. 1250-0669	
	1.5 Hz low pass filter components	See description above	
	1 k $\Omega/50$ Ω matching pad and load components	See description above	
	1 k Ω load voltage divider components	See description above	
	15 kHz equivalent noise filter components	See description above	

Table 1.6. Recommended Test Equipment (Cont'd)

† P = Performance tests

A = Adjustments

T = Troubleshooting

‡ These components are included in the service accessory kit, HP part number 03326-84401.

SECTION II PERFORMANCE TESTS

SECTION II PERFORMANCE TESTS

Sub-Section	Title	Page
2-1	Introduction	2-1
2-2	Specifications	
2-3	Equipment Required	2-1
2-4	Test Record	2-1
2-5	Calibration Cycle	2-1
2-6	Operational Verification Tests	
2-7	Minimizing Spectrum Analyzer Introduced Distortion	2-2
2-8	Preset State	
2-9	High Voltage Tests	2-3
2-10	Repairs for Failed Performance Tests	2-4
2-11	Frequency Accuracy	2-8
2-12	Harmonic Distortion	2-9
2-13	Spurious Signals	2-14
2-14	Combiner IM Distortion	. 2-16
2-15	Return Loss	. 2-21
2-16	Channel Isolation	. 2-24
2-17	Sine Wave Amplitude Accuracy	. 2-27
2-18	Square Wave/Pulse Amplitude Accuracy	. 2-31
2-19	High Voltage Amplitude Accuracy	. 2-35
2-20	Combiner Amplitude Accuracy	. 2-39
2-21	Integrated Phase Noise	
2-22	Square Wave Overshoot and Rise/Fall Time	. 2-43
2-23	Square Wave Symmetry and Pulse Width Accuracy	. 2-46
2-24	DC Only Accuracy	. 2-48
2-25	DC Offset Accuracy	. 2-51
2-26	Phase Offset Accuracy	. 2-52
2-27	Amplitude Modulation	. 2-56
2-28	Phase Modulation	. 2-60
2-29	Sync A Output	. 2 - 65
2-30	X-Drive Linearity	. 2 - 66

SECTION II

HP 3326A PERFORMANCE TESTS

2-1 INTRODUCTION

This section contains test procedures to verify that the HP 3326A meets the specifications listed in Table 1-5. The test procedures may be used for verifying HP 3326A operation during periodic maintenance, troubleshooting, or after repairs and adjustments.

2-2 SPECIFICATIONS

Specifications for the HP 3326A are listed in Table 1-5. These specifications are the performance standards or limits against which the HP 3326A is tested. Any changes in specifications due to manufacturing, design, or traceability to the U. S. National Bureau of Standards are included in Table 1-5 of this manual and/or the Manual Changes Supplement. Specifications listed in this manual supersede all previous specifications for the HP 3326A.

2-3 EQUIPMENT REQUIRED

Each performance test lists the recommended equipment to complete that test. A complete list of the equipment used to perform all the tests is provided in Table 1-6. Any equipment that meets or exceeds the critical specifications listed in Table 1-6 may be substituted for the recommended model.

2-4 TEST RECORD

Test results can be entered on the Performance Test Record located at the end of this section. The test record lists all of the tested specifications and their acceptable limits. The test record may be copied without written permission from the Hewlett-Packard Company.

2-5 CALIBRATION CYCLE

The HP 3326A requires periodic verification of performance. Depending on the use and environment the HP 3326A is subject to, the performance tests should be performed at least every 12 months.

2-6 OPERATIONAL VERIFICATION TESTS

The Operational Verification Tests for the HP 3326A listed in Table 2-1 are a subset of the HP 3326A Performance Tests. The Operation Verification Tests use a minimum amount of equipment and give the user a high level of confidence that the HP 3326A meets specifications as listed in Table 1-5. However, the Operational Verification Tests do not guarantee that all specifications are met.

Test Name	Paragraph	Comments	
Frequency Accuracy	2-11		
Spurious Signals	2-13	Check for harmonic distortion as well as spurious signals.	
Combiner IM Distortion	2-14	Perform if IM distortion products are critical to measurement.	
Sine Wave Amplitude Accuracy	2-17		
Square Wave/Pulse Amplitude Accuracy	2-18		
High Voltage Amplitude Accuracy	2-19		
Combiner Amplitude Accuracy	2-20		
Square Wave Symmetry and Pulse Width Accuracy	2-23		
DC Only Accuracy	2-24		
DC Offset Accuracy	2-25		
Phase Offset Accuracy	2-26		
Amplitude Modulation	2-27	Perform if amplitude modulation is required.	
Phase Modulation	2-28	Perform if phase modulation is required.	
SYNC A Output	2-29	Perform if SYNC A output is required.	
X-Drive Linearity	2-30	Perform if X-Drive is required.	

Table 2-1. Operation Verification Tests

2-7 MINIMIZING SPECTRUM ANALYZER INTRODUCED DISTORTION

When making distortion measurements with a spectrum analyzer, make sure that the analyzer's internal distortion does not mask the distortion of the device under test. One technique to ensure this is to increase the analyzer's input attenuation which results in lower signal levels at the analyzer's input. This yields better intermodulation and harmonic distortion performance. Adjust the analyzer's reference level controls to obtain the proper display.

2-8 PRESET STATE

Table 2-2 lists the PRESET state of the HP 3326A. The PRESET state is used as the initial setup for the HP 3326A for each performance test and is modified for the test by subsequent steps in the procedure.

Table 2-2. HP 3326A Preset State

KEY GROUP	KEY	PRESET STATE/VALUE	
MODE	MODE Combined	2 CHANNEL Off	
FUNCTION	CH A CH B CH A HV CH B HV	Sine wave Sine wave Off Off	
STATUS	CHAN	Channel A	
ENTRY	FREQ DUTY CYCLE AMPTD % AM/PM DEV PHASE ASSIGN ZERO ¢ DC OFFSET CLR ¢ OFS	1 kHz 50 % 0.1 V Peak-to-peak 30 % (AM)/108° (PM) 0° 0 V	
SWEEP	CONT START FREQ CNTR FREQ STOP FREQ SPAN SINGLE RESET SWP MKR FREQ TRIANGLE TIME DISCRETE	Disabled 0 Hz 6.5 MHz 13 MHz 13 MHz Disabled — 6.5 MHz (Channel A) Ramp selected 1 second Disabled (Linear sweep)	
CALIBRATION	MANUAL AUTO SELECT SELF TEST	— Disabled INTERNAL —	
MODULATION		Off	
MODIFY	ON/OFF	Off	
UNGROUPED KEYS	SHIFT	Off	
TRIGGER SIGNAL	—	Single sweep pending	
HP-IB STATUS	LOCAL BUS ADRS	No effect No effect	

2-9 HIGH VOLTAGE TESTS

The high voltage tests apply only to instruments equipped with Option 002, High Voltage Output. Option 002 increases the output level by a factor 4 and expands the allowable DC offset range. The specifications for Option 002 apply whenever the high voltage output is enabled. If Option 002 is installed, the HP 3326A briefly displays "3326A OP. 1 2", or "3326A OP. 2", for the option list after power is applied.

2-10 REPAIRS FOR FAILED PERFORMANCE TESTS

When any of the test measurements are out of the listed tolerances, see Table 2-3 for a list of pertinent adjustments. This table also lists the boards that, if defective, could cause a test failure. The most likely board to cause a failure is listed first, the next most likely is listed second, and so on. The table assumes there are no service self test or calibration errors; only a performance specification is out of range.

The adjustments listed do NOT include the +15 V, VCO FREQ, or A and B OFFSET adjustments. The +15 V adjustment (#1) effects the power supply. The VCO FREQ adjustment (#4) effects the frequency range available in the HP 3326A. The A and B OFFSET adjustment (#9) is correct if the instrument can calibrate itself properly.

If Table 2-3 leads you to suspect a board that has a duplicate in the other channel, the best way to verify that the board is defective is to interchange the two identical boards. If the suspect board fails again while it is in the other channel, it is probably defective. This is the best method to solve subtle, non-catastrophic, failures.

		R	elated Adjustments	Boards Affecting Specification			cification
Para.	Performance	No.	Name	Ref	Reference Designator		Range
No.	Test			Ch A	Ch B	Common	Kange
2-11	Frequency Accuracy	3 2	FREQ CENTER Oven Freq			A50 A80	All All
2-12	Harmonic Distortion	16 11 6	BIAS 2nd HARMONIC APIs	A3 A5 A4 A31-A35	A13 A15 A14 A41-A45		All All All < 50 kHz
2-12	HV Harmonic Distortion	16 11 6	BIAS 2nd HARMONIC APIs	A1 A3 A5 A4 A31-A35	A11 A13 A15 A14 A41-A45		All All All All < 50 kHz
2-13	Spurious Signals	6 5 10	APIs 100 kHz 2:1 SPUR	A31-A35	A41-A45	A50	APIs, 100 kHz, 10 MHz, 20 MHz, etc. 100 kHz, 10 MHz, 20 MHz, etc.
				A5	A15		2:1 spur, > 13 MHz (filter)
				A6	A16		> 1.5 MHz (filter)
				A4	A14		> 13 MHz (filter)
						A62	Sync spurs (cable)
2-14	Combiner IM Distortion	-	_	A3	A13		All
2-14	Combiner HV IM Distortion	-	_	A1 A3	A11 A13		All All

		Related Adjustments		Boards Affecting Specification				
Para.	Para. Performance		No Nama		erence De	D		
No. Test		No. Name		Ch A Ch B Commor			Range	
2-15	Return Loss	<u> </u>		A3	A13		> 3.98 dBm	
				A2	A12		< 3.98 dBm	
2-15	Combiner Return Loss	-	—	A2 A3			All (combiner) All (50 Ω termination)	
2-16	Channel Isolation †	_	_	A1-A6	A11-A16	A21-A24 A70	All (supply bypassing) All (supply bypassing) All (supply noise)	
2-17	Sine Wave Amplitude Accuracy	7 8 13	V REF PEAK DETECT GAIN FLATNESS	A2	A12	A36	< 100 kHz (cal accuracy) All (return loss, flatness, attenuator accuracy)	
				A5	A15		> 100 kHz (flatness)	
				A4	A14		> 100 kHz (flatness)	
				A3	A13		All (flatness, return loss)	
2-17	Sine Wave	13	FLATNESS	A5	A15		> 100 kHz	
	Amplitude			A3	A13		> 100 kHz	
	Flatness			A2	A12	,	> 100 kHz	
				A4	A14		> 100 kHz	
2-17	Attenuator Accuracy	-	_	A2 A3	A12 A13		All All (return loss)	
2-18	Square Wave/ Pulse Amplitude	7 8	V REF Peak detect gain			A23 A36	All < 100 kHz, 1 to 10 Vpp	
	Accuracy			A2	A12		All (attenuator accuracy)	
				A3	A13		All (return loss), < 3.17 Vpp (pre-10 dB pad)	
2-18	Square Wave	14	OVERSHOOT			A23	All	
£ 10	Flatness			A3	A13	1.43	All	
				A2	A12		All (flatness)	
				A3	A13		< 3.17 Vpp (pre-10 dB pad)	
2-19	HV Amplitude Accuracy	7 8	V REF PEAK DETECT GAIN	A1	A11	A36	All < 100 kHz (cal	
		13	FLATNESS	A2	A12		accuracy) All (return loss, flatness, attenuator accuracy)	
				A5	A15		> 100 kHz (flatness)	
				A4	A14		> 100 kHz (flatness)	
				A3	A13		All (flatness, return loss)	

Table 2-3. Repairs for Failed Performance Tests (Cont.)	Table	2-3.	Repairs	for	Failed	Performance	Tests	(Cont.)
---	-------	------	---------	-----	--------	-------------	-------	---------

Table 2-3. Re	pairs for Faile	d Performance	Tests (C	ont.l

Related Adjustments		Boards Affecting Specification					
Para. Performance		No. Name		Refe	erence Des	signator	Range
No.	Test	1.0.	Name	Ch A	Ch B	Common	Kalige
2-19	HV Amplitude	15	HV OVERSHOOT	A1	A11		All
	Flatness	13	FLATNESS	A5	A15		> 100 kHz
				A3	A13		> 100 kHz
				A2	A12		> 100 kHz
				A4	A14		> 100 kHz
2-20	Combiner Amplitude Accuracy	7 8 13	V REF PEAK DETECT GAIN FLATNESS	A2 A2	A12	A36	All (combiner) < 100 kHz (cal accuracy) All (return loss, flatness,
				A5	A15		attenuator accuracy) > 100 kHz (flatness)
				A4	A14		> 100 kHz (flatness)
				A3	A13		All (flatness, return loss)
2-21	Integrated	-	-	A31-A35	A41-A45		All
	Phase Noise					A50 A80	All < 100 Hz
2-22	Square Wave	14	OVERSHOOT			A23	All
	Rise/Fall Time			A3	A13		All
2-22	Square Wave/ Pulse	14	OVERSHOOT	A3	A13	A23	All All
	Overshoot					A23	
2-23	Square Wave	12	DC OFFSET	A5	A15		All (dc offset
	Symmetry						vs. frequency)
						A23	All
_				A4	A14		All (dc offset)
2-23	Pulse Width	6	APIs			A36	All (phase
	Accuracy	12	DC OFFSET				cal path)
				A31-A35	A41-A45		All (phase performance)
				A5	A15		All (dc offset
							vs. frequency)
						A23	All
				A4	A14		All (dc offset)
2-24	DC Only	7	V REF			A36	All
4 47	Accuracy	8	PEAK DETECT GAIN	A2	A12	/	All (return loss)
	, leculacy			A3	A13		All (return loss)
2.25	DC Offeet				-	126	
2-25	DC Offset	7	V REF PEAK DETECT GAIN	A2	410	A36	> 1 Vpp, ac
	Accuracy	°	I LAN DETECT GAIN	A2	A12	1	< 1 Vpp, ac (attenuator
		1					accuracy)
				A3	A13	1	All (return loss)
		-	4.01			1.20	
2-26	Phase Offset	6	APIs			A36	All (phase
	Accuracy †			A 21 4 25			cal accuracy)
		1		A31-A35	A41-A45		All (phase
							accuracy)

† Suspect bad grounding in the cables and loose screws.

		Related Adjustments		Boards Affecting Specification				
Para.	Performance	No.	Name	Refe	Range			
No.	Test			Ch A	Ch B	Common	nunge	
2-27	AM Envelope Distortion	-		A6	A16	A22	All All	
2-27	Incidental PM	_		A6	A16		All	
2-27	Modulation Index Accuracy	_	-	A6	A16	A22	All All	
2-28	PM Distortion		_	A31-A35	A41-A45		All	
2-28	Incidental AM	-		A31-A35 A6 A5	A41-A45 A16 A15		All All All	
2-28	PM Phase Deviation Accuracy		_	A31-A35	A41-A45	A50 A36	All All All	
2-29	Sync A Output	_	_			A62	All (sync)	
2-30	X-Drive Linearity	-	_			A61	All	

Table 2-3. Repairs for Failed Performance Tests (Cont.)

t Suspect bad grounding in the cables and loose screws.

PERFORMANCE TESTS

2-11 FREQUENCY ACCURACY

EQUIPMENT REQUIRED:

Universal Counter HP 5334A (calibrated within three months or with an accurate 10 MHz external reference input)

SPECIFICATIONS:

Accuracy:

 \pm 5 × 10⁻⁶ of selected value, 20° C to 30° C, at time of frequency reference calibration with standard instrument.

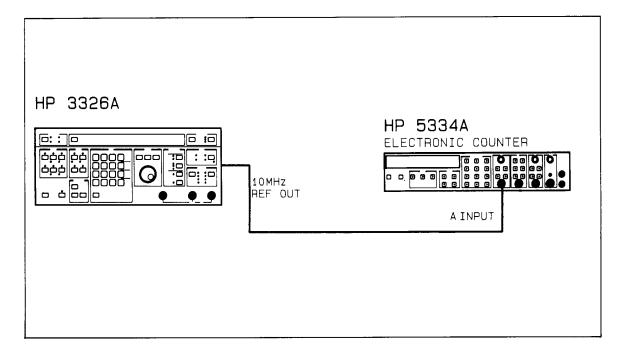


Figure 2-1. Frequency Accuracy Test

FREQUENCY ACCURACY TEST:

- 1. Preset the HP 3326A and reset the universal counter.
- 2. Allow the HP 3326A and universal counter to warm up for 30 minutes.
- 3. Connect the equipment as follows (illustrated in Figure 2-1):
 - HP 3326A 10 MHz REF OUTput to universal counter channel A 50 Ω input
- 4. Set the universal counter to count the frequency of the HP 3326A input with 1 Hz resolution, and adjust for stable triggering. For the HP 5334A counter:

FUNCTION	FREQ A
CHANNEL A SLOPE	Positive (LED Off)
AC COUPLING	OFF
50 Ω Z	ON
Common Input (com a)	OFF
AUTO TRIGGER	ON

5. Record the universal counter frequency on the test record. Universal counter should indicate 10,000,000 Hz \pm 50 Hz.

2-12 HARMONIC DISTORTION

EQUIPMENT REQUIRED:

Spectrum Analyzer HP 3585A

COMPONENTS:

- * C1 Capacitor 200 pF ±1% 1 ea HP Part No. 0140-0220
- * R1 955 Ω Resistor (parallel combination of two 1.91 k Ω resistors) Resistor 1.91 k Ω 1% 1/2 W 2 ea HP Part No. 0698-3341
- * R2 Resistor 52.68 Ω .1% $\frac{1}{2}$ W 1 ea HP Part No. 0698-6060
- * Used to test high voltage output (Option 002)

SPECIFICATIONS:

Harmonic Distortion with Standard Output

Harmonic Distortion: Harmonically related signals will be less than the following levels relative to the fundamental, or < -90 dBm, whichever is greater.

+ 23.98 dBm =	10 Hz	<u>50 k</u> ł	lz 100	<u>kHz</u>	1 MHz	13 MHz
+ 13.98 dBm -	- 80	<u>dBc</u> -	- 70 dBc	- 55	dBc -	- 30 dBc
- 56.02 dBm _	00	dBc -	- 80 dBc	- 65	dBc -	– 50 dBc

Harmonic Distortion with High Voltage Output

Sine Wave Harmonic Distortion: Harmonically related signals will be less than the following levels relative to the fundamental, into 1 k Ω , no dc offset.

40.00 Vpp <u>10</u>	Hz 50	k <u>Hz 100</u>	kHz 1 M	Hz
12.64 Vpp	<u> </u>	<u>– 65 dB</u>	- 40 dB	_
400 mVpp	- 80 dB	– 75 dB	– 55 dB	
+00 mvpp	-			_

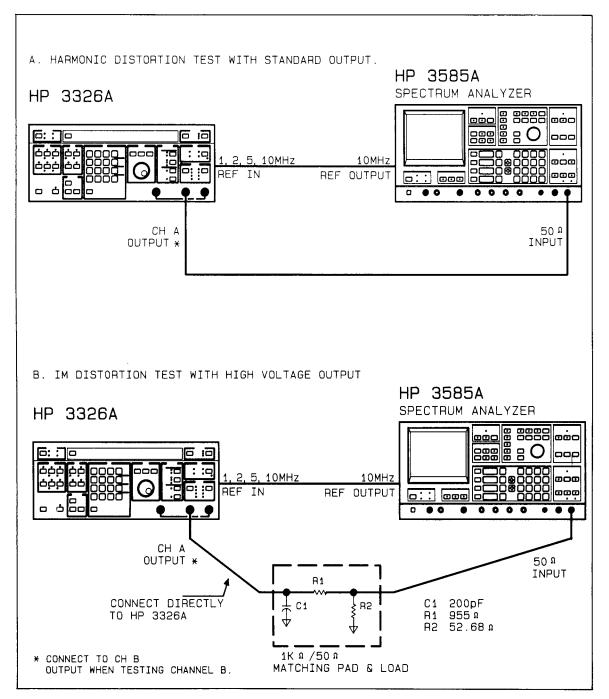


Figure 2-2. Harmonic Distortion Test

HARMONIC DISTORTION TEST WITH STANDARD OUTPUT:

NOTE

When making harmonic distortion measurements with a spectrum analyzer, increase the analyzer's input attenuation to decrease the signal levels at the analyzer's input. This yields better intermodulation and harmonic distortion performance. Adjust the analyzer's reference level controls to obtain the proper display.

- 1. Preset the HP 3326A and the spectrum analyzer.
- 2. Connect the test equipment as follows (illustrated in Figure 2-2(A)):
 - HP 3326A CH A output to spectrum analyzer 50 Ω input
 - HP 3326A 1,2,5,10 MHz REF INput to spectrum analyzer 10 MHz reference output (phase lock HP 3326A to spectrum analyzer)
- 3. Set the HP 3326A as follows:

CHANNEL	CH A
FREQUENCY	160 Hz
AMPLITUDE	13.98 dBm

4. Tune the spectrum analyzer to display at least three harmonics. For the HP 3585A spectrum analyzer:

NOTE

The speed of the measurement may be increased by manually tuning the spectrum analyzer to the fundamental and harmonic frequencies. The spectrum analyzer must be phase locked to the HP 3326A for accurate results with manual tuning. Manual tuning is used in the HP 3585A procedures.

- Press RANGE and the up arrow to set the input range to 20 dBm.
- Set the resolution bandwidth (RBW) to 3 Hz and video bandwidth (VBW) to 1 Hz.
- Set the CENTER FREQUENCY to the fundamental frequency (160 Hz).
- Set the FREQUENCY SPAN to 0 Hz.
- Enable the OFFSET and press the ENTER OFFSET key.
- Set the CF STEP SIZE to the fundamental frequency.
- 5. Measure the value of the largest harmonic, relative to the fundamental, and record this value in the Performance Test Record. The value should be at least 80 dB below the fundamental frequency value. For the HP 3585A:
 - Press the CENTER FREQUENCY key and press the up arrow to measure the first and second harmonics of the fundamental frequency.
- 6. Repeat steps 4 and 5 for the following frequencies and specifications:

FREQUENCY	SPECIFICATION
910 Hz	< -80 dBc
47 kHz	< -80 dBc
91 kHz	< -80 dBc
300 kHz	< -65 dBc
910 kHz	< -65 dBc
13 MHz	< -50 dBc

7. Set the HP 3326A as follows:

CHANNEL	CH A
FREQUENCY	160 Hz
AMPLITUDE	23.98 dBm

- 8. Tune the spectrum analyzer to display at least three harmonics. For the HP 3585A, set the input attenuation for 30 dBm. (Refer to Step 4 and 5 for manual tuning procedures for the HP 3585A).
- 9. Measure the value of the largest harmonic, relative to the fundamental, and record this value in the Performance Test Record. The value should be at least 80 dB below the fundamental frequency value.
- 10. Repeat steps 8 and 9 for the following frequencies and specifications:

FREQUENCY	SPECIFICATION
910 Hz	< -80 dBc
47 kHz	< -80 dBc
91 kHz	< -70 dBc
300 kHz	< -55 dBc
910 kHz	< -55 dBc
13 MHz	< - 30 dBc

- 11. Preset the HP 3326A and connect the HP 3326A channel B output to the spectrum analyzer 50 Ω input.
- 12. Repeat steps 3 through 10 substituting channel B for channel A.

HARMONIC DISTORTION TEST WITH HIGH VOLTAGE OUTPUT:

- 1. Preset the HP 3326A and the spectrum analyzer.
- 2. Connect the test equipment as follows (illustrated in Figure 2-2(B)):
 - HP 3326A CH A output to 1 k Ω /50 Ω matching pad and load input
 - 1 k Ω /50 Ω matching pad and load output to spectrum analyzer 50 Ω input
 - HP 3326A 1,2,5,10 MHz REF INput to spectrum analyzer 10 MHz reference output (phase lock HP 3326A to spectrum analyzer)

NOTE

The 1 k Ω /50 Ω matching pad and load is constructed in a small metal box with two BNC connectors. The components for the 1 k Ω /50 Ω matching pad and load are listed under Equipment Required.

3. Set the HP 3326A as follows:

CHANNEL	CH A
HIGH VOLTAGE	On
AMPLITUDE	12.63 Vpp
FREQUENCY	160 Hz

4. Tune the spectrum analyzer to display at least four harmonics. For the HP 3585A spectrum analyzer:

NOTE

The speed of the measurement may be increased by manually tuning the spectrum analyzer to the fundamental and harmonic frequencies. The spectrum analyzer must be phase locked to the HP 3326A for accurate results with manual tuning. Manual tuning is used in the HP 3585A procedures.

- Press RANGE and the up arrow to set the input range to 20 dBm.
- \bullet Set the resolution bandwidth (RBW) to 3 Hz and video bandwidth (VBW) to 1 Hz.
- Set the CENTER FREQUENCY to the fundamental frequency (160 Hz).
- Set the FREQUENCY SPAN to 0 Hz.
- Enable the OFFSET and press the ENTER OFFSET key.
- Set the CF STEP SIZE to the fundamental frequency.
- 5. Measure the value of the largest harmonic, relative to the fundamental, and record this value in the Performance Test Record. The value should be at least 80 dB below the fundamental frequency value. For the HP 3585A:
 - Press the CENTER FREQUENCY key and press the up arrow to measure the first and second harmonics of the fundamental frequency.
- 6. Repeat steps 4 and 5 for the following frequencies and specifications:

FREQUENCY	SPECIFICATION
910 Hz	< -80 dBc
6.2 kHz	< -80 dBc
47 kHz	< -80 dBc
91 kHz	< —75 dBc
300 kHz	< -55 dBc
910 kHz	< — 55 dBc

7. Change the HP 3326A setup as follows:

CHANNEL	СН А
FREQUENCY	160 Hz
AMPLITUDE	40 Vpp

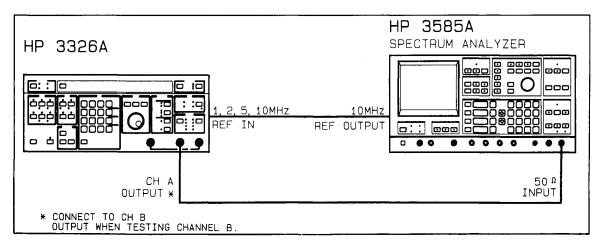
8. Repeat steps 4 and 5 for the following frequencies and specifications:

FREQUENCY	SPECIFICATION
160 Hz	< -75 dBc
910 Hz	< -75 dBc
6.2 kHz	< -75 dBc
47 kHz	< -75 dBc
91 kHz	< -65 dBc
300 kHz	< -40 dBc
910 kHz	< -40 dBc

- 9. Preset the HP 3326A and connect the HP 3326A channel B output to the 1 k Ω /50 Ω matching pad and load (Refer to Figure 2-2(B)).
- 10. Repeat steps 3 through 8 substituting channel B for channel A.

2-13 SPURIOUS SIGNALS

EQUIPMENT REQUIRED:


Spectrum Analyzer HP 3585A

SPECIFICATIONS:

All non-harmonically related output signals (10 Hz to 40 MHz) will be less than the following levels relative to the fundamental, or < -90 dBm, whichever is greater at 20° C \pm 20° C:

Channel Frequency	Spurious Level
10 Hz to 1 MHz	– 80 dBc
1 MHz to 13 MHz	– 70 dBc

NOTE

Ground isolation must be maintained.

Figure 2-3. Spurious Signals Test

SPURIOUS SIGNALS TEST:

- 1. Preset the HP 3326A and spectrum analyzer.
- 2. Connect the test equipment as follows (illustrated in Figure 2-3):
 - HP 3326A CH A output to spectrum analyzer 50 Ω input
 - HP 3326A 1,2,5,10 MHz REF INput to spectrum analyzer 10 MHz reference output (phase lock HP 3326A to spectrum analyzer)
- 3. Set the HP 3326A as follows:

CHANNEL	CH A
FREQUENCY	3 MHz
AMPLITUDE	3.98 dBm

- 4. Adjust the spectrum analyzer to display the fundamental frequency and any spurious responses due to the mixer. For the 3 MHz fundamental frequency, the mixer introduces a spurious response at 14 MHz. For 3 MHz, set the HP 3585A as follows:
 - Press RANGE and the up arrow to set the input range to 10 dBm.
 - Press DSPL LINE and adjust the rotary knob for a -80 dB level.
 - Press STOP FREQ and set to 20 MHz.
 - Press MARKER and adjust the rotary knob to place the marker on the fundamental frequency.

NOTE

Adjust the resolution bandwidth (RBW) and video bandwidth (VBW) to resolve the measurement and lower the noise floor required.

- Press MKR \rightarrow REF LVL and wait for the sweep to update the display.
- 5. Verify that all spurs are at least 80 dB below the fundamental frequency.
- 6. Set the HP 3326A to the following frequencies and verify that all spurs are below spurious level:

FREQUENCY	SPECIFICATION	EXPECTED SPURIOUS SIGNALS
1 MHz	< -80 dBc	1 kHz, 2 kHz, 5 kHz, 10 kHz, 20 kHz, 50 kHz
5.1 MHz	< -70 dBc	9.8 MHz, 14.9 MHz
7 MHz	< -70 dBc	6 MHz, 13 MHz
9 MHz	< -70 dBc	2 MHz, 11 MHz
11 MHz	< -70 dBc	3 kHz, 9 MHz
13 MHz	< -70 dBc	3 kHz, 6 MHz, 7 MHz

- 7. Preset the HP 3326A and connect the HP 3326A channel B output to the spectrum analyzer 50 Ω input.
- 8. Repeat steps 3 through 6 substituting channel B for channel A.

2-14 COMBINER IM DISTORTION

EQUIPMENT REQUIRED:

Spectrum Analyzer HP 3585A

Components:

- * C1 Capacitor 200 pF 1% 1 ea HP Part No. 0140-0220
- * R1 955 Ω Resistor (parallel combination of two 1.91 k Ω resistors) Resistor 1.91 k Ω 1% $\frac{1}{2}$ W 2 ea HP Part No. 0698-3341
- * R2 Resistor 52.68 Ω 0.1% $1\!\!\!/_2$ W 1 ea HP Part No. 0698-6060
- * Used to test High Voltage (Option 002)

SPECIFICATIONS:

Combiner Intermodulation Distortion: In the two-tone mode, third-order intermodulation difference products will be less than the following levels relative to the higher of the fundamentals. Both channels must be in the indicated frequency band with a minimum frequency separation of 10 Hz.

+ 17.96 dBm 10 h	lz 1	MHz	13 MHz
+ 7.98 dBm	– 70 dB		45 dB
– 56.02 dBm	<u> </u>		65 dB

Combiner High Voltage Intermodulation Distortion: Third-order intermodulation difference products will be less than the following levels relative to the higher of the fundamentals (sine wave only). Both channels must be in the indicated frequency band with a minimum frequency separation of 10 Hz.

20.00 Vpp	Hz	100 kHz	1 MHz
6.32 Vpp -			– 40 dB
200 mVpp	70 10		– 55 dB

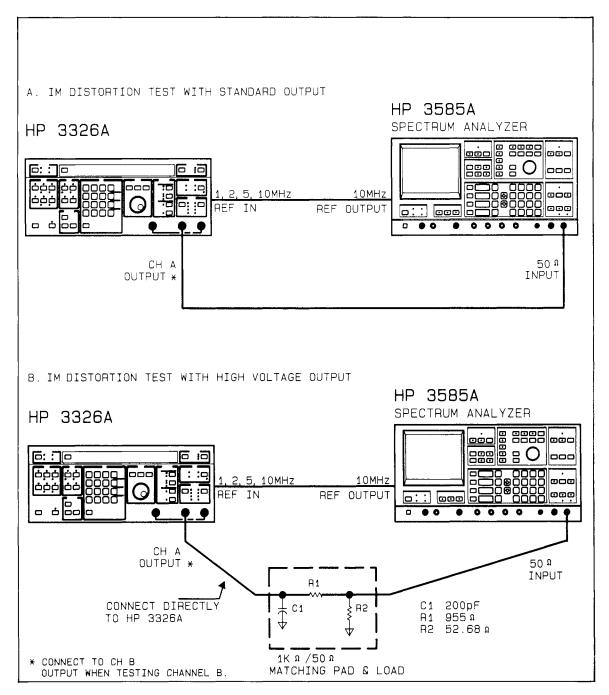


Figure 2-4. Combiner IM Distortion Test

COMBINER IM DISTORTION TEST FOR STANDARD OUTPUT:

- 1. Preset the HP 3326A and spectrum analyzer.
- 2. Connect the test equipment as follows (illustrated in Figure 2-4(A)):
 - HP 3326A CH A output to spectrum analyzer 50 Ω input
 - HP 3326A 1,2,5,10 MHz REF INput to spectrum analyzer 10 MHz reference output (phase lock HP 3326A to spectrum analyzer)

3. Set the HP 3326A as follows:

CHANNEL	СН А
AMPLITUDE	17.96 dBm
FREQUENCY	900 kHz
COMBINED	ON
CHANNEL	СН В
AMPLITUDE	17.96 dBm
FREQUENCY	1 MHz

4. Tune the spectrum analyzer to cover the frequency range containing the third-order IM distortion difference products. For the frequencies of 900 kHz and 1 MHz, the third-order IM distortion products appear in the frequency range of 0.5 MHz to 5 MHz. For the HP 3585A spectrum analyzer:

NOTE

The speed of the measurement may be increased by manually tuning the spectrum analyzer to the fundamental and harmonic frequencies. The spectrum analyzer must be phase locked to the HP 3326A for accurate results with manual tuning. Manual tuning is used in the HP 3585A procedures.

- Press RANGE and the up arrow to set the input range to 30 dBm.
- Set the resolution bandwidth (RBW) to 3 Hz and video bandwidth (VBW) to 1 Hz.
- Set the CENTER FREQUENCY to the channel A frequency.
- Set the FREQUENCY SPAN to 0 Hz.
- Enable the OFFSET and press the ENTER OFFSET key.
- 5. Measure the third-order intermodulation distortion difference products relative to the largest fundamental frequency. For fundamental frequencies of 900 kHz and 1 MHz, the third- order intermodulation products appear at: 0.8 MHz, and 1.1 MHz For the HP 3585A:
 - Press the CENTER FREQUENCY key, then enter the value of each third-order intermodulation distortion product with the numeric entry keys.
- 6. Record the largest third-order intermodulation value on the Performance Test Record. Verify that the largest third-order intermodulation product is more than 70 dB below the largest fundamental frequency.
- 7. Repeat steps 4 through 6 for the following HP 3326A CH A and CH B frequencies and third-order IM specifications:

PERFORMANCE TESTS

CH A Frequency	CH B Frequency	THIRD-ORDER IM SPECIFICATION	THIRD-ORDER DIFFERENCE Im Products
20 Hz	120 Hz	< -70 dBc	80 Hz, 220 Hz
999.9 kHz	1 MHz	< -70 dBc	.9998 MHz, 1.0001 MHz,
13 MHz	13.1 MHz	< -45 dBc	12.9 MHz, 13.2 MHz
13 MHz	13.0001 MHz	< -45 dBc	12.9999 MHz, 13.0002 MHz

8. Set the HP 3326A as follows:

CHANNEL	СН А
AMPLITUDE	7.95 dBm
FREQUENCY	20 Hz
COMBINED	ON
CHANNEL	СН В
AMPLITUDE	7.95 dBm
FREQUENCY	120 Hz
	140 112

9. Repeat steps 4 through 6 for the following HP 3326A CH A and CH B frequencies and third-order IM specifications:

CH A FREQUENCY	CH B Frequency	THIRD-ORDER IM SPECIFICATION	THIRD-ORDER DIFFERENCE IM PRODUCTS
20 Hz	120 Hz	< -75 dBc	80 Hz, 220 Hz
900 kHz	1 MHz	< -55 dBc	0.8 MHz, 1.1 MHz, 2.8 MHz, 2.9 MHz
999.9 kHz	1 MHz	< -55 dBc	0.9998 MHz, 1.0001 MHz,
13 MHz	13.1 MHz	< -65 dBc	12.9 MHz, 13.2 MHz
13 MHz	13.0001 MHz	< -65 dBc	12.9999 MHz, 13.0002 MHz

COMBINER HIGH VOLTAGE IM DISTORTION TEST:

- 1. Preset the HP 3326A and spectrum analyzer.
- 2. Connect the test equipment as follows (illustrated in Figure 2-4(B)):
 - HP 3326A CH A output to 1 k Ω /50 Ω matching pad and load input
 - 1 k Ω /50 Ω matching pad and load output to spectrum analyzer 50 Ω input
 - HP 3326A 1,2,5,10 MHz REF INput to spectrum analyzer 10 MHz reference input (phase lock HP 3326A to spectrum analyzer)

NOTE

The 1 k Ω /50 Ω matching pad and load is constructed in a small metal box with two BNC connectors. The components for the 1 k Ω /50 Ω matching pad and load are listed in the Equipment Required section.

3. Set the HP 3326A as follows:

CHANNEL	CH A
HIGH VOLTAGE	ON
AMPLITUDE	20 Vpp
FREQUENCY	900 kHz
COMBINED	ON
CHANNEL	CH B
HIGH VOLTAGE	ON
AMPLITUDE	20 Vpp
FREQUENCY	1 MHz

4. Tune the spectrum analyzer to cover the frequency range containing the third-order IM distortion difference products. For the frequencies of 900 kHz and 1 MHz, the third-order IM distortion difference products appear in the frequency range of 0.5 MHz to 5 MHz. For the HP 3585A spectrum analyzer:

NOTE

The speed of the measurement may be increased by manually tuning the spectrum analyzer to the fundamental and harmonic frequencies. The spectrum analyzer must be phase locked to the HP 3326A for accurate results with manual tuning. Manual tuning is used in the HP 3585A procedures.

- Press RANGE and the up arrow to set the input range to 30 dBm.
- Set the resolution bandwidth (RBW) to 3 Hz and video bandwidth (VBW) to 1 Hz.
- Set the CENTER FREQUENCY to the channel A frequency.
- Set the FREQUENCY SPAN to 0 Hz.
- Enable the OFFSET and press the ENTER OFFSET key.

- 5. Measure the third-order intermodulation distortion difference products relative to the largest fundamental frequency. For fundamental frequencies of 900 kHz and 1 MHz, the third-order intermodulation products appear at: 0.8 MHz, and 1.1 MHz For the HP 3585A:
 - Press the CENTER FREQUENCY key, then enter the value of each third-order intermodulation distortion product with the numeric entry keys.
- 6. Record the largest measured value on the Performance Test Record. Verify that the largest third-order intermodulation difference product is more than 40 dB below the largest fundamental frequency.
- 7. Repeat steps 4 through 6 for the following HP 3326A CH A and CH B frequencies and third-order IM specifications:

CH A FREQUENCY	CH B FREQUENCY	THIRD-ORDER IM SPECIFICATION	THIRD-ORDER DIFFERENCE IM PRODUCTS
999.9 kHz	1 MHz	< -40 dBc	0.9998 MHz, 1.0001 MHz
99.9 kHz	100 kHz	< -55 dBc	99.8 kHz, 100.1 kHz,

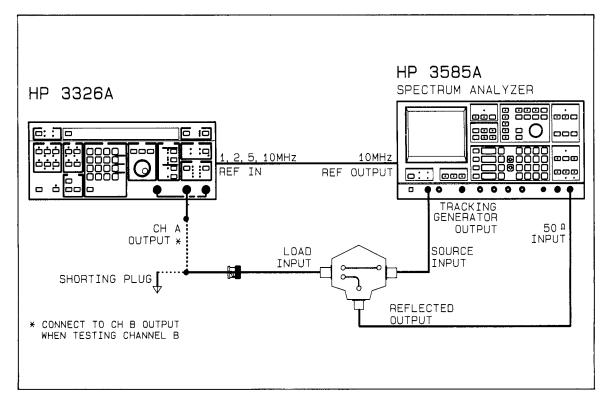
8. Change the HP 3326A output levels to 6.31 Vpp and repeat steps 4 through 6 for the following HP 3326A CH A and CH B frequencies and third-order IM specifications:

CH A FREQUENCY	CH B Frequency	THIRD-ORDER IM SPECIFICATION	THIRD-ORDER DIFFERENCE IM PRODUCTS
99.9 kHz	100.1 kHz	—75 dBc	99.8 kHz, 100.1 kHz
900 kHz	1 MHz	— 55 dBc	0.8 MHz, 1.1 MHz,
999.9 kHz	1 MHz	—55 dBc	0.9998 MHz, 1.0001 MHz

2-15 RETURN LOSS

EQUIPMENT REQUIRED:

Spectrum Analyzer	HP 3585A
50 Ω Directional Bridge	HP 8721A


NOTE

Directional bridges are also part of a 50 Ω Transmission/Reflection Kit (HP 11652A).

SPECIFICATIONS:

Return Loss Standard Output: >20 dB, 100 kHz to 13 MHz

Return Loss Combined Output: >20 dB

Figure 2-5. Return Loss Test

RETURN LOSS TEST:

- 1. Preset the HP 3326A and spectrum analyzer.
- 2. Adjust the spectrum analyzer tracking generator output to 10 dBm.
- 3. Connect the test equipment as follows (illustrated in Figure 2-5):
 - Directional bridge source input to spectrum analyzer tracking generator output

NOTE

The HP 8721A directional bridge has two inputs labeled source. Use the input labeled source from the source, reflected, and load label on the directional bridge.

- Directional bridge reflected output to spectrum analyzer 50 Ω input
- HP 3326A 1,2,5,10 MHz REF INput to spectrum analyzer 10 MHz reference output (phase lock HP 3326A to spectrum analyzer)
- 4. Set the spectrum analyzer to cover the frequency range from 100 kHz to 13 MHz. For the HP 3585A:
 - Press the START FREQ key and enter 100 kHz with the numeric keypad.
 - Press the STOP FREQ key and enter 13 MHz.
- 5. Short the directional bridge load port and store the resulting trace in the spectrum analyzer memory. For the HP 3585A:
 - Press the MKR \rightarrow REF LVL key.
 - Turn off REF LVL TRACK.
 - Press the STORE A \rightarrow B key.
- 6. Set the HP 3326A as follows:

CHANNEL	СН А
FUNCTION	DC

- 7. Remove the short from the directional bridge load port and connect the HP 3326A CH A output to the directional bridge load port.
- 8. Verify that the return loss is greater than 20 dB between 1 MHz and 13 MHz. Record the minimum difference for return loss on the performance test record.
- 9. Verify that the return loss is greater than 23 dB at 100 kHz.

NOTE

3 dB is added to the return loss specification at 100 kHz to compensate for the directional bridge.

- 10. Repeat steps 6 through 9 substituting channel B for channel A.
- 11. Set the HP 3326A as follows:

CHANNEL	CH A
COMBINED	ON
FUNCTION	DC
CHANNEL	СН В
FUNCTION	DC

NOTE

With the combiner enabled, only the HP 3326A CH A output is active.

12. Connect the HP 3326A CH A output to the directional bridge load port and repeat steps 8 and 9.

2-16 CHANNEL ISOLATION

EQUIPMENT REQUIRED:

Spectrum Analyzer	HP3585A
50 Ω Feed Thru Termination	HP 11048C

SPECIFICATIONS:

Channel Isolation:

> 80 dB below the larger signal, or < -90 dBm, whichever is greater, 10 Hz to 13 MHz, sine wave only, two-channel, and two-tone modes. For square wave and dc, typically > 80 dB to 5 MHz, typically > 65 dB to 13 MHz.

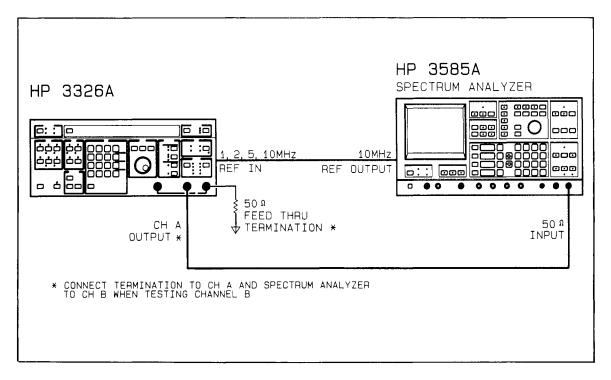


Figure 2-6. Channel Isolation Test

CHANNEL ISOLATION TEST:

- 1. Preset the HP 3326A and the spectrum analyzer.
- 2. Connect the test equipment as follows (illustrated in Figure 2-6):
 - HP 3326A CH A output to spectrum analyzer 50 Ω input
 - \bullet Connect 50 Ω load to HP 3326A CH B output
 - HP 3326A 1,2,5,10 MHz REF INput to spectrum analyzer 10 MHz reference output (phase lock HP 3326A to spectrum analyzer)
- 3. Set the HP 3326A as follows:

CHANNEL	CH A
FREQUENCY	20 Hz
AMPLITUDE	23.97 dBm
CHANNEL	СН В
FREQUENCY	100 Hz
AMPLITUDE	23.97 dBm
FREQUENCY	100 Hz

- 4. Set the spectrum analyzer frequency range to include both the HP 3326A channel A and channel B frequencies. For the HP 3585A:
 - Press RANGE and the up arrow to set the input range to 30 dBm.
 - Set the resolution bandwidth (RBW) to 3 Hz and video bandwidth (VBW) to 1 Hz.
 - Set the CENTER FREQUENCY to the channel A frequency.
 - Set the FREQUENCY SPAN to 0 Hz.
 - Enable the OFFSET and press the ENTER OFFSET key.
 - Set the CF STEP SIZE to the fundamental frequency.

NOTE

The speed of the measurement may be increased by manually tuning the spectrum analyzer to the fundamental and harmonic frequencies. The spectrum analyzer must be phase locked to the HP 3326A for accurate results with manual tuning. Manual tuning is used in the HP 3585A procedures.

- 5. Verify that the signal corresponding to the channel B frequency is 80 dB below the signal corresponding to the channel A frequency. Record the amplitude difference between the two signals on the Performance Test Record. For the HP 3585A:
 - Press the CENTER FREQUENCY key, then enter the channel B frequency value.

- 6. Repeat steps 4 and 5 using the following HP 3326A channel B frequencies:
 - 1000 Hz 10 kHz 95 kHz 950 kHz 9.5 MHz 12.9 MHz
- 7. Change the HP 3326A CH A frequency to 1.05 MHz and repeat steps 4 and 5 using the following HP 3326A channel B frequencies:
 - 100 Hz 1000 Hz 10 kHz 95 kHz 950 kHz 9.5 MHz 12.9 MHz
- 8. Change the HP 3326A CH A frequency to 13 MHz and repeat steps 4 and 5 using the following HP 3326A channel B frequencies:
 - 100 Hz 1000 Hz 10 kHz 95 kHz 950 kHz 9.5 MHz 12.9 MHz
- 9. Preset the HP 3326A and set as follows:

CHANNEL	CH A
FREQUENCY	20 Hz
AMPLITUDE	23.97 dBm
MODE	2 TONE
CHANNEL	CH B
FREQUENCY	95.02 kHz
AMPLITUDE	23.97 dBm

- 10. Set the spectrum analyzer frequency range to include both the HP 3326A channel A and channel B frequencies. (Refer to steps 4 and 5 for HP 3585A manual tuning procedures.)
- 11. Verify that the signal corresponding to the channel B frequency is 80 dB below the signal corresponding to the channel A frequency. Record the amplitude difference between the two signals on the Performance Test Record.
- 12. Change the HP 3326A CH B frequency to 130 Hz and repeat steps 10 and 11.

13. Change the HP 3326A CH A frequency to 1.05 MHz and repeat steps 10 and 11 using the following HP 3326A channel B frequencies:

1.145 MHz 1.0501 MHz

14. Change the HP 3326A CH A frequency to 12.9 MHz and repeat steps 10 and 11 using the following HP 3326A channel B frequencies:

12.995 MHz 12.9001 MHz

- 15. Preset the HP 3326A and spectrum analyzer.
- 16. Connect the 50 Ω feed thru termination to the HP 3326A channel A output. Connect the HP 3326A channel B output to the 50 Ω input on the spectrum analyzer.
- 17. Repeat steps 3 through 14 substituting channel B for channel A, and channel A for channel B.

2-17 SINE WAVE AMPLITUDE ACCURACY

EQUIPMENT REQUIRED:

AC/DC Digital Voltmeter	HP 3455A
average converter OPT 001	
50 Ω Step Attenuator	HP 355D
Thermal converter	HP 11051A
50 Ω Feed Thru Termination	HP 11048C

SPECIFICATIONS:

Relative to selected value after performing self calibration.

Sine wave

+ 23.98 dBm	0.001 Hz	100 kHz	<u>1 Mł</u>	lz 13 MHz
+ 3.98 dBm	±0.1	1dB ±	0.3 dB	<u>+</u> 0.6 dB
- 36.02 dBm				<u>+</u> 0.8 dB
	<u> </u>	2 0B ±	0.5 dB	+ 1.0 dB
– 56.02 dBm				

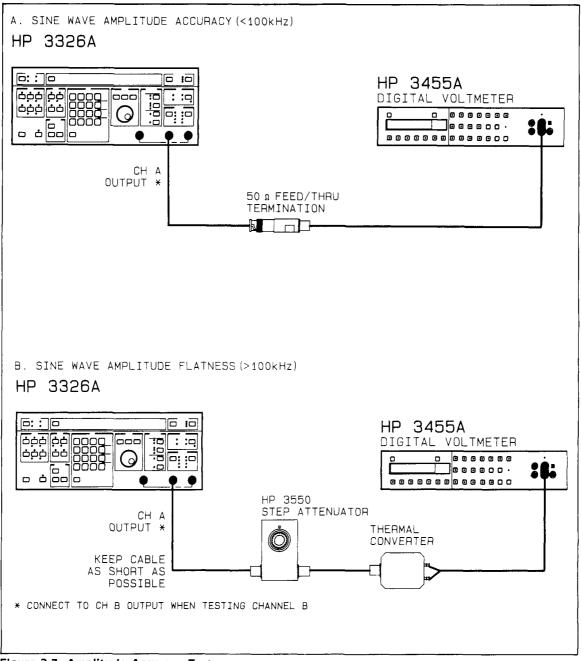


Figure 2-7. Amplitude Accuracy Test

SINE WAVE AMPLITUDE ACCURACY TEST (<100 kHz):

- 1. Preset the HP 3326A.
- 2. Connect the test equipment as follows (illustrated in Figure 2-7(A)):
 - \bullet HP 3326A CH A output through 50 Ω feed thru termination to ac digital voltmeter input

3. Set the HP 3326A as follows:

CHANNEL	СН А
FREQUENCY	100 Hz
AMPLITUDE	23.98 dBm

- 4. Press the MANUAL calibration key to calibrate the HP 3326A.
- 5. Verify that the voltmeter reads between 3.495 Vrms and 3.577 Vrms (23.98 dBm $\pm\,0.1$ dB).
- 6. Verify that the ac voltmeter reads between 3.495 Vrms and 3.577 Vrms at the following frequencies:

1 kHz 100 kHz

- 7. Set the HP 3326A amplitude to 3.98 dBm (0.3536 Vrms).
- 8. Verify that the voltmeter reads between 0.3455 Vrms and 0.3616 Vrms (3.98 dBm \pm 0.2 dB) at the following frequencies:

100 Hz 1 kHz 100 kHz

- 9. Set the HP 3326A amplitude to -36.02 dBm (3.536 mVrms).
- 10. Verify that the voltmeter reads between 3.455 mVrms and 3.616 mVrms (3.98 dBm \pm 0.2 dB) at the following frequencies:

100 Hz 1 kHz 100 kHz

11. Repeat steps 1 through 10 substituting channel B for channel A.

SINE WAVE AMPLITUDE FLATNESS TEST (> 100 kHz):

- 1. Preset the HP 3326A.
- 2. Connect the test equipment as follows (illustrated in Figure 2-7(B)):
 - HP 3326A CH A output to 50 Ω step attenuator input
 - 50 Ω step attenuator output to 0.5 Vrms thermal converter input
 - Thermal converter output to dc digital voltmeter input

NOTE

For accurate test results, allow the HP 3326A and thermal converter to settle and adjust to surrounding temperatures. Avoid sudden temperature changes around the thermal converter.

- 3. Set the 50 Ω step attenuator to 0 dB.
- 4. Set the HP 3326A as follows:

CHANNEL	СН А
FREQUENCY	1 kHz
AMPLITUDE	3.98 dBm

- 5. Press the HP 3326A MANUAL calibration key.
- 6. Read the dc voltmeter and record the 3.98 dBm sine wave reference reading on the Performance Test Record.
- 7. Change the HP 3326A amplitude to 3.88 dBm and record the dc voltmeter reading on the Performance Test Record.
- 8. Subtract the 3.88 dBm dc voltmeter reading from the 3.98 dBm dc voltmeter reading to determine the voltmeter change corresponding to a 0.1 dB amplitude change.
- 9. Change the HP 3326A amplitude to 3.68 dBm and determine the voltmeter change corresponding to a 0.3 dB amplitude change.
- 10. Set the HP 3326A amplitude to 3.38 dBm and determine the voltmeter change corresponding to a 0.6 dB amplitude change.
- 11. Set the HP 3326A as follows:

CHANNEL	CH A
FREQUENCY	100 kHz
AMPLITUDE	3.98 dBm

- 12. Record the dc voltmeter reading.
- 13. Verify that the dc voltmeter is within the reading of step 6 plus or minus the 0.1 dB tolerance determined in step 8.
- 14. Set the HP 3326A to 1 MHz and record the dc voltmeter reading.
- 15. Verify that the dc voltmeter is within the reading of step 6 plus or minus the 0.3 dB tolerance determined in step 9.
- 16. Select the 1 MHz digit with the MODIFY arrow keys and increase the output to 13 MHz in 2 MHz steps with the rotary knob. Press the MANUAL calibration key and record the voltmeter reading at each 2 MHz frequency step.
- 17. Verify that the dc voltmeter readings are within the readings of step 6 plus or minus the 0.6 dB tolerance determined in step 10.
- 18. Change the attenuator to 20 dB.

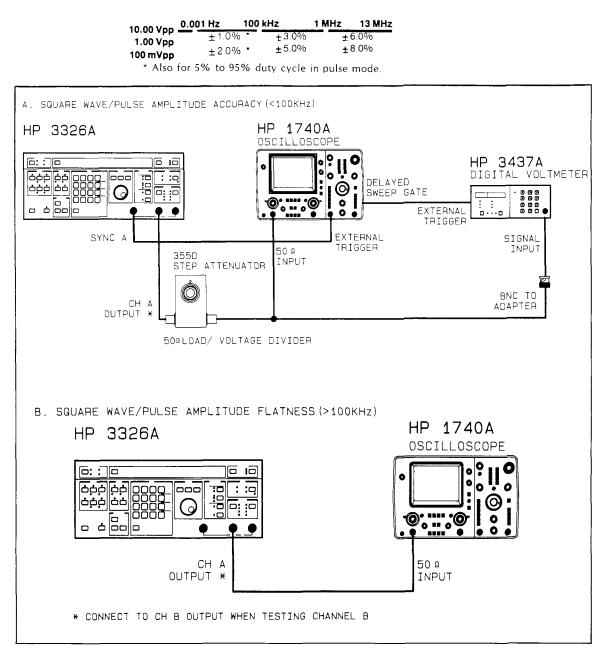
19. Set the HP 3326A as follows:

CHANNEL	CH A
FREQUENCY	1 kHz
AMPLITUDE	23.98 dBm

- 20. Press the HP 3326A MANUAL calibration key.
- 21. Read the dc voltmeter and record the 23.98 dBm sine wave reference reading on the Performance Test Record.
- 22. Change the HP 3326A amplitude to 23.88, 23.68, and 23.38 dBm and record the dc voltmeter reading for each amplitude setting. Subtract the 23.88, 23.68, and 23.38 dBm dc voltmeter readings from the 23.98 reference reading to establish the dc voltmeter change for a 0.1, 0.3, and 0.6 dB change in the HP 3326A.
- 23. Set the HP 3326A as follows:

CHANNEL	CH A
FREQUENCY	100 kHz
AMPLITUDE	23.98 dBm

- 24. Record the dc voltmeter reading and verify that the reading is within the reading of step 21 plus or minus the 0.1 dB tolerance determined in step 22.
- 25. Set the HP 3326A to 1 MHz.
- 26. Record the dc voltmeter reading and verify that the reading is within the reading of step 21 plus or minus the 0.3 dB tolerance determined in step 22.
- 27. Select the 1 MHz digit with the MODIFY arrow keys and increase the output to 13 MHz in 2 MHz steps with the rotary knob. Press the MANUAL calibration key and record the voltmeter reading at each 2 MHz frequency step. Verify that the dc voltmeter readings are within the readings of step 21 plus or minus the 0.6 dB tolerance determined in step 22.
- 28. Repeat steps 1 through 27 substituting channel B for channel A.
- 29. Disconnect thermal converter from HP 3326A.


2-18 SQUARE WAVE/PULSE AMPLITUDE ACCURACY

EQUIPMENT REQUIRED:

High Speed DC Voltmeter	HP 3437A
BNC-to-Triax Adapter HP Part No.	1250-0595
Oscilloscope	HP 1740A
50 Ω Step Attenuator	HP 335D

SPECIFICATIONS:

Relative to selected value after performing self calibration. Square wave (50% duty cycle)

Figure 2-8. Square Wave/Pulse Amplitude Accuracy Test

SQUARE WAVE/PULSE AMPLITUDE ACCURACY TEST (< 100 kHz):

- 1. Preset the HP 3326A.
- 2. Connect the test equipment as follows (illustrated in Figure 2-8(A)):
 - HP 3326A SYNC A output to oscilloscope external trigger input
 - HP 3326A CH A output to 50 Ω step attenuator input
 - 50 Ω step attenuator output to oscilloscope 50 Ω input
 - 50 Ω step attenuator output to high speed voltmeter input

- 3. Set the 50 Ω step attenuator to 10 dB.
- 4. Set the HP 3326A as follows:

CHANNEL	CH A
FUNCTION	Square
FREQUENCY	99.9 Hz
AMPLITUDE	10 Vpp

5. Set the oscilloscope as follows:

DISPLAY	A or B
VERTICAL SENSITIVITY	0.5 V/div
TRIGGER	External
MAIN SWEEP	1 ms/div
DELAYED SWEEP	5 μs/div
DELAY	250 s

6. Set the high speed voltmeter as follows:

RANGE	0.1 V
TRIGGER	External
DELAY	0 s

- 7. One cycle of the square wave should fill the screen of the oscilloscope. The sample time for the voltmeter should be seen as the intensified spot of the delayed sweep.
- 8. Press the MANUAL calibration key to calibrate the HP 3326A.
- 9. Read the positive peak voltage of the attenuated waveform on the voltmeter. If the reading is not stable, press HOLD, then EXT alternatively to repeat readings.
- 10. Change oscilloscope delay to 750 s and read negative peak on the voltmeter.
- 11. Add the two readings to obtain volts peak-to-peak. Verify that the sum is between 3.02 volts and 3.08 volts.
- 12. Set the HP 3326A frequency to 1 kHz.
- 13. Set the oscilloscope as follows:

MAIN SWEEP	50 μs/div
DELAYED SWEEP	0.05 <i>µ</i> s/div

- 14. Read the positive peak voltage on the voltmeter; then push negative trigger on the oscilloscope and read negative peak voltage.
- 15. Verify that the sum is between 3.02 and 3.08 volts.
- 16. Set the HP 3326A frequency to 100 kHz.

17. Set the oscilloscope as follows:

Main Sweep $0.5 \ \mu s/div$

- 18. Read positive and negative peak voltages in the center of the oscilloscope screen (select between positive and negative trigger to view the trace maximum and minimum values). Verify that the peak-to-peak voltage is between 3.02 and 3.08 volts.
- 19. Reduce the HP 3326A amplitude to 3 Vpp, and set the 50 Ω step attenuator to zero.
- 20. Repeat steps 4 through 18 for 3 Vpp with a minimum voltage reading of 2.97 V and a maximum voltage of 3.03 V.
- 21. Reduce the HP 3326A amplitude to 1 Vpp.
- 22. Repeat steps 4 through 18 for 1 Vpp with a minimum voltage reading of 0.99 V and a maximum voltage of 1.01 V.
- 23. Preset the HP 3326A.
- 24. Press the HP 3326A MODE key to enable the 2 PHASE mode.
- 25. Repeat steps 2 through 22 substituting channel B for channel A.

SQUARE WAVE FLATNESS TEST:

- 1. Preset the HP 3326A.
- 2. Connect the test equipment as follows (illustrated in Figure 2-8(B)):
 - HP 3326A CH A output to oscilloscope 50 Ω vertical input

NOTE

If the oscilloscope does not have a 50 Ω input, a 50 Ω feed thru termination (HP 11048C) may be used.

3. Set the HP 3326A as follows:

CHANNEL	CH A
FUNCTION	Square wave
FREQUENCY	1 kHz
AMPLITUDE	10 Vpp

4. Set the oscilloscope as follows:

VERTICAL SENSITIVITY	2 V/div
TIME/DIVISION	0.1 ms

- 5. Select the 1 MHz digit with the MODIFY arrow keys and increase the frequency to 13 MHz in 2 MHz steps with the rotary knob. Verify that the two lines that appear on the oscilloscope remain within ½ major division of the 5 division separation.
- 6. Repeat steps 1 through 5 substituting channel B for channel A.

2-19 HIGH VOLTAGE AMPLITUDE ACCURACY

EQUIPMENT REQUIRED:

AC/DC Digital Voltmeter	HP 3455A
average converter	OPT 001
High Speed DC Voltmeter	HP 3437A
BNC-to-Triax Adapter HP Part No.	1250-0595
Oscilloscope	HP 1740A

COMPONENTS:

- R1 947 k Ω Resistor (parallel combination of two 2 k Ω and one 18 k Ω resistors) Resistor 2 k Ω 0.1% 0.5 W 2 ea HP Part No. 0698-8226 Resistor 18 k Ω 0.1 % 0.125 W HP Part No. 0698-8167
- R2 Resistor 52.68 Ω 1% $\frac{1}{2}$ W 1 ea HP Part No. 0698-6060

SPECIFICATIONS:

High Voltage Amplitude Accuracy

 $\leq \pm 12\%$ of peak-to-peak value for sine, square, and pulse for 400 mVpp to 40 Vpp values.

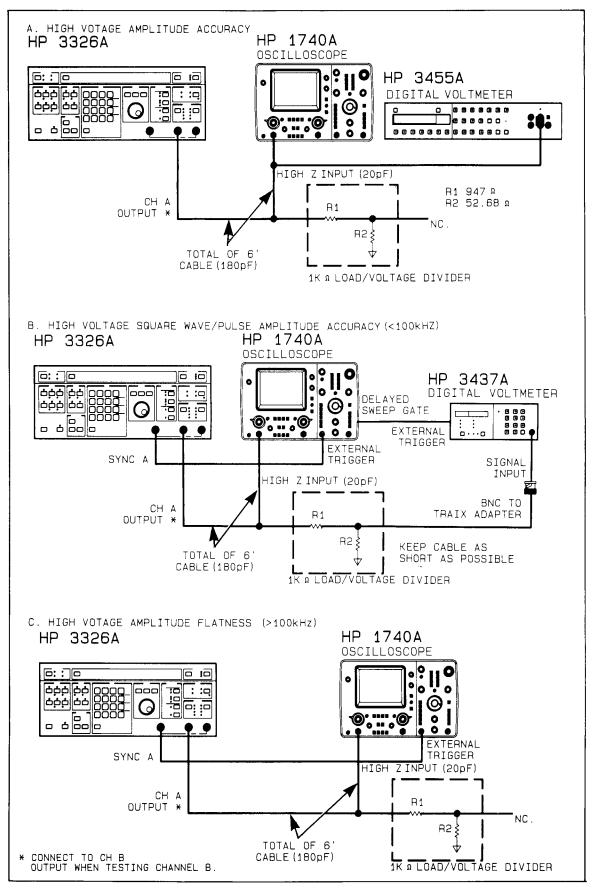


Figure 2-9. High Voltage Amplitude Accuracy Test

HIGH VOLTAGE AMPLITUDE ACCURACY TEST (< 100 kHz):

- 1. Preset the HP 3326A.
- 2. Connect the test equipment as follows (illustrated in Figure 2-9(A)):
 - HP 3326A CH A output to ac/dc voltmeter high impedance input
 - HP 3326A CH A output to oscilloscope high impedance input

NOTE

The oscilloscope 20 pF input capacitance is combined with the cable capacitance to provide a 200 pF capacitive load to the test circuit.

• HP 3326A CH A output to 1 k Ω load/voltage divider input (do not connect 1 k Ω load/voltage divider output)

NOTE

The 1 k Ω load/voltage divider is constructed in a small metal box with two BNC connectors. The components for the 1 k Ω load/voltage divider are listed under Equipment Required.

3. Set the HP 3326A as follows:

CHANNEL	СН А
HIGH VOLTAGE	ON
FUNCTION	Sine
FREQUENCY	2 kHz
AMPLITUDE	14.14 Vrms (40 Vpp)

4. Press the MANUAL calibration key.

- 5. Verify that the ac voltmeter reads between 13.86 and 14.42 Vrms.
- 6. Change the HP 3326A FUNCTION to OFF.
- 7. Connect the test equipment as follows (illustrated in Figure 2-9(B)):
 - HP 3326A SYNC A output to oscilloscope external trigger input
 - HP 3326A CH A output to oscilloscope high impedance input
 - HP 3326A CH A output to 1 k Ω load/voltage divider input
 - 1 k Ω load/voltage divider output to high speed voltmeter input
 - Oscilloscope delayed sweep gate to high speed voltmeter external trigger input

8. Set the HP 3326A as follows:

CHANNEL	СН А
HIGH VOLTAGE	ON
FUNCTION	Square Wave
FREQUENCY	2 kHz
AMPLITUDE	14.14 Vrms (40 Vpp)

9. Trigger the high speed dc voltmeter on delayed sweep gate from the oscilloscope. For the HP 3437A voltmeter:

RANGE	1 V
TRIGGER	External

10. Set the oscilloscope as follows:

DISPLAY	A or B
VERTICAL SENSITIVITY	2 V/div
VERTICAL POSITION	8 o'clock
TRIGGER	External
MAIN SWEEP	20 µs/div
DELAYED SWEEP	0.05 <i>µ</i> s/div
DELAY	650 s
MAGNIFY	×10

- 11. Read the positive peak voltage on the dc voltmeter.
- 12. Switch the oscilloscope to negative trigger, set vertical position to 4 o'clock.
- 13. Read the negative peak voltage on the dc voltmeter.
- 14. Verify that the peak-to-peak voltage is between 1.854 and 2.360 volts.
- 15. Repeat step 1 through 14 substituting channel B for channel A.

HIGH VOLTAGE AMPLITUDE FLATNESS TEST (> 100 kHz):

- 1. Preset the HP 3326A.
- 2. Connect the test equipment as follows (illustrated in Figure 2-9(C)):
 - HP 3326A CH A output to oscilloscope high impedance input
 - HP 3326A CH A output to 1 k Ω load/voltage divider input (do not connect the 1 k Ω load/voltage divider output)

NOTE

- a. The oscilloscope 20 pF input capacitance is combined with the cable capacitance to provide a 200 pF capacitive load to the test circuit.
- b. The 1 k Ω load/voltage divider is constructed in a small metal box with two BNC connectors. The components for the 1 k Ω load/voltage divider are listed under Equipment Required.
- 3. Set the oscilloscope as follows:

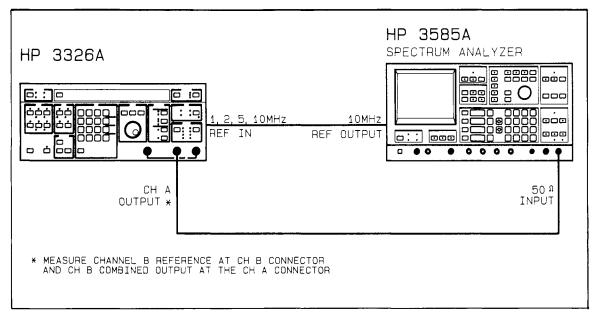
VERTICAL SENSITIVITY	10 V/div
TIME/DIVISION	1 ms/div

4. Set the HP 3326A as follows:

CHANNEL	СН А
HIGH VOLTAGE	ON
FREQUENCY	1 kHz
AMPLITUDE	20 Vpk

- 5. Adjust oscilloscope intensity and focus for a sharp trace.
- 6. Select the 100 kHz digit with the MODIFY arrow keys and increase the frequency to 1.001 MHz in 200 kHz steps with the rotary knob. Verify that the width of the bright region on the oscilloscope screen is 4 plus or minus 0.48 divisions for all frequency steps.
- 7. Repeat steps 1 through 6 substituting channel B for channel A.

2-20 COMBINER AMPLITUDE ACCURACY


EQUIPMENT REQUIRED:

Spectrum Analyzer HP 3585A

SPECIFICATIONS:

Combiner Amplitude Accuracy: Add the following to the amplitude accuracy of channel A or B.

DC to 100 kHz	± 0.1 dB
100 kHz to 13 MHz	± 0.3 dB

Figure 2-10. Combiner Amplitude Accuracy Test

COMBINER AMPLITUDE ACCURACY TEST

- 1. Preset the HP 3326A and spectrum analyzer.
- 2. Connect the test equipment as follows (illustrated in Figure 2-10):
 - HP 3326A CH A output to spectrum analyzer 50 Ω input
 - HP 3326A 1,2,5,10 MHz REF INput to spectrum analyzer 10 MHz reference output (phase lock HP 3326A to spectrum analyzer)
- 3. Set the HP 3326A as follows:

CHANNEL	CH A
AMPLITUDE	17.9 dBm
FREQUENCY	100 Hz
CHANNEL	CH B
Amplitude	17.9 dBm
Frequency	1.3 MHz

- 4. Measure the 100 Hz signal amplitude with the spectrum analyzer to establish a reference value.
- 5. Enable a combined output by pressing the blue SHIFT key followed by the MODE key. Combined operation is enabled when the COMBINED indicator is illuminated.
- 6. Measure the 100 Hz component of the combined output with the spectrum analyzer.
- 7. Verify that the 100 Hz signal amplitude does not vary from the reference amplitude by more than ± 0.2 dB.

- 8. Disable the combined output by pressing the blue SHIFT key followed by the MODE key. Combined operation is disabled when the COMBINED indicator is extinguished.
- 9. Repeat steps 4 through 8 for the following channel A frequencies and tolerances:

FREQUENCY	TOLERANCE
130 kHz	$\pm 0.3 \text{ dB}$
13 MHz	$\pm 0.3 \text{ dB}$

- 10. Repeat steps 4 through 9 for channel B amplitudes of:
 - 7.9 dBm - 2.1 dBm - 12.1 dBm - 22.1 dBm - 32.1 dBm - 42.1 dBm - 52.1 dBm.
- 11. Preset the HP 3326A and repeat steps 3 through 10 substituting channel B for channel A, and channel A for channel B.

NOTE

When the combined output is enabled, the channel B output is disabled. Thus it is necessary to measure the channel B reference level at the channel B connector and the channel B combined output at the channel A connector.

2-21 INTEGRATED PHASE NOISE

EQUIPMENT REQUIRED:

DC Digital Voltmeter	HP 3455A
AC Voltmeter	HP 400FL
Sine Wave Signal Source	Oven Output of HP 3585A, HP 3325A, or HP 3326A
Mixer	HP 10534A
1 MHz Low Pass Filter	TTE Inc. J903
	(Refer to Table 1-5 for address)
50 Ω Feed Thru Termination	HP 11048C

Components:

- R1 Resistor 10 k Ω ±1% 1 ea HP Part No. 0757-0442
- C1 Capacitor 1600 pF $\pm 5\%$ 1 ea HP Part No. 0160-2223

SPECIFICATIONS:

Integrated Phase Noise: For a 30 kHz band centered on a 10 MHz carrier (excluding ± 1 Hz about the carrier).

With option 001: < -63 dBc

With standard instrument: typically < -60 dBc

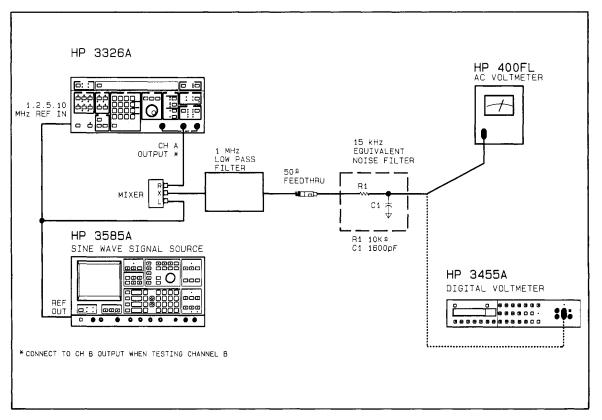


Figure 2-11. Integrated Phase Noise Test

INTEGRATED PHASE NOISE TEST:

- 1. Preset the HP 3326A.
- 2. Connect the test equipment as follows (illustrated in Figure 2-11):
 - HP 3326A CH A output to mixer R input
 - Mixer X output to 1 MHz low pass filter input
 - 1 MHz low pass filter output to 50 Ω feed thru termination
 - 50 Ω feed thru termination to 15 kHz equivalent noise filter input
 - 15 kHz equivalent noise filter output to ac voltmeter input
 - Sine wave signal source 10 MHz temperature stabilized frequency reference (oven) output to HP 3326A 1,2,5,10 MHz REF INput
 - Sine wave signal source 10 MHz temperature stabilized frequency reference (oven) output to mixer L input

NOTE

The 15 kHz equivalent noise filter is constructed in a small metal box with two BNC connectors. The components for the 15 kHz equivalent noise filter are listed under Equipment Required.

3. Set the HP 3326A as follows:

CHANNEL	CH A
FREQUENCY	10.001 MHz
AMPLITUDE	0 dBm

- 4. Record the ac voltmeter reading (dB scale).
- 5. Change the HP 3326A frequency to 10 MHz.
- 6. Connect the 15 kHz filter output to the dc digital voltmeter.
- 7. Press the HP 3326A PHASE key. Using the MODIFY controls, adjust the HP 3326A phase for a minimum reading on the dc digital voltmeter.
- 8. Disconnect the 15 kHz filter output from the dc digital voltmeter and connect it to the ac voltmeter.
- 9. Record the ac voltmeter reading (dB scale) and subtract it from the previous reading and record on the Performance Test Record. The difference should be -63 dB or less.
- 10. Repeat steps 1 through 9 substituting channel B for channel A.

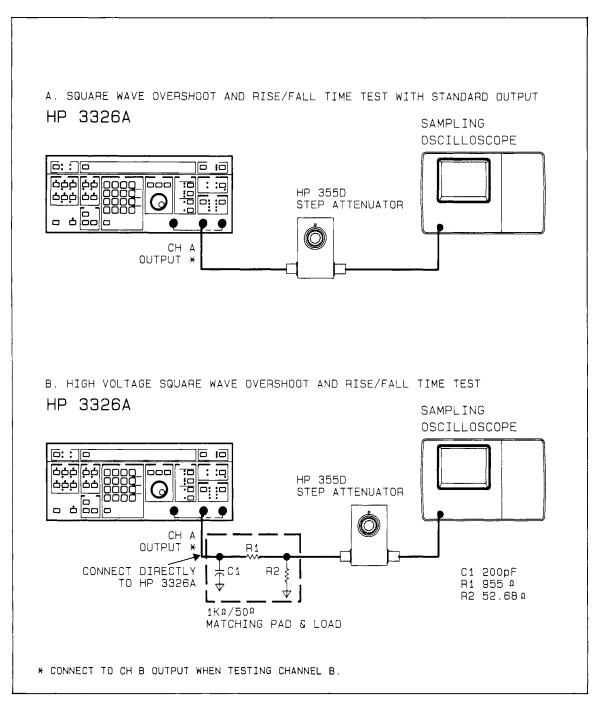
2-22 SQUARE WAVE OVERSHOOT AND RISE/FALL TIME

EQUIPMENT REQUIRED:

Sampling Oscilloscope	TEK7603
with 7T11/7S11	and S-1
Attenuator	HP 355D

SPECIFICATIONS:

HP 3326A with Standard Output


Rise/fall time: \leq 15 ns 10% to 90% at full output at 1 MHz.

Overshoot: \leq 5% of peak-to-peak amplitude at full output at 1 MHz.

HP 3326A with High Voltage Output

Rise/fall time: \leq 125 ns 10% to 90% at full output with 1 k Ω , 200 pF load.

Overshoot: $\leq 10\%$ of peak-to-peak amplitude at full output with 1 k Ω , 200 pF load.

Figure 2-12. Square Wave Overshoot and Rise/Fall Time Test

SQUARE WAVE OVERSHOOT AND RISE/FALL TIME TEST

- 1. Preset the HP 3326A.
- 2. Connect the test equipment as follows (illustrated in Figure 2-12(A)):
 - HP 3326A CH A output to attenuator input
 - Attenuator output to sampling oscilloscope input
- 3. Set the attenuator for 40 dB attenuation.

4. Set the HP 3326A as follows:

CHANNEL	CH A
FUNCTION	Square Wave
FREQUENCY	1 MHz
AMPLITUDE	10 Vpp

- 5. Adjust the oscilloscope vertical and horizontal controls so that the square wave rise time between the 10% and 90% points can be measured. Rise time should be less than 15 ns.
- 6. Adjust the oscilloscope vertical and horizontal controls so that the square wave fall time between the 10% and 90% points can be measured. Fall time should be less than 15 ns.
- 7. Adjust the oscilloscope vertical and horizontal controls so that the square wave overshoot can be measured. Overshoot should be less than $\pm 5\%$ of peak-to-peak amplitude displayed on the oscilloscope.
- 8. Repeat steps 1 through 7 substituting channel B for channel A.

HIGH VOLTAGE SQUARE WAVE OVERSHOOT AND RISE/FALL TIME TEST

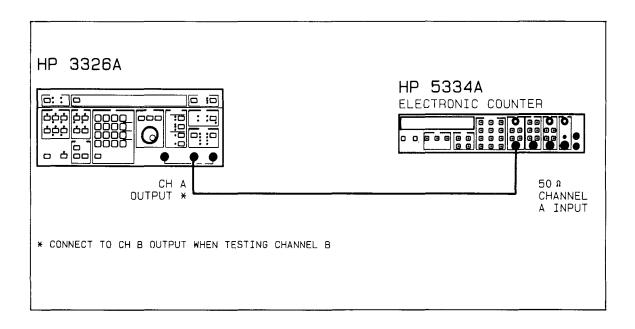
- 1. Preset the HP 3326A
- 2. Connect the test equipment as follows (illustrated in Figure 2-12 (B)):
 - HP 3326A CH A output to 1 k $\Omega/50$ Ω matching pad and load input
 - 1 k0/50 Ω matching pad and load input to attenuator input
 - Attenuator output to sampling oscilloscope input
- 3. Set the attenuator for 10 dB attenuation.
- 4. Set the HP 3326A as follows:

CHANNEL	CH A
FUNCTION	Square Wave
FREQUENCY	1 MHz
AMPLITUDE	40 Vpp

- 5. Adjust the oscilloscope vertical and horizontal controls so that the square wave rise time between the 10% and 90% points can be measured. Rise time should be less than 125 ns.
- 6. Adjust the oscilloscope vertical and horizontal controls so that the square wave fall time between the 10% and 90% points can be measured. Fall time should be less than 125 ns.

- 7. Adjust the oscilloscope vertical and horizontal controls so that the square wave overshoot can be measured. Overshoot should be less than $\pm 10\%$ of peak-to-peak amplitude displayed on the oscilloscope.
- 8. Repeat steps 1 through 7 substituting channel B for channel A.

2-23 SQUARE WAVE SYMMETRY AND PULSE WIDTH ACCURACY


EQUIPMENT REQUIRED:

Universal Counter HP 5334A

SPECIFICATIONS:

Square Wave symmetry: $\leq \pm 1\%$ of period + 6 ns.

Pulse Width accuracy: $\leq \pm 1\%$ of period ± 20 ns.

Figure 2-13. Square Wave Symmetry and Pulse Width Accuracy Test

SQUARE WAVE SYMMETRY TEST:

- 1. Preset the HP 3326A.
- 2. Connect the test equipment as follows (illustrated in Figure 2-13):
 - HP 3326A CH A output to universal counter channel A 50 Ω input

3. Set the HP 3326A as follows:

FUNCTION	Square Wave
FREQUENCY	10 kHz
AMPLITUDE	1 Vrms

4. Set the universal counter to measure the positive pulse width and note the reading. For the HP 5334A:

COMMON INPUT (COM A)	OFF
PULSE WIDTH A	ON
AC COUPLING	OFF
50 Ω Z	ON
CHANNEL A SLOPE	Positive (LED Off)
GATE TIME ADJUSTED FOR	
STABLE READING	

5. Set the universal counter to measure the negative pulse width and note the reading. For the HP 5334A:

COMMON INPUT (COM A)	OFF
PULSE WIDTH A	ON
AC COUPLING	OFF
50 Ω Z	ON
CHANNEL A SLOPE	Negative (LED On)
GATE TIME ADJUSTED FOR	
STABLE READING	

- 6. The reading in step 4 should be equal to the reading in step 5 plus or minus 1 μ s.
- 7. Change the HP 3326A frequency to 10 MHz and repeat steps 4 and 5. The reading in step 4 should be equal to the reading in step 5 plus or minus 7 ns.
- 8. Repeat steps 1 through 7 substituting channel B for channel A.

PULSE WIDTH ACCURACY:

- 1. Preset the HP 3326A.
- 2. Connect the test equipment as follows (illustrated in Figure 2-13):
 - HP 3326A CH A output to universal counter channel A 50 Ω input
- 3. Set the HP 3326A as follows:

CHANNEL	CH A
MODE	PULSE
FREQUENCY	10 kHz
AMPLITUDE	2.8 Vpp
DUTY CYCLE	50 %

4. Set the universal counter to measure the positive pulse width and note the reading. For the HP 5334A:

COMMON INPUT (COM A)OFFPULSE WIDTH AONAC COUPLINGOFF50 Ω ZONCHANNEL A SLOPEPositive (LED Off)GATE TIME ADJUSTED FORSTABLE READING

- 5. The reading in step 4 should be equal to 1 μ s plus or minus 1.02 μ s.
- 6. Change the HP 3326A frequency to 10 MHz and measure the positive pulse width. The reading should be equal to 1 ns plus or minus 21 ns.
- 7. Repeat steps 1 through 5 substituting channel B for channel A.

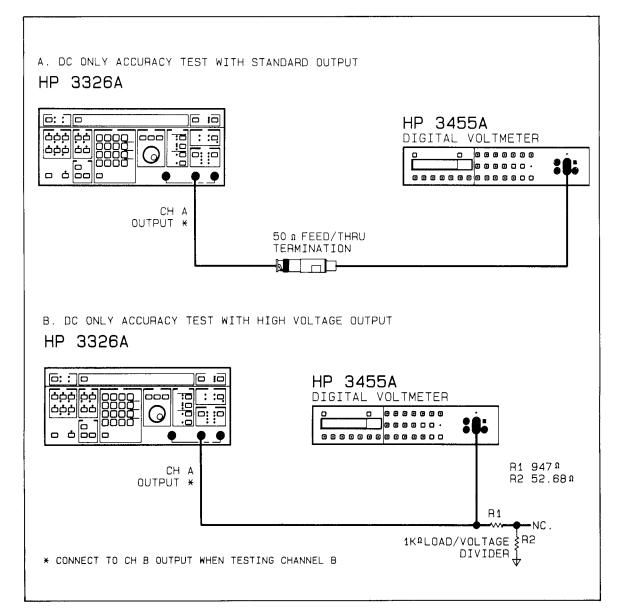
2-24 DC ONLY ACCURACY

EQUIPMENT REQUIRED:

DC Digital Voltmeter	HP 3455A
50 Ω Feed Thru Termination	HP 11048C

Components:

- * R1 947 Ω Resistor (parallel combination of two 2k Ω and one 18 k Ω resistors) Resistor 2 k Ω 0.1% 0.5 W 2 ea HP Part No. 0698-8226 Resistor 18 k Ω 0.1% 0.125 W 1 ea HP Part No. 0698-8167
- * R2 Resistor 52.68 Ω 0.1% 0.5 W 1 ea HP Part No. 0698-6060
- * Used to test High Voltage (Option 002)


SPECIFICATIONS:

Standard HP 3326A

Range: 0 to ± 5 V into 50 Ω Accuracy (after performing self-calibration): ± 75 mV

HP 3326A with High Voltage Option

DC Only Range: 0 to ± 20 V DC Only and DC Offset Accuracy: ± 140 mV $\pm 1\%$ of setting for sine waves DC to 1 MHz, square waves DC to 50 kHz

Figure 2-14. DC Only Accuracy Test

DC ONLY ACCURACY TEST WITH STANDARD OUTPUT:

- 1. Preset the HP 3326A.
- 2. Connect the test equipment as follows (illustrated in Figure 2-14(A)):
 - HP 3326A CH A output through 50 Ω feed thru termination to dc digital voltmeter input
- 3. Set the HP 3326A as follows:

CHANNEL	CH A
FUNCTION	DC
DC OFFSET	5 V

- 4. Press the HP 3326A MANUAL calibration key.
- 5. Record the dc digital voltmeter reading. The voltmeter should read between +4.925 V and +5.075 V.
- 6. Change the HP 3326A dc offset to -5 V and press the HP 3326A MANUAL calibration key. Verify that the dc digital voltmeter reads between -4.925 V and -5.075 V.
- 7. Change the HP 3326A dc offset to 0 V and press the HP 3326A MANUAL calibration key. Verify that the dc digital voltmeter reads between -0.075 V and 0.075 V.
- 8. Repeat steps 1 through 7 substituting channel B for channel A.

DC ONLY ACCURACY TEST WITH HIGH VOLTAGE OUTPUT:

- 1. Preset the HP 3326A.
- 2. Connect the test equipment as follows (illustrated in Figure 2-14(B)):
 - HP 3326A CH A output to dc digital voltmeter input
 - HP 3326A CH A output to 1 k Ω load/voltage divider input (do not connect 1 k Ω load/voltage divider output)

NOTE

The 1 k Ω load/voltage divider is constructed in a small metal box with two BNC connectors. The components for the 1 k Ω load/voltage divider are listed under Equipment Required.

3. Set the HP 3326A as follows:

CHANNEL	СНА
FUNCTION	DC
HIGH VOLTAGE	ON
DC OFFSET	20 V

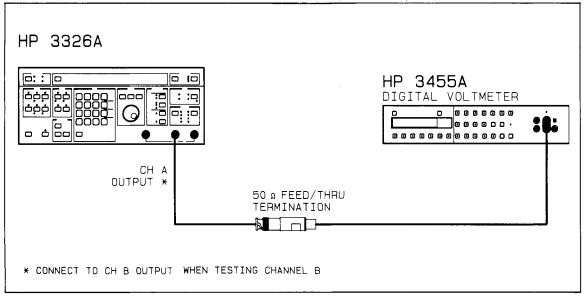
- 4. Press the HP 3326A MANUAL calibration key.
- 5. Record the dc digital voltmeter reading. The voltmeter should read between +19.66 V and +20.34 V.
- 6. Change the HP 3326A dc offset to -20 V and press the HP 3326A MANUAL calibration key. Verify that the dc digital voltmeter reads between -19.66 V and -20.34 V.
- 7. Change the HP 3326A dc offset to 0 V and press the HP 3326A MANUAL calibration key. Verify that the dc digital voltmeter reads between -140 mV and 140 mV.
- 8. Repeat steps 1 through 7 substituting channel B for channel A.

2-25 DC OFFSET ACCURACY

EQUIPMENT	REQUIRED:	
	DC Digital Voltmeter	HP 3455A
	50 Ω Feed Thru Termination	HP 11048C

SPECIFICATIONS:

Standard Output


Range: Maximum DC Offset is a function of the selected AC amplitude.

	Function	
	Sine Wave	Square Wave*/Pulse*
10 Hz to 50 kHz	± 2.0% of max DC	± 2.0% of max DC
50 kHz to 1 MHz	± 2.0% of max DC	± 6.0% of max DC
* midpoint	between peaks at 50%	duty cycle

High Voltage

DC Offset Range: ± 20 V independent of ac amplitude range. DC + AC peak must be less than 20 V.

DC Offset Accuracy: $\pm 140 \text{ mV} \pm 1\% \text{ mV} \pm 1\%$ of setting for sine waves DC to 1 MHz, square waves DC to 50 kHz (Refer to DC Only Accuracy for test).

Figure 2-15. DC Offset Accuracy Test

DC OFFSET ACCURACY TEST:

- 1. Preset the HP 3326A.
- 2. Connect the test equipment as follows (illustrated in Figure 2-15):
 - HP 3326A CH A output through 50 Ω feed thru termination to dc digital voltmeter input

3. Set the HP 3326A as follows:

CHANNEL	CH A
FREQUENCY	13.0 MHz
AMPLITUDE	1 Vpp
DC OFFSET	4.5 V

- 4. Press the HP 3326A MANUAL calibration key.
- 5. After amplitude calibration the dc digital voltmeter reading should be between 4.27 Volts and 4.73 Volts.
- 6. Repeat steps 4 and 5 for the following dc offsets, frequencies, and tolerances:

FREQUENCY	DC OFFSET	TOLERANCE
13 MHz	-4.5 V	$-4.73 V \leq V \leq -4.27 V$
1 MHz	-4.5 V	$-4.59 \text{ V} \leq \text{V} \leq -4.41 \text{ V}$
1 MHz	+4.5 V	$4.41 \text{ V} \leq \text{V} \leq 4.59 \text{ V}$

- 7. Set the HP 3326A function to square wave.
- 8. Repeat steps 4 and 5 for the following dc offsets, frequencies, and tolerances: <u>FREQUENCY</u> DC OFFSET TOLERANCE

TREQUENCE	DC ON SET	I OLLIWARDE
50 kHz	-4.5 V	$-4.73 \text{ V} \leq \text{V} \leq -4.27 \text{ V}$
50 kHz	+4.5 V	$4.27 \text{ V} \leq \text{V} \leq 4.73 \text{ V}$
1 MHz	+4.5 V	$4.23 \text{ V} \leq \text{V} \leq 4.77 \text{ V}$
1 MHz	-4.5 V	$-4.77 \text{ V} \leq \text{V} \leq -4.23 \text{ V}$
13 MHz	-4.5 V	$-4.77 \text{ V} \leq \text{V} \leq -4.23 \text{ V}$
13 MHz	+4.5	$4.23 \ V \le V \le 4.77 \ V$

9. Repeat steps 1 through 8 substituting channel B for channel A.

2-26 PHASE OFFSET ACCURACY

EQUIPMENT REQUIRED:

Spectrum Analyzer	HP 3585A
Power Splitter	HP Part No. 11652-60009
Universal Counter	HP 5334A

SPECIFICATIONS:

Absolute accuracy: in degrees with the following output wave forms on Channels A and B, equal amplitude levels, and either internal phase calibration or external phase calibration (using a power splitter and equal length cables).

Sine/Sine Outputs:

Mode 0.	<u>1 Hz 10 Hz</u>	1 kHz	100 kHz	1 MHz 13	MHz	1 = Both amplitude levels between 1 V
Internal ¹	±0.5°	±0.2° ±0	0.2° ±0.0	3° <u>+</u> 2	.0°	to 10 Vpp (+3.98 to +23.98 dBm)
Internal ²	<u>±0.8°</u>	<u>±0.4°</u> ±0).4° <u>±</u> 0.5	5° <u>+</u> 3	8.0°	2 = Both amplitude levels between 0.1 V
External1	N/A	<u>t(</u>).2° <u>+</u> 0.3	<u>3° ±2</u>	2.0°	to 10 Vpp (-16.02 to $+23.98$ dBm).
Square/Se	quare Outputs	3:				
Cal	11- 10		100 kHz	1 MHz	13 MHz	

Mode 0.1	<u>Hz 10 Hz</u>	<u>1 KI</u>	<u>12 100</u>		
Internal	± 0.5°	±0.2°	± 0.2°	±0.7°	<u>+ 5.0°</u>
Internal ²	± 0.8°	±0.4°	<u>+</u> 0.4°	<u>+ 1.0°</u>	<u>+</u> 7.0°
External ¹	N/A		<u>+0.2°</u>	<u>+0.7°</u>	<u>± 5.0°</u>

 $\begin{array}{l} 1 &= \mbox{Both amplitude levels cetween 1 V} \\ \mbox{to 10 Vpp (+6.99 to +26.99 aBm)}. \\ \mbox{2 } &= \mbox{Both amplitude levels between 0.1 V} \end{array}$

to 10 Vpp (-13.01 to +26.99 dBm).

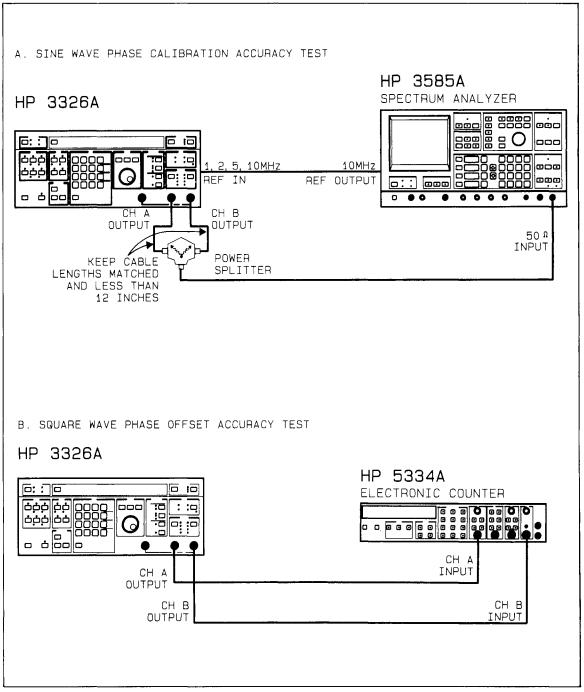


Figure 2-16. Phase Offset Accuracy Test

SINE WAVE PHASE ACCURACY TEST:

- 1. Preset the HP 3326A and spectrum analyzer.
- 2. Connect the equipment as follows (illustrated in Figure 2-16(A)):
 - HP 3326A CH A and CH B outputs to power splitter outputs

- Power splitter input to spectrum analyzer 50 Ω input
- HP 3326A 1,2,5,10 MHz REF INput to spectrum analyzer 10 MHz reference output (phase lock HP 3326A to spectrum analyzer)

NOTE

Keep the length of each cable connecting the HP 3326A to the power splitter less than 12 inches and equal in length.

3. Set the HP 3326A as follows:

CHANNEL	CH A
Mode	2 PHASE
Amplitude	1.1 Vpp
Frequency	13 MHz
CHANNEL	CH B
AMPLITUDE	1.1 Vpp
PHASE	180°

- 4. Tune the spectrum analyzer center frequency to the HP 3326A frequency and disable reference level tracking. For the HP 3585A spectrum analyzer:
 - Set the resolution bandwidth (RBW) to 3 Hz and video bandwidth (VBW) to 1 Hz.
 - Set the CENTER FREQUENCY to 13 MHz.
 - Set the FREQUENCY SPAN to 0 Hz.

NOTE

The speed of the measurement may be increased by manually tuning the spectrum analyzer to the fundamental and harmonic frequencies. The spectrum analyzer must be phase locked to the HP 3326A for accurate results with manual tuning. Manual tuning is used in the HP 3585A procedures.

- 5. Enable the CH B amplitude display on the HP 3326A.
- 6. Press the HP 3326A MANUAL calibration key to calibrate the HP 3326A.
- 7. Increase or decrease the CH B amplitude in 1 mV steps to obtain a minimum indication on the spectrum analyzer.
- 8. Press the HP 3326A MANUAL calibration key to calibrate the HP 3326A.
- 9. Enable the CH B phase display on the HP 3326A.
- 10. Increase or decrease the CH B phase to obtain a minimum indication on the spectrum analyzer.

- 11. Subtract the HP 3326A CH B phase reading from 180 to determine the HP 3326A phase accuracy. For 13 MHz, the phase accuracy is $\pm 2.0^{\circ}$.
- 12. Repeat steps 3 through 11 using the following frequencies:

FREQUENCY	TEST LIMITS
1 kHz	±0.2°
100 kHz	±0.2°
1 MHz	±0.3°

SQUARE WAVE PHASE OFFSET ACCURACY TEST:

- 1. Preset the HP 3326A and reset the universal counter.
- 2. Connect the equipment as follows (illustrated in Figure 2-16(B)):
 - HP 3326A CH A output to universal counter channel A 50 Ω input
 - \bullet HP 3326A CH B output to universal counter channel B 50 Ω input

NOTE

Use 50 Ω loads if the universal counter does not have 50 Ω inputs.

3. Set the HP 3326A as follows:

CHANNEL	СН А
MODE	2 PHASE
FREQUENCY	100 kHz
AMPLITUDE	10 Vpp
FUNCTION	Square Wave
CHANNEL	СН В
AMPLITUDE	10 Vpp
FUNCTION	Square Wave

4. Set the universal counter to measure the time interval between the rising edge of the channel A signal and the rising edge of the channel B signal. For the HP 5334A counter:

ATTENUATOR	X 10
TIME INTERVAL $A \rightarrow B$	ON
AUTO TRIGGER	OFF
TRIGGER LEVEL	(SENS ON) 0 V
COMMON INPUT (COM A)	OFF
AC COUPLING	OFF
50 Ω Z	ON
SLOPE	Positive (LED OFF)
GATE TIME ADJUSTED	
FOR STABLE READING	
100 GATE AVERAGE	ON

- 5. Press the HP 3326A MANUAL key to calibrate the HP 3326A, then the HP 3326A PHASE key to display phase.
- 6. Using the HP 3326A MODIFY controls, adjust the phase until the counter reads approximately 200 ns.
- 7. Record the universal counter reading (to 2 decimal places) on the Performance Test Record in the space for "Counter Reference."
- 8. Press the HP 3326A blue SHIFT key followed by the ASGN ZERO ϕ key.
- 9. Set the HP 3326A CH B PHASE to -10° .
- 10. Record the counter reading (to 2 decimal places) on the Performance Test Record in the space for "Time Interval."
- 12. Subtract the time "Counter Reference" value from the "Time Interval" and record the difference in the space for "Phase Difference." This is the phase difference (in microseconds or nanoseconds) between the HP 3326A channels.
- 13. Verify that the phase difference is between 272.22 ns and 283.34 ns.
- 14. Set the HP 3326A phase to -100° .
- 15. Record the counter reading (to 2 decimal places) IN THE SPACE FOR 100° Increment Time Interval."
- 16. Enter the time difference between the "Zero Phase Time Interval" and the reading in the previous step in the "Time Difference" column. 't should be from 2722.22 ns to 2783.33 ns.

2-27 AMPLITUDE MODULATION

EQUIPMENT REQUIRED:

FREQUENCY SYNTHESIZER	HP 3325A
MODULATION ANALYZER	HP 8901A
SPECTRUM ANALYZER	HP 3585A

SPECIFICATIONS:

The following specifications apply at 10 MHz carrier frequency, 1 kHz modulation source:

Envelope distortion: < -46 dB (at 80% modulation depth) Incidental PM: \leq 5° peak (at 50% modulation depth) Modulation depth accuracy (internal only): \pm 5% of setting (at 80% modulation depth)

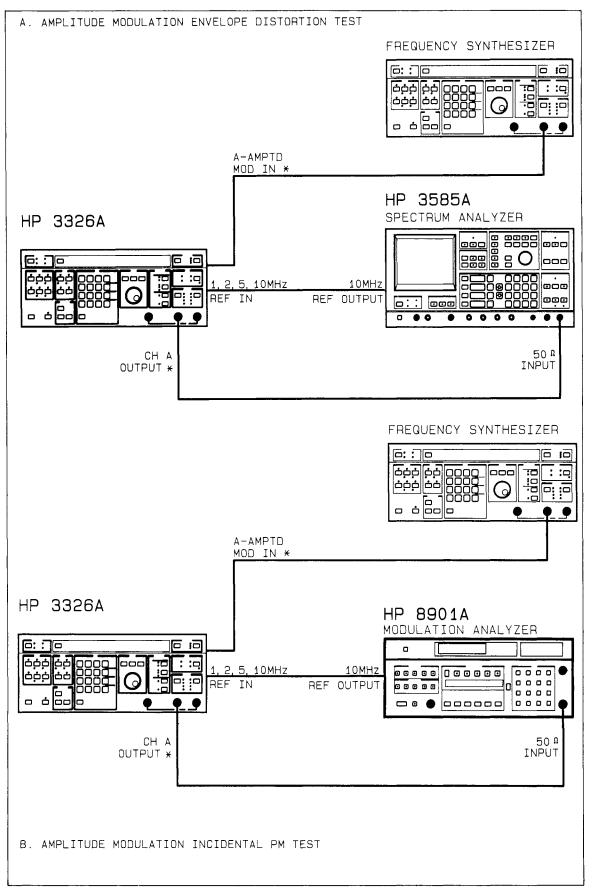


Figure 2-17. Amplitude Modulation Test

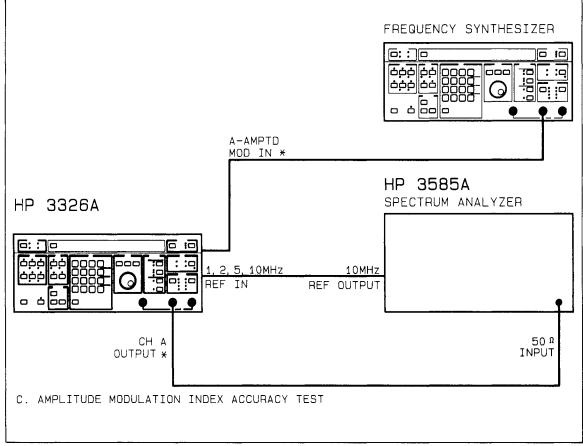


Figure 2-17. Amplitude Modulation Test (continued)

AMPLITUDE MODULATION ENVELOPE DISTORTION TEST:

- 1. Preset the HP 3326A and spectrum analyzer.
- 2. Connect the test equipment as follows (illustrated in Figure 2-17(A)):
 - Frequency synthesizer output to HP 3326A rear panel A-AMPTD MOD INput
 - HP 3326A CH A output to spectrum analyzer 50 Ω input
 - HP 3326A 1,2,5,10 MHz REF INput to spectrum analyzer 10 MHz reference output (phase lock HP 3326A to spectrum analyzer)
- 3. Set the HP 3326A as follows:

CHANNEL	CH A
FREQUENCY	10 MHz
AMPLITUDE	3 Vpp
EXTERNAL AM	ON

4. Set the frequency synthesizer to 1 kHz and adjust the level to produce 80% modulation of the HP 3326A output. 80% modulation is indicated by modulation sidebands being 8.0 dB down from the carrier as viewed on the 2 dB/div display of the spectrum analyzer.

- 5. Adjust the spectrum analyzer to display the fundamental frequency, the 10 kHz sideband frequency, and at least 4 harmonics of the sidebands. All harmonics should be at least 46 dB lower than the modulation sidebands.
- 6. Repeat steps 1 through 5 substituting channel B for channel A, and B-AMPTD MOD IN for A-AMPTD MOD IN.

AMPLITUDE MODULATION INCIDENTAL PM TEST:

- 1. Preset the HP 3326A.
- 2. Connect the test equipment as follows (illustrated in Figure 2-17(B)):
 - Frequency synthesizer output to HP 3326A rear panel A-AMPTD MOD INput
 - HP 3326A CH A output to modulation analyzer 50 Ω input
 - HP 3326A 1,2,5,10 MHz REF INput to modulation analyzer time base 10 MHz output (phase lock HP 3326A to modulation analyzer)
- 3. Set the HP 3326A as follows:

CHANNEL	CH A
FREQUENCY	10 MHz
AMPLITUDE	13.98 dBm
EXTERNAL AM	ON

4. Set the modulation analyzer to measure amplitude modulation. For the HP 8901A:

MEASUREMENT	AM
DETECTOR	PEAK +
AUTOMATIC OPERATION	Enabled

- 5. Set the frequency synthesizer for 1 kHz and adjust the amplitude for an 50% modulation depth on the HP 3326A as measured by the modulation analyzer.
- 6. Set the modulation analyzer for phase modulation. For the HP 8901A:

MEASUREMENT	φM
DETECTOR	PEAK +
FM DE-EMPHASIS	OFF
AUTOMATIC OPERATION	Enabled

- 7. Verify that the incidental PM is ≤ 0.087 radians (5°).
- 8. Change the modulation analyzer detector to PEAK and verify that the incidental PM is ≤ 0.087 radians (5°).
- 9. Repeat steps 1 through 8 substituting channel B for channel A, and B-AMPTD MOD IN for A-AMPTD MOD IN.

AMPLITUDE MODULATION DEPTH ACCURACY TEST:

- 1. Preset the HP 3326A.
- 2. Connect the test equipment as follows (illustrated in Figure 2-17(C)):
 - Frequency synthesizer output to HP 3326A rear panel A-AMPTD MOD INput
 - HP 3326A CH A output to modulation analyzer 50 Ω input
 - HP 3326A 1,2,5,10 MHz REF INput to modulation analyzer time base 10 MHz reference output (phase lock HP 3326A to modulation analyzer)
- 3. Set the HP 3326A as follows:

CHANNEL	СН А
FREQUENCY	10 MHz
AMPLITUDE	17.96 dBm
INTERNAL AM	ON
CHANNEL	СН В
FREQUENCY	1 kHz
% AM/PM DEVIATION	80%

4. Set the modulation analyzer for amplitude modulation. For the HP 8901A:

MEASUREMENT	AM
DETECTOR	PEAK +
AUTOMATIC OPERATION	Enabled

5. Verify that the modulation analyzer reads $80\% \pm 5\%$.

2-28 PHASE MODULATION

EQUIPMENT REQUIRED:

FREQUENCY SYNTHESIZER	HP 3325A
MODULATION ANALYZER	HP 8901A
SPECTRUM ANALYZER	HP 3585A

SPECIFICATIONS:

Linearity: $\pm 0.5\%$, best fit straight line

Distortion (10 MHz Carrier Frequency, 1 kHz Modulation Rate): ≤ -50 dB for less than $\pm 45^{\circ}$ peak deviation, ≤ -37 dB at $\pm 90^{\circ}$ peak deviation at 200Hz rate.

Internal Modulation Phase Deviation Accuracy: 5% of setting, 200 Hz rate, > deviation

Incidental AM: < 0.5% at 360°

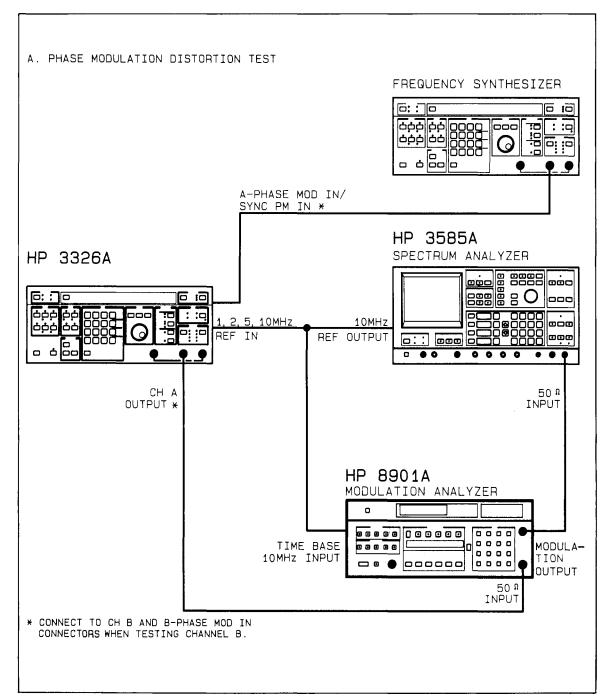
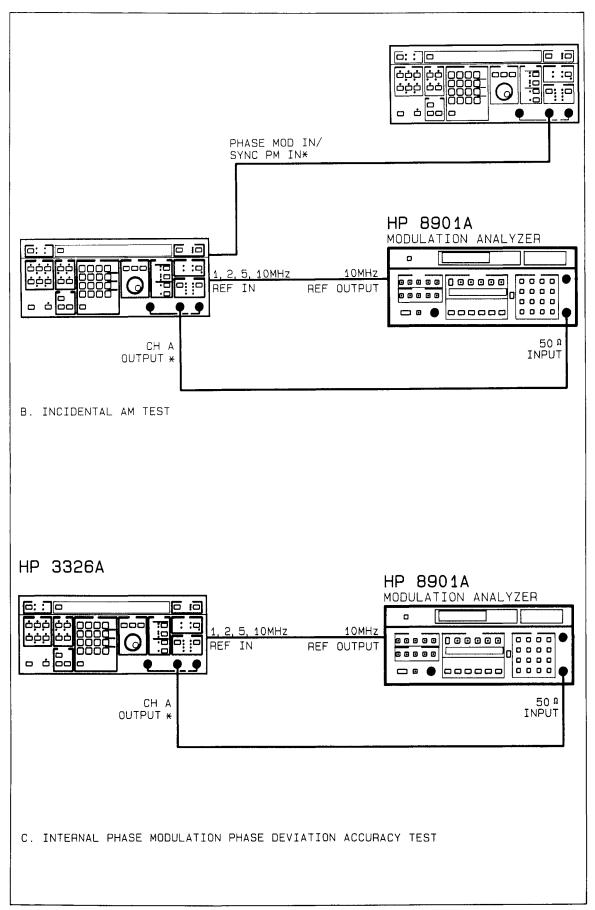



Figure 2-18. Phase Modulation Test

PHASE MODULATION DISTORTION TEST:

- 1. Preset the HP 3326A and spectrum analyzer.
- 2. Connect the test equipment as follows (illustrated in Figure 2-18(A)):
 - Frequency synthesizer output to HP 3326A rear panel A-PHASE MOD IN/SYNC PM INput
 - HP 3326A CH A output to modulation analyzer 50 Ω input
 - Modulation analyzer demodulated output to spectrum analyzer 50 Ω input
 - HP 3326A 1,2,5,10 MHz REF INput to spectrum analyzer 10 MHz reference output (phase lock HP 3326A to spectrum analyzer)
 - Frequency synthesizer 10 MHz reference input to spectrum analyzer 10 MHz reference output (phase lock frequency synthesizer to spectrum analyzer)
- 3. Set the HP 3326A as follows:

CHANNEL	CH A
FREQUENCY	10 MHz
AMPLITUDE	23.98 dBm
EXTERNAL PM	ON

- 4. Set the frequency synthesizer for an amplitude of 0.125 Vpp and frequency of 1 kHz output to modulate the HP 3326A. (The 0.125 Vpp should produce approximately 45° (0.78 radians) of modulation.)
- 5. Set the modulation analyzer for phase modulation. For the HP 8901A:

MEASUREMENT	φM
DETECTOR	PEAK +
AUTOMATIC OPERATION	Enabled

- 6. Measure the sidebands with respect to the 1 kHz modulating frequency with the spectrum analyzer. Verify that the sidebands are at least 50 dB below the 1 kHz carrier.
- 7. Set the frequency synthesizer for an amplitude of 0.25 Vpp and frequency of 1 kHz output to modulate the HP 3326A. (The 0.25 Vpp should produce approximately 90° (1.57 radians) of modulation.)
- 8. Measure the sidebands with respect to the 1 kHz modulating frequency with the spectrum analyzer. Verify that the sidebands are at least 37 dB below the 1 kHz carrier.
- 9. Repeat steps 1 through 8 substituting channel B for channel A and B-PHASE MOD IN for A-PHASE MOD IN/SYNC PM IN.

INCIDENTAL AM TEST:

1. Preset the HP 3326A.

- 2. Connect the test equipment as follows (illustrated in Figure 2-18(B)):
 - Frequency synthesizer output to HP 3326A rear panel A-PHASE MOD IN/SYNC PM INput
 - HP 3326A CH A output to modulation analyzer 50 Ω input
 - HP 3326A 1,2,5,10 MHz REF INput to modulation analyzer time base 10 MHz reference output (phase lock HP 3326A to modulation analyzer)
- 3. Set the HP 3326A follows:

CHANNEL	CH A
FREQUENCY	10 MHz
AMPLITUDE	23.98 dBm
EXTERNAL PM	ON

4. Set the modulation analyzer to measure phase modulation. For the HP 8901A:

MEASUREMENT	PM
DETECTOR	PEAK +
AUTOMATIC OPERATION	Enabled

- 5. Set the frequency synthesizer for a 1 kHz output. Adjust the frequency synthesizer level to obtain 6.28 radians (360°) modulation on the modulation analyzer.
- 6. Set the modulation analyzer for amplitude modulation. For the HP 8901A:

MEASUREMENT	AM
DETECTOR	PEAK +
AUTOMATIC OPERATION	Enabled

- 7. Verify that the incidental AM is $\leq 0.5\%$.
- 8. Repeat the steps 1 through 7 substituting channel B for channel A, and B-PHASE MOD IN for A-PHASE MOD IN.

2-29 SYNC A OUTPUT

EQUIPMENT REQUIRED:

OSCILLOSCOPE HP 1740A

SPECIFICATIONS:

Square wave with the same frequency as channel A.

Level: V_{_{high}} \geq 1.2 V; V_{_{low}} \leq 0.2 V into 50 Ω

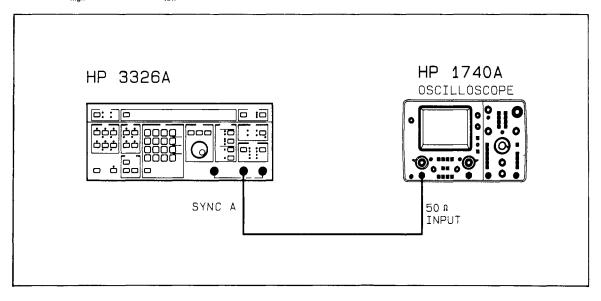


Figure 2-19. SYNC A Output Test

SYNC A OUTPUT TEST:

- 1. Preset the HP 3326A.
- 2. Connect the test equipment as follows (illustrated in Figure 2-19):
 - HP 3326A SYNC A output to oscilloscope vertical 50 Ω input

NOTE

If the oscilloscope does not have a 50 Ω input, a 50 Ω feed thru termination (HP 11048C) may be used.

- 3. Set the HP 3326A channel A frequency to 13 MHz.
- 4. Set the oscilloscope to measure the high and low levels of the sync square wave.
- 5. Record the measurement on the Performance Test Record and verify that the high level is greater than +1.2 V and the low level is less than +0.2 V.

2-30 X-DRIVE LINEARITY

EQUIPMENT REQUIRED:

HIGH SPEED DIGITAL VOLTMETER	HP 3437A
BNC-TO-TRIAX ADAPTER HP PART NO.	1250-0595

SPECIFICATIONS:

Linearity: $\pm 0.2\%$ between 10% and 90% of ramp

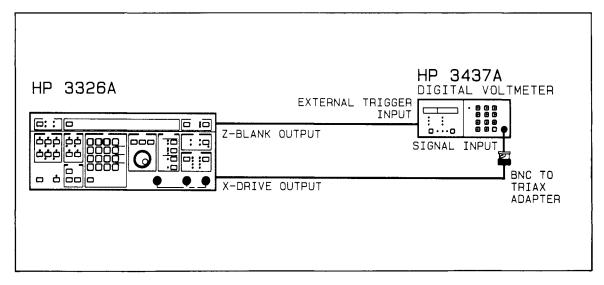


Figure 2-20. X-DRIVE Linearity Test

X-DRIVE LINEARITY TEST:

- 1. Preset the HP 3326A.
- 2. Connect the test equipment as follows (illustrated in Figure 2-20):
 - HP 3326A Z-BLANK output to voltmeter external trigger input
 - HP 3326A X-DRIVE output to voltmeter input
- 3. Set the voltmeter as follows:

RANGE	10 V
NUMBER OF READINGS	1
TRIGGER	External

NOTE

The HP 3437A voltmeter triggers on the negative going edge of the HP 3326A's Z BLANK signal. This occurs at the start of each sweep up.

4. Set the HP 3326A as follows:

TIME	0.01 s
SWEEP TYPE	CONT

5. Set the voltmeter delay to each of the following times for X_n. For each delay time, record the voltage reading (Y_n) in column C of the X-Drive Linearity Work Sheet at the end of this procedure, and on the Performance Test Record in the "Measured Results" column. In both places, record this voltage to 3 decimal places.

- 6. Total all the entries in column C on the X-Drive Linearity Work Sheet.
- 7. Multiply the corresponding entries in X-Drive Linearity Work Sheet column A and column C together. Enter the results to 5 decimal places in column D.
- 8. Total all the entries in column D.

9. Using the total values for C and D on the work sheet, compute the slope m and the Y-intercept b of the straight line from the following equations:

m = 16,667D - 83.333Cb = 0.527778C - 83.333D

- 10. Using the equation Y = mX + b, and the values determined for m and b, calculate a value Y for each X recorded in column A. Enter the results in the Specification column on the Performance Test Record.
- 11. Multiply each Calculated Value on the Performance Test Record by 0.002 and enter in the Tolerance column.
- 12. For the HP 3326A to pass this performance test, the Measured Results must equal the corresponding Calculated Value plus or minus the Tolerance.

Α	В	C	D
$X_1 = 0.001$	$(X_1)^2 = 0.000001$	Y ₁ =	$0.001Y_1 = $
$X_{2} = 0.002$	$(X_2)^2 = 0.000004$	$Y_{2} = $	$0.002Y_2 = $
$X_{3} = 0.003$	$(X_3)^2 = 0.000009$	$Y_{3} = $	$0.003Y_{3} = $
$X_4 = 0.004$	$(X_4)^2 = 0.000012$	$Y_{4} = $	$0.004Y_4 = $
$X_{5} = 0.005$	$(X_5)^2 = 0.000025$	$Y_{5} = $	$0.005Y_5 = $
$X_{6} = 0.006$	$(X_6)^2 = 0.000036$	$Y_{6} = $	$0.006Y_6 = $
$X_7 = 0.007$	$(X_7)^2 = 0.000049$	Y ₇ =	$0.007Y_7 = $
$X_8 = 0.008$	$(X_8)^2 = 0.000064$	$Y_8 = $	$0.008Y_8 = $
$X_{9} = 0.009$	$(X_9)^2 = 0.000081$	$Y_{9} = $	$0.009Y_9 = $
$\Sigma A = 0.045 \Sigma$	$\Sigma B = 0.000285 \Sigma C$	$\Sigma = _ \Sigma D =$	

X-Drive Linearity Work Sheet

PERFORMANCE TEST RECORD 3326A TWO-CHANNEL SYNTHESIZER

Serial Number:	_
Test Performed by:	_
Date:	

2-11 FREQUENCY ACCURACY

FREQUENCY	COUNTER READING	TEST LIMITS	
10 MHz		±50 Hz	_

2-12 HARMONIC DISTORTION

Standard Output

@ 13.98 dBm

FREQUENCY	HARMONIC LEVEL		TEST LIMITS
	Channel A	Channel B	
160 Hz			< -80 dBc
910 Hz _			< -80 dBc
47 kHz			< -80 dBc
91 kHz			< -80 dBc
300 kHz			< -65 dBc
910 kHz			< -65 dBc
13 MHz			< -50 dBc

@ 23.98 dBm

FREQUENCY	HARMONIC LEVEL		TEST LIMITS
	Channel A	Channel B	
160 Hz			< -80 dBc
910 kHz			< -80 dBc
47 kHz			< -80 dBc
91 kHz	<u></u>		< -70 dBc
300 kHz			< -55 dBc
910 kHz	<u> </u>		< -55 dBc
13 MHz			< - 30 dBc

High Voltage Output

@ 12.64 Vpp

FREQUENCY	HARMONIC LEVEL		TEST LIMITS
. <u></u>	Channel A	Channel B	
160 Hz			< -80 dBc
910 Hz		<u> </u>	< -80 dBc
6.2 kHz			< -80 dBc
47 kHz	· <u> </u>	<u> </u>	< -80 dBc
91 kHz			< -75 dBc
300 kHz	· · · · · · · · · · · · · · · · · · ·		< — 55 dBc
910 kHz			< -55 dBc

@ 40 Vpp

FREQUENCY	HARMONIC LEVEL		TEST LIMITS
<u></u>	Channel A	Channel B	· · · · · · · · · · · · · · · · · · ·
160 Hz			< -75 dBc
910 Hz _			< -75 dBc
6.2 kHz			< -75 dBc
47 kHz			< -75 dBc
91 kHz _			< -65 dBc
300 kHz _		·	< -40 dBc
910 kHz _		<u> </u>	< -40 dBc

2-13 SPURIOUS SIGNALS

FREQUENCY	LARGEST SPURIOUS LEVEL		TEST LIMITS
	Channel A	Channel B	······································
1 MHz			< -80 dBc
5.1 MHz			< -70 dBc
7 MHz			< -70 dBc
9 MHz	<u> </u>		< -70 dBc
11 MHz			< -70 dBc
13 MHz			< -70 dBc

2-14 COMBINER IM DISTORTION

Standard Output

@ 17.96 dBm

CHANNEL A	CHANNEL B	Largest Third-Order	TEST LIMITS
Frequency	Frequency	Product Level	
20 Hz	120 Hz		< -70 dBc
900 kHz	1 MHz		< -70 dBc
999.9 kHz	1 MHz		< -70 dBc
13 MHz	13.1 MHz		< -45 dBc
13 MHz	13.0001 MHz		< -45 dBc

@ 17.95 dBm

CHANNEL A Frequency	CHANNEL B Frequency	Largest Third-Order Product Level	TEST LIMITS
20 Hz	120 Hz		< -80 dBc
900 kHz	1 MHz	<u>.,</u>	< -80 dBc
999.9 kHz	1 MHz		< -80 dBc
13 MHz	13.1 MHz		< -65 dBc
13 MHz	13.0001 MHz		< -65 dBc

High Voltage Output

@ 20 Vpp

CHANNEL A Frequency	CHANNEL B Frequency	Largest Third-Order Product Level	TEST LIMITS
99.9 kHz	100.1 kHz	<u> </u>	< -55 dBc
900 kHz	1 MHz		< -40 dBc
999.9 kHz	1 MHz		< -40 dBc

@ 6.31 Vpp

CHANNEL A Frequency	CHANNEL B Frequency	Largest Third-Order Product Level	TEST LIMITS
99.9 kHz	100.1 kHz		< -55 dBc
900 kHz	1 MHz		< -40 dBc
999.9 kHz	1 MHz		< -40 dBc

2-15 RETURN LOSS

INDEPENDENT OUTPUTS

FREQUENCY	RETURN LOSS		TEST LIMITS
	Channel A	Channel B	
1 MHz — 13 MHz			> 20 dB
100 kHz			> 23 dB
COMBINED OUTPUTS			

FREQUENCY	RETURN LOSS	TEST LIMITS
1 MHz – 13 MHz		> 20 dB
100 kHz		> 23 dB

2-16 CHANNEL ISOLATION

2 CHANNEL MODE

CHANNEL A Frequency	CHANNEL B Frequency	Difference Between Measured Levels	TEST LIMITS
20 Hz	100 Hz		> 80 dB
20 Hz	1000 Hz		> 80 dB
20 Hz	10 kHz	· · · · · · · · · · · · · · · · · · ·	> 80 dB
20 Hz	95 kHz		> 80 dB
20 Hz	950 kHz		> 80 dB
20 Hz	9.5 MHz		> 80 dB
20 Hz	12.9 MHz		> 80 dB
1.05 MHz	100 Hz	<u> </u>	> 80 dB
1.05 MHz	1000 Hz	<u> </u>	> 80 dB
1.05 MHz	10 kHz		> 80 dB
1.05 MHz	95 kHz		> 80 dB
1.05 MHz	950 kHz		> 80 dB
1.05 MHz	9.5 MHz	·	> 80 dB
1.05 MHz	12.9 MHz		> 80 dB
13 MHz	100 Hz		> 80 dB
13 MHz	1000 Hz		> 80 dB
13 MHz	10 kHz	<u></u>	> 80 dB
13 MHz	95 kHz		> 80 dB
13 MHz	950 kHz		> 80 dB
13 MHz	9.5 MHz	·····	> 80 dB
13 MHz	12.9 MHz		> 80 dB

2 TONE MODE

CHANNEL A Frequency	CHANNEL B Frequency	Difference Between Measured Levels	TEST LIMITS
20 Hz	95.02 kHz		> 80 dB
20 Hz	130 Hz		> 80 dB
1.05 MHz	1.145 MHz		> 80 dB
1.05 MHz	1.0501 kHz		> 80 dB
12.9 MHz	12.995 MHz		> 80 dB
12.9 MHz	12.9001 MHz		> 80 dB

2 CHANNEL MODE

CHANNEL A Frequency	CHANNEL B Frequency	Difference Between Measured Levels	TEST LIMITS
100 Hz	20 Hz		> 80 dB
1000 Hz	20 Hz		> 80 dB
10 kHz	20 Hz		> 80 dB
95 kHz	20 Hz		> 80 dB
950 kHz	20 Hz		> 80 dB
9.5 MHz	20 Hz		> 80 dB
12.9 MHz	20 Hz	. <u></u>	> 80 dB
100 Hz	1.05 Mhz		> 80 dB
1000 Hz	1.05 MHz		> 80 dB
10 kHz	1.05 MHz	<u> </u>	> 80 dB
95 kHz	1.05 MHz	- <u></u>	> 80 dB
950 kHz	1.05 MHz		> 80 dB
9.5 MHz	1.05 MHz		> 80 dB
12.9 MHz	1.05 MHz		> 80 dB
100 Hz	13 MHz		> 80 dB
1000 Hz	13 MHz		> 80 dB
10 kHz	13 MHz		> 80 dB
95 kHz	13 MHz		> 80 dB
950 kHz	13 MHz	<u></u>	> 80 dB
9.5 MHz	13 MHz		> 80 dB
12.9 MHz	13 MHz		> 80 dB

2 TONE MODE

CHANNEL B Frequency	Difference Between Measured Levels	TEST LIMITS
20 Hz		> 80 dB
20 Hz		> 80 dB
1.05 MHz		> 80 dB
1.05 MHz		> 80 dB
12.9 MHz		> 80 dB
12.9 MHz	<u> </u>	> 80 dB
	FREQUENCY 20 Hz 20 Hz 1.05 MHz 1.05 MHz 12.9 MHz	FREQUENCY Measured Levels 20 Hz

2-17 SINE WAVE AMPLITUDE ACCURACY

SINE WAVE ACCURACY (<100 kHz)

@ 23.98 dBm

TEST	AC VOLTMETER		TEST LIMITS
FREQUENCY	Channel A	Channel B	
100 Hz			$3.536 \pm 0.041 \text{ Vrms}$
1 kHz			$3.536~\pm~0.041$ Vrms
100 kHz			$3.536 \pm 0.041 \text{ Vrms}$

@ 3.98 dBm

TEST	AC VOLTMETER		TEST LIMITS
FREQUENCY	Channel A	Channel B	
100 Hz			$353.6 \pm 8.1 \text{ mVrms}$
1 kHz			353.6 ± 8.1 mVrms
100 kHz			$353.6 \pm 8.1 \text{ mVrms}$

@ −36.02 dBm

TEST	AC VOLTMETER		TEST LIMITS
FREQUENCY	Channel A	Channel B	
100 Hz			3.536 ± 0.081 mVrms
1 kHz			$3.536 \pm 0.081 \text{ mVrms}$
100 kHz		<u> </u>	$3.536 \pm 0.081 \text{ mVrms}$

SINE WAVE AMPLITUDE FLATNESS (> 100 kHz)

@ 3.98 dBm

3.98	dBm	sine wave 1 kHz	reference reading	(A)
3.88	dBm	reading	(B) 0.1 dB Difference ((A – B)
3.68	dBm	reading	(C) 0.3 dB Difference	(A – C)
3.38	dBm	reading	(D) 0.6 dB Difference	(A – D)

TEST	DC VOLT	IMETER	TEST LIMITS
FREQUENCY	Channel A	Channel B	
100 kHz	·		$A \pm (A - B)$
1 MHz			$A \pm (A - C)$
3 MHz			A ± (A – D)
5 MHz	·		$A \pm (A - D)$
7 MHz			$A \pm (A - D)$
11 MHz	· · _ · · · · · · · ·		$A \pm (A - D)$
13 MHz			$A \pm (A - D)$
@ 23.98 dBm			
23.98 dBm sine wa	ve 1 kHz reference re	eading (E)
23.88 dBm reading	(F) 0.1	dB Difference (E - F)	
23.68 dBm reading	g (G) 0	.3 dB Difference (E -	- G)
23.38 dBm reading	(H) 0.6	dB Difference (E – H	i)
TEST	DC VOL		TEST LIMITS
FREQUENCY	Channel A	Channel B	
100 kHz			E ± (E – F)
1 MHz			E ± (E – G)
3 MHz			E ± (E - H)
5 MHz			E ± (E – H)
7 MHz			E ± (E - H)
9 MHz			$E \pm (E - H)$

2-18 SQUARE WAVE/PULSE AMPLITUDE ACCURACY

SQUARE WAVE/PULSE AMPLITUDE ACCURACY <100 kHz)

@ 10 Vpp

11 MHz

13 MHz

TEST	DC VOL	TMETER	TEST LIMITS
FREQUENCY	Channel A	Channel B	
99.9 Hz			$3.05 \pm 0.03 \text{ Vpp}$
1 kHz			$3.05~\pm~0.03~\mathrm{Vpp}$
100 kHz			$3.05 \pm 0.03 \text{ Vpp}$

_____ E ± (E - H)

_____ E ± (E - H)

@ 3 Vpp

TEST	DC VOL	TMETER	TEST LIMITS
FREQUENCY	Channel A	Channel B	
99.9 Hz			3.000 ± 0.030 Vpp
1 kHz			$3.000 \pm 0.030 \text{ Vpp}$
100 kHz			3.000 ± 0.030 Vpp

@ 1 Vpp

TEST	DC VOL	IMETER	TEST LIMITS
FREQUENCY	Channel A	Channel B	
99.9 Hz			1.000 ±0.010 Vpp
1 kHz			1.000 ± 0.010 Vpp
100 kHz			$1.000 \pm 0.010 \text{ Vpp}$

SQUARE WAVE FLATNESS

CHECK ONE:

	CHANNEL A	CHANNEL B
PASS		
FAIL	. <u> </u>	-1 , -1, -1, -1, -1, -1, -1, -1, -1, -1, -1

2-19 HIGH VOLTAGE AMPLITUDE ACCURACY

HIGH VOLTAGE AMPLITUDE ACCURACY (< 100 kHz)

Sine Wave

TEST	VOLTMETER		TEST LIMITS
FREQUENCY	Channel A	Channel B	
2 kHz _			$14.14 \pm 0.28 Vrms$
Square Wave			
TEST	VOLTN		TEST LIMITS
FREQUENCY	Channel A	Channel B	
2 kHz		·	2.11 \pm 0.25 Vpp

HIGH VOLTAGE AMPLITUDE FLATNESS (> 100 kHz)

CHECK OF	k one:
----------	--------

	Channel A	Channel B
PASS		
FAIL		

2-20 COMBINER AMPLITUDE ACCURACY

@ 17.9 dBm

TEST	AMPLITUDE E	DIFFERENCE	TEST LIMITS
FREQUENCY	Channel A	Channel B	
100 Hz		·	$\pm 0.2 \text{ dB}$
100 112			±0.2 ub
130 kHz			$\pm 0.3 \text{ dB}$
130 kHz			$\pm 0.3 \text{ dB}$

@ 7.9 dBm

TEST	AMPLITUDE I	DIFFERENCE	TEST LIMITS
FREQUENCY	Channel A	Channel B	
100 Hz			$\pm 0.2 \text{ dB}$
130 kHz .		<u> </u>	$\pm 0.3 \text{ dB}$
130 kHz			$\pm 0.3 \text{ dB}$

@ -2.1 dBm

TEST	AMPLITUDE	DIFFERENCE	TEST LIMITS
Frequency	Channel A	Channel B	
100 Hz			$\pm 0.2 \text{ dB}$
130 kHz			$\pm 0.3 \text{ dB}$
130 kHz	<u> </u>		$\pm 0.3 \text{ dB}$

@ -12.1 dBm

TEST	AMPLITUDE I	TEST LIMITS	
FREQUENCY	Channel A	Channel B	
100 Hz			$\pm 0.2 \text{ dB}$
130 kHz			$\pm 0.3 \text{ dB}$
130 kHz			$\pm 0.3 \text{ dB}$

@ -22.1 dB

TEST	AMPLITUDE [TEST LIMITS	
FREQUENCY	Channel A	Channel B	
100 Hz			$\pm 0.2 \text{ dB}$
130 kHz			$\pm 0.3 \text{ dB}$
130 kHz			$\pm 0.3 \text{ dB}$

@ -32.1 dBm

TEST	AMPLITUDE I	TEST LIMITS	
FREQUENCY	Channel A	Channel B	
100 11-			
100 Hz			$\pm 0.2 \text{ dB}$
130 kHz		- <u></u>	$\pm 0.3 \text{ dB}$
130 kHz		<u></u>	$\pm 0.3 \text{ dB}$

@ -42.1 dBm

TEST	AMPLITUDE I	TEST LIMITS	
FREQUENCY	Channel A	Channel B	
100 Hz		<u> </u>	$\pm 0.2 \text{ dB}$
130 kHz			$\pm 0.3 \text{ dB}$
130 kHz			$\pm 0.3 \text{ dB}$

 \pm 52.1 dBm

TEST	AMPLITUDE I	TEST LIMITS	
FREQUENCY	Channel A	Channel B	
100 Hz			$\pm 0.2 \text{ dB}$
130 kHz			$\pm 0.3 \text{ dB}$
130 kHz		<u> </u>	$\pm 0.3 \text{ dB}$

2-21 INTEGRATED PHASE NOISE

PHASE	NOISE	TEST LIMITS
Channel A Channel B		
		< ± 63 dB

2-22 SQUARE WAVE OVERSHOOT AND RISE/FALL TIME

STANDARD OUTPUT

	CHANNEL A	CHANNEL B	TEST LIMITS
Rise Time		<u> </u>	< 15 ns
Fall Time			< 15 ns
Overshoot			< $\pm 5\%$ of Vpp

HIGH VOLTAGE OUTPUT

	CHANNEL A	CHANNEL B	TEST LIMITS
Rise Time			< 125 ns
Fall Time			< 125 ns
Overshoot			$<$ $\pm 10\%$ of Vpp

2-23 SQUARE WAVE SYMMETRY AND PULSE WIDTH ACCURACY

SQUARE WAVE SYMMETRY

@ 10 kHz

	CHANNEL A	CHANNEL B	TEST LIMITS
Negative Pulse Width Positive Pulse Width			Negative Pulse Width = Positive Pulse Width \pm 1 μ s
@ 10 MHz			
	CHANNEL A	CHANNEL B	TEST LIMITS
Negative Pulse Width Positive Pulse Width			Negative Pulse Width = Positive Pulse Width ± 7 ns
PULSE WIDTH ACCURACY			
@10 kHz	CHANNEL A	CHANNEL B	TEST LIMITS
Pulse Width			$1 \ \mu s \ \pm \ 1.02 \ \mu s$
@ 100 kHz	CHANNEL A	CHANNEL B	TEST LIMITS
Pulse Width			1 ns ± 21 ns

2-24 DC ONLY ACCURACY

STANDARD OUTPUT

DC VOLTAGE	DC VOLTMET	DC VOLTMETER READING	
	Channel A	Channel B	
5 V			$5.0 \pm 0.075 ~\rm V$
-5 V			$-5.0~\pm~0.075~\mathrm{V}$
0 V			$0.0~\pm~0.075~\mathrm{V}$

HIGH VOLTAGE OUTPUT

DC VOLTAGE	DC VOLTMET	DC VOLTMETER READING	
	Channel A	Channel B	
20 V			$20.0 \pm 0.34 \text{ V}$
-20 V			-20.0 ± 0.34 V
0 V			$0.0~\pm~0.14~\mathrm{V}$

2-25 DC OFFSET ACCURACY

SINE WAVE

Frequency	DC Offset	DC Voltmete Channel A	0	Test Limits
13 MHz 13 MHz 1 MHz	4.5 V -4.5 V 4.5 V			$\begin{array}{r} 4.5 \ \pm \ 0.23 \ \vee \\ -4.5 \ \pm \ 0.23 \ \vee \\ 4.5 \ \pm \ 0.09 \ \vee \end{array}$
1 MHz	-4.5 V	<u></u>	<u>. </u>	$-4.5 \pm 0.09 V$

SQUARE WAVE

Frequency	DC Offset	DC Voltmet Channel A	0	Test Limits
50 kHz	-4.5 V			-4.5 ± 0.23 V
50 kHz	+4.5 V			$4.5~\pm~0.23~V$
1 MHz	4.5 V			$4.5~\pm~0.27~V$
1 MHz	-4.5 V			-4.5 ± 0.27 V
13 MHz	4.5 V			-4.5 ± 0.27 V
13 MHz	+4.5 V			$4.5~\pm~0.27~V$

2-26 PHASE OFFSET ACCURACY

FREQUENCY	PHASE DIFFERENCE	TEST LIMITS
13 MHz		±2.0°
1 kHz		±0.2°
100 kHz		±0.2°
1 MHz		±0.3°

SQUARE WAVE PHASE OFFSET ACCURACY TEST

Counter Reference _____

PHASE	TIME INTERVAL	PHASE DIFFERENCE	TEST LIMITS
-10°		277.78 ± 5.56 ns	
-100°		2752.78 ± 30.56 ns	

2-27 AMPLITUDE MODULATION

AMPLITUDE MODULATION ENVELOPE DISTORTION

LARGEST HARMONIC TEST LIMITS Channel A Channel B

____ > 46 dB below sidebands

AMPLITUDE MODULATION INCIDENTAL PM

INCIDENTAL PM LEVEL TEST LIMITS Channel A Channel B

_____ ≤ 0.087 radians

AMPLITUDE MODULATION DEPTH ACCURACY

% AM	AM MEASUR	JREMENT TEST LIM	
	Channel A	Channel B	
80 %	·····		± 5%

2-28 PHASE MODULATION

PHASE MODULATION DISTORTION

Aproximate	Largest Sic	deband	Test Limits
Modulation	Channel A	Channel B	
DEVIATION	·····		<u></u>
45°			> 50 dB
90°			> 37 dB

INCIDENTAL AM

INCIDENTA	l am level	TEST LIMITS	
Channel A	Channel B		
		≤ 0.5%	

2-29 SYNC-A OUTPUT

	AMPLITUDE	TEST LIMITS
High Level		> +1.2 V
Low Level	<u>_</u>	< +0.2 V.

2-30 X-DRIVE LINEARITY

	MEASURED RESULTS	CALCULATED VALUE	TEST LIMITS ±0.2% of Calculated Value
$X_1 = 0.001$			
$X_2 = 0.002$			
$X_{3} = 0.003$	<u></u>		
$X_4 = 0.004$			·
$X_{5} = 0.005$			<u> </u>
$X_{6} = 0.006$			<u></u>
$X_7 = 0.007$			<u> </u>
$X_{_8} = 0.008$	<u> </u>		
$X_{9} = 0.009$		<u> </u>	

SECTION III ADJUSTMENTS

SECTION III ADJUSTMENTS

Sub-Section	Title P	Page
3-1	Introduction	. 3-1
3-2	Safety Considerations	. 3-2
3-3	Factory Selected Components	. 3-3
3-4	Repairs for Failed Adjustments	. 3-3
3-5	Post-Repair Adjustments	. 3-3
3-6	Adjustment #1, +15 V	. 3-6
3-7	Adjustment #2, Oven Freq	. 3-7
3-8	Adjustment #3, Freq Center	. 3-8
3-9	Adjustment #4, VCO Freq	3-10
3-10	Adjustment #5, 100 kHz	3-11
3-11	Adjustment #6, APIs	3-13
3-12	Adjustment #7, V Ref	3-15
3-13	Adjustment #8, Peak Detect Gain	3-16
3-14	Adjustment #9, A and B Offset	3-18
3-15	Adjustment #10, 2:1 Spur	3-19
3-16	Adjustment #11, 2nd Harmonic	
3-17	Adjustment #12, DC Offset	3-22
3-18	Adjustment #13, Flatness	3-23
3-19	Adjustment #14, Overshoot	3-25
3-20	Adjustment #15, HV Overshoot	
3-21	Adjustment #16, Bias	
3-22	Adjustment #17, Battery Check	

SECTION III ADJUSTMENTS

3-1 INTRODUCTION

This section describes adjustments required to set the HP 3326A Two-Channel Synthesizer to its peak operating condition. These procedures should NOT be performed as routine maintenance. It is only necessary to perform them if a performance test fails (Table 2-3) or if a board level repair has been made (Table 3-3).

Table 3-1 lists the adjustments and related information. Table 3-3 describes the adjustments that should be performed after repair of a board. Figure 3-1 shows the order in which the adjustments should be performed.

When an adjustment cannot be completed, see Table 3-2 for the list of boards that, if defective, could cause the adjustment to fail.

Adjustment		Re	Reference Designator		
Number	Name	Ch A	Ch B	Common	Number
1	+15 V			A70R114	16
2	OVEN FREQ (FINE) OVEN FREQ (COARSE)			A80R101 A80U101	19
3	FREQ CENTER	_		A50R115	13
4	VCO FREQ	A31L1	A41L1		11a
5	100 kHz	A33R39	A43R39		11c
6	API #1 API #2 API #3 API #4	A33R84 A33R86 A33R132 A33R90	A43R84 A43R86 A43R132 A43R90		11c
7	V REF			A36R217	12
8	PEAK DETECT GAIN — PEAK DETECT GAIN +			A36R201 A36R205	12
9	A OFFSET B OFFSET			A21R2 A21R22	7
10	2:1 SPUR	A5R316	A15R316		5
11	2nd HARMONIC	A5R424	A15R424		5
12	DC OFFSET	A5R400	A15R400		5
13	FLATNESS	A5C400	A15C400		5
14	OVERSHOOT	A3C103	A13C103		3
15	HV OVERSHOOT	A1C149	A11C149		1
16	BIAS	A3R130	A13R130		3
17	BATTERY CHECK			A61BT1	14a

Table 3-1. Adjustment List

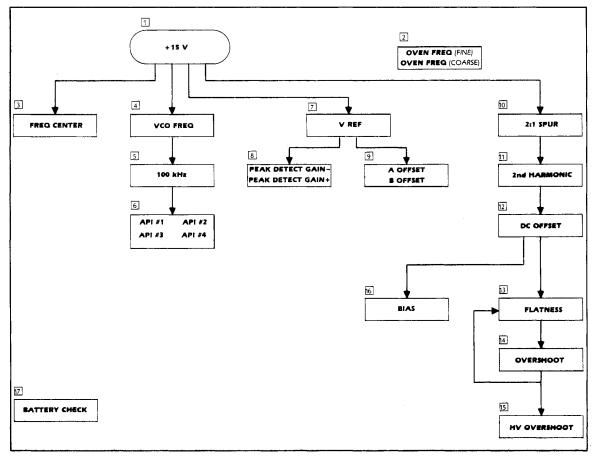


Figure 3-1. Adjustment Order

3-2 SAFETY CONSIDERATIONS

This manual contains information and warnings which must be followed to ensure safe operation and to retain the instrument in a safe condition (see safety summary page in the front of the manual). Service and adjustments should be performed only by qualified service personnel.

Adjustments described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury.

Maintenance described herein is performed with power supplied to the instrument and protective covers removed. Such maintenance should be performed by trained service personnel who are aware of the hazards involved (for example, fire and electrical shock). Primary power is supplied to the instrument whenever the line cord is attached, independent of the power switch position. Where maintenance can be performed without power applied, remove the power cord.

CAUTION

Do not insert or remove any circuit board in the HP 3326A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards.

3-3 FACTORY SELECTED COMPONENTS

There are no factory selected components in the HP 3326A.

3-4 REPAIRS FOR FAILED ADJUSTMENTS

When an adjustment cannot be completed, see Table 3-2 for the list of boards that, if defective, could cause the adjustment failure. The most likely board to cause the failure is listed first, the next most likely is listed second, and so on.

If Table 3-2 leads you to suspect a board that has a duplicate in the other channel, the best way to verify that the board is defective is to interchange the two identical boards. If the suspect board fails again while it is in the other channel, it is probably defective. This is the best method to solve subtle, non-catastrophic, failures.

3-5 POST-REPAIR ADJUSTMENTS

Table 3-3 lists the adjustments that need to be checked after a board is repaired. All adjustments on which a defective board could have an effect are listed with that board.

NOTE

Do not perform the full set of adjustments in the HP 3326A after a standard repair. Perform only the adjustments related to the repaired board (Table 3-3).

Failed Adjustment			Suspec	ct Boards		
Number Name		Reference Designator		Name	Schematic	
Rumber		Ch A	Ch B	Common		Number
1	+15 V			A70	Power Supply	16
2	Oven Freq			A80	Oven Reference	19
3	Freq Center			A50 A70	Reference Power Supply	13 16
4	VCO Freq	A31 A32 A33 A34	A41 A42 A43 A44		VCO VCO Control Phase Detector FracN Digital	11a 11b 11c 11d
5	100 kHz	A33 A32 A31 A34	A43 A42 A41 A44		Phase Detector VCO Control VCO FracN Digital	11c 11b 11a 11d
6	APIs †	A33 A34 A32 A31	A43 A44 A42 A41		Phase Detector FracN Digital VCO Control VCO	11c 11d 11b 11a
7	V Ref			A36	Calibrator	12
8	Peak Detect Gain			A36	Calibrator	12
9	A and B Offset			A21 A36 A70	Offset Calibrator Power Supply	7 12 16
10	2:1 Spur	A5 A6	A15 A16	A24	Mixer Modulator RF Switch	5 6 10
11	2nd Harmonic	A5 A6 A3 A4	A15 A16 A13 A14	A24	Mixer Modulator Output Amp Preamp RF Switch	5 6 3 4 10
12	DC Offset	A5 A4 A3	A15 A14 A13	A23 A21	Mixer Preamp Output Amp Square Offset	5 4 3 9 7
13	Flatness	A5 A4 A3 A2	A15 A14 A13 A12		Mixer Preamp Output Amp Attenuator	5 4 3 2a, 2b
14	Overshoot	A3	A13	A23	Output Amp Square	3
15	HV Overshoot	A1 A3	A11 A13	A23	HV Amp Output Amp Square	1 3 9
16	Bias	A3 A4 A5	A13 A14 A15		Output Amp Preamp Mixer	3 4 5
17	Battery Check			A61	Controller	14a

Table 3-2. Repairs for Failed Adjustments

t For frequencies below 50 kHz, the API spurs coincide with the third and fifth harmonics of the main signal. If you cannot perform the adjustment at low frequencies, suspect A5, A4, A3, A2, and A1 (A15, A14, A13, A13, and A11).

Table 3-3. Post-Repair Adjustments

Repaired Boards		Re	lated Adjustments
Reference Designator	Name	Number	Name
A1, A11	HV Amp	15	HV Overshoot
A2, A12	Attenuator	13	Flatness
A3, A13	Output Amp	13	Flatness
		14	Overshoot
		16	Bias
A4, A14	Preamp	11	2nd Harmonic
		12	DC Offset
		13	Flatness
A5, A15	Mixer	10	2:1 Spur
		11	2nd Harmonic
		12	DC Offset Flatness
		14	Overshoot
		16	Bias
A6, A16	Modulator	10	2:1 Spur
_		11	2nd Harmonic
A21	Offset	9	A and B Offset
A22	Level/AM	_	_
A23	Square	12	DC Offset
		14	Overshoot
A24	RF Switch	10	2:1 Spur
		11	2nd Harmonic
A31, A41	VCO	4	VCO Freq
		5	100 kHz APIs
122 142			
A32, A42	VCO Control	5	100 kHz APIs
A33, A43	Phase Detector	5	100 kHz
		6	APIs
A34, A44	FracN Digital	5	100 kHz
		6	APIs
A35, A45	VCO ÷ 2		
P/O A36	FracN Decoder		-
P/O A36	Calibrator	7	V Ref
		8	Peak Detect Gain
		9	A and B Offset
A50	Reference	3	Freq Center
A61	Controller	17	Battery Check
A62	Keyboard		
A63	HP-IB Support		
A70	Power Supply	1	+15 V
		3	Freq Center
A72	Front ESD		
A75	Rear ESD		
A80	Oven Reference	2	Oven Freq
A99	Motherboard		_

3-6 ADJUSTMENT #1, +15 V

DESCRIPTION: This procedure adjusts the +15V regulated supply and verifies the accuracy of the -15V and +5V supplies, which depend on the +15V supply for their references.

REFERENCE DESIGNATOR: A70R114 SCHEMATIC: 16

EQUIPMENT:

Digital voltmeter HP 3455A

PROCEDURE:

- 1. Disconnect main power cord from the HP 3326A rear panel and remove the top cover. Reconnect main power cord.
- 2. Preset the HP 3326A.
- 3. Connect the test equipment as follows:
 - Positive voltmeter terminal to TP105 (+15VDC) on power supply (A70)
 - Negative voltmeter terminal to GND (card nests)

NOTE

The +15 V adjustment must be performed while A70 is plugged into motherboard, in a fully loaded instrument.

- 4. Configure the voltmeter to measure Vdc.
- 5. Adjust R114 for a voltmeter reading of \pm 0.002 V.

NOTE

The -15 V and +5 V supplies derive their reference from the +15 V supply. If the +15 V supply is not within specification, the other supplies cannot be measured accurately.

- 6. After the +15 V supply is adjusted properly, verify that the -15 V and +5 V supplies are working by checking TP205 and TP305, respectively. They should be -15.000 \pm 0.020 V and +5.100 \pm 0.060 V. If they are not the correct voltages, go to the power supply board level repair (sub-section 6-35).
- 7. This completes the adjustment. Disconnect main power cord from the HP 3326A rear panel and replace the top cover.

Refer to Table 3-2 if the adjustment cannot be completed.

3-6

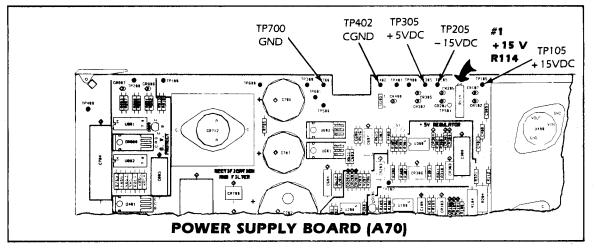


Figure 3-2. Adjustment #1 Location

3-7 ADJUSTMENT #2, OVEN FREQ

DESCRIPTION: This procedure is for instruments with the high stability frequency reference (Option 001). It adjusts the absolute frequency of the 10 MHz oven.

REFERENCE DESIGNATOR: Oven Freq (Coarse) A80U101 Oven Freq (Fine) A80R101

SCHEMATIC: 19

EQUIPMENT:

Oscilloscope HP 1740A USA National Bureau of Standards frequency standard Radio Station WWV Non-conductive adjustment tool

PROCEDURE:

1. Disconnect main power cord from the HP 3326A rear panel and remove the top and side covers. Reconnect main power cord and turn the instrument on.

NOTE

Instrument must be connected to ac power (either in STBY or ON) for at least 30 minutes before attempting this adjustment.

- 2. Preset the HP 3326A.
- 3. Connect the test equipment as follows:
 - HP 3326A rear panel 10MHz OVEN OUT, OPTION 001 output to 1,2,5,10MHz REF IN input
 - Frequency standard to oscilloscope external trigger connector (terminate frequency standard as required)
 - HP 3326A CH A output to oscilloscope 50 Ω input

4. Set the HP 3326A as follows:

Channel	СН А
Frequency	10 MHz
Amplitude	10 Vpp

- 5. Adjust the frequency of the oven reference using the coarse and fine adjustments.
 - Remove the screw from the coarse frequency adjustment in the end of the temperature controlled oven (U101) on the oven reference board (A80). This is accessible from the side of the instrument.
 - Using a non-conductive tool, adjust U101 for a stable CH A display as seen on the oscilloscope (as near stationary as possible).
 - Replace the screw in U101.
 - Adjust the fine frequency adjustment (R101) from the top of the instrument for a stable CH A display as seen on the oscilloscope (as near stationary as possible).
- 6. This completes the adjustment. Disconnect main power cord from the HP 3326A rear panel and replace the covers.

#2 OVEN FREQ 0100 TPO **♦**11 U100 OVEN J101 FREQUENCY OVEN COURSE) FREQUENCY U181 U101 (FINE) R101 .1188 **OVEN REFERENCE BOARD (A80)**

Refer to Table 3-2 if the adjustment cannot be completed.

Figure 3-3. Adjustment #2 Location

3-8 ADJUSTMENT #3, FREQ CENTER

DESCRIPTION: This procedure adjusts the 20 MHz oscillator on the reference board (A50) to ensure the frequency accuracy of the HP 3326A. The adjustment is made with no external reference connected. The oscillator is normally phase locked to the 10 MHz reference oven (Option 001) or an external reference (1,2,5,10MHz REF IN).

REFERENCE DESIGNATOR: A50R115 SCHEMATIC: 13

EQUIPMENT:

Spectrum analyzer HP 3585A

PROCEDURE:

- 1. Disconnect main power cord from the HP 3326A rear panel and remove the top cover. Reconnect main power cord.
- 2. Preset the HP 3326A and spectrum analyzer.
- 3. Connect the test equipment as follows:
 - HP 3326A 10MHz OUT rear panel output to 50 Ω input of spectrum analyzer

NOTE

If the HP 3326A has Option 001 (high stability frequency reference) installed, disconnect the rear panel connection between 10MHz OVEN OUT, OPTION 001 and 1,2,5,10MHz REF IN.

4. Set the spectrum analyzer to measure the HP 3326A frequency, as follows:

Center frequency	10 MHz
Range	—15 dBm
Counter	On

- 5. Adjust FREQ CENTER (R115) on the reference board (A50) until the frequency of the square wave is 10 MHz \pm 20 Hz.
- 6. This completes the adjustment. Disconnect main power cord from the HP 3326A rear panel and replace the top cover.

Refer to Table 3-2 if the adjustment cannot be completed.

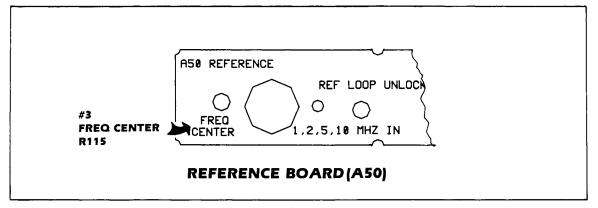


Figure 3-4. Adjustment #3 Location

3-9 ADJUSTMENT #4, VCO FREQ

DESCRIPTION: This procedure sets the voltage controlled oscillator (VCO) center frequency to ensure that the full tuning range of the VCO is available. This is required for the oscillator to remain in phase lock under all environmental conditions.

This adjustment must be done for both channels.

REFERENCE DESIGNATOR: A31L1, A41L1 SCHEMATIC: 11a

EQUIPMENT:

Digital voltmeter HP 3455A Service accessory kit 03326-84401 PC board extender 03326-66591 SMB (f) to SMB (f) cable (Qty 1) 03585-61601 Non-conductive adjustment tool

PROCEDURE:

- 1. Disconnect main power cord from the HP 3326A rear panel and remove the top cover. Reconnect main power cord.
- 2. While the HP 3326A is in STBY, place VCO board under test (A31 or A41) on an extender.
- 3. Preset the HP 3326A.
- 4. Connect the test equipment as follows:
 - Positive voltmeter terminal to VCO CONTROL VOLTAGE test point (TP5) on VCO control board (A32 or A42)
 - Negative voltmeter terminal to GND (card nests)
- 5. Set the HP 3326A as follows:

Channel	CH A or CH B
Frequency	0 MHz

- 6. Configure the voltmeter to measure Vdc.
- 7. Perform the adjustment with the board on the extender and check the adjustment with the board in the card nest. Repeat until the adjustment is accurate with the board in the card nest.
 - Adjust L1 on the VCO board (A31 or A41) with a non-conductive tool until the voltmeter reads 10 Vdc \pm 10 mVdc.
 - Check adjustment at HP 3326A frequency of 13 MHz. The voltmeter reading should be > -2 Vdc (typically -1.7 Vdc). If not, readjust L1.

- Turn HP 3326A off. Place board back into card nest. Replace one top cover screw to make a good ground contact. Turn instrument on. Sequentially press **RECALL**, **0** to restore HP 3326A test setup. Check the voltmeter readings again.
- If the readings are correct, go to step 8. If not, turn instrument off and put board on extender. Readjust L1 until the readings are correct while the board is in the card nest.
- 8. This completes the adjustment. Disconnect main power cord from the HP 3326A rear panel and replace the top cover.

Refer to Table 3-2 if the adjustment cannot be completed.

Figure 3-5. Adjustment #4 Location

3-10 ADJUSTMENT #5, 100 kHz

DESCRIPTION: This adjustment minimizes the 100 kHz synthesizer reference frequency sidebands on the synthesized signal. This is required for proper signal purity.

This adjustment must be done for both channels. REFERENCE DESIGNATOR: A33R39, A43R39 SCHEMATIC: 11C

EQUIPMENT: Spectrum analyzer HP 3585A Service accessory kit 03326-84401 PC board extender 03326-66591 SMB (f) to SMB (f) cable (Qty 2) 03585-61601 PROCEDURE:

- 1. Disconnect main power cord from the HP 3326A rear panel and remove the top cover. Reconnect main power cord.
- 2. While the HP 3326A is in STBY, place phase detector board under test (A33 or A43) on an extender.
- 3. Preset the HP 3326A and the spectrum analyzer.
- 4. Connect the test equipment as follows:
 - External reference output of spectrum analyzer to 1,2,5,10MHz REF IN rear panel input of HP 3326A
 - Output of HP 3326A channel under test (CH A or CH B) to 50 Ω input of spectrum analyzer
- 5. Set the HP 3326A as follows:

Channel	CH A or CH B
Frequency	1 MHz
Amplitude	13.98 dBm

6. Set the spectrum analyzer to measure the level of the 200 kHz sideband relative to the 1 MHz sine wave carrier, as follows:

Center Frequency	1 MHz
Frequency Span	1 MHz
Marker → Reference Level	On
Manual Sweep	On
Offset	On
Enter Offset	On
Center Frequency	1.2 MHz
Res. BW	3 Hz
Video BW	1 Hz

- 7. Perform the adjustment with the board on the extender and check the adjustment with the board in the card nest. Repeat until the adjustment is accurate with the board in the card nest.
 - Adjust R39 for minimum level residual 200 kHz spur (< -85 dBc).
 - Check 100 kHz spur at spectrum analyzer center frequency of 1.1 MHz. If the spur is NOT below 85 dBc, readjust R39.
 - Turn HP 3326A off. Place board back into card nest. Replace one top cover screw to make a good ground contact. Turn instrument on. Sequentially press **RECALL**, **0** to restore HP 3326A test setup. Check the spectrum analyzer reading again.
 - If the reading is correct, go to step 8. If not, turn instrument off and put board on extender. Readjust R39 until the reading is correct while the board is in the card nest.
- 8. This completes the adjustment. Disconnect main power cord from the HP 3326A rear panel and replace the top cover.

Refer to Table 3-2 if the adjustment cannot be completed.

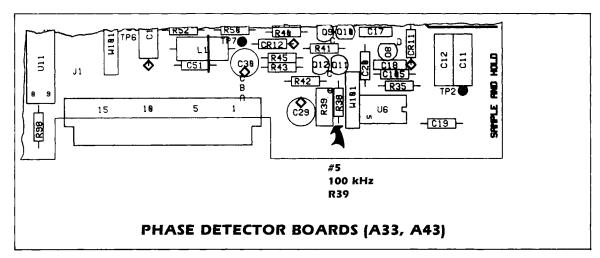


Figure 3-6. Adjustment #5 Location

3-11 ADJUSTMENT #6, APIs

DESCRIPTION: This adjustment minimizes the analog phase interpolation (API) related spurs in the fractional-N LO.

This adjustment must be done for both channels.

REFERENCE DESIGNATORS: API #1 A33R84, A43R84 API #2 A33R86, A43R86 API #3 A33R132, A43R132 API #4 A33R90, A43R90 SCHEMATIC: 11C EQUIPMENT: Spectrum analyzer HP 3585A

PROCEDURE:

- 1. Disconnect main power cord from the HP 3326A rear panel and remove the top cover. Reconnect main power cord.
- 2. Preset the HP 3326A and the spectrum analyzer.
- 3. Connect the test equipment as follows:
 - External reference output of spectrum analyzer to 1,2,5,10MHz REF IN rear panel input of HP 3326A
 - Output of HP 3326A channel under test (CH A or CH B) to 50 Ω input of spectrum analyzer
- 4. Set the HP 3326A as follows:

Channel	CH A or CH B
Frequency	50.5 kHz
Amplitude	3.15 Vpp

5. Set the spectrum analyzer to measure the level of the API #1 spurious signal relative to the 50.5 kHz sine wave carrier, as follows:

Center Frequency	50.5 kHz
Frequency Span	1 kHz
Range	20 dBm
Marker → Reference Level	On
Manual Sweep	On
Offset	On
Enter Offset	On
Video BW	1 Hz
Center Frequency Step Size	1 kHz, step up once

- 6. Adjust R84 on the phase detector board (A33 or A43) for minimum level API #1 spur (< -88 dBc).
- 7. Change HP 3326A frequency to 50.05 kHz. Change spectrum analyzer center frequency to 50.05 kHz. Step up the center frequency once.
- 8. Adjust R86 for minimum level API #2 spur (< -88 dBc).
- 9. Change HP 3326A frequency to 50.005 kHz. Change spectrum analyzer center frequency to 50.005 kHz. Step up the center frequency once.
- 10. Adjust R132 for minimum level API #3 spur (< -88 dBc).
- 11. Change HP 3326A frequency to 50.0005 kHz. Change spectrum analyzer center frequency to 50.0005 kHz. Step up the center frequency once.
- 12. Adjust R90 for minimum level API #4 spur (< -88 dBc).
- 13. Change HP 3326A frequency to 50.00005 kHz. Change spectrum analyzer center frequency to 50.00005 kHz. Step up the center frequency once.
- 14. Check the amplitude of API #5 spur. If it is NOT < -88 dBc, go to the fractional-N local oscillator board level repair (sub-section 30).
- 15. This completes the adjustment. Disconnect main power cord from the HP 3326A rear panel and replace the top cover.

Refer to Table 3-2 if the adjustment cannot be completed.

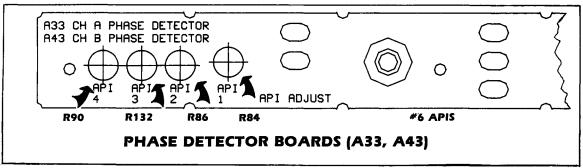


Figure 3-7. Adjustment #6 Location

3-12 ADJUSTMENT #7, V REF

DESCRIPTION: This procedure adjusts the 10.240 Vdc reference signal (V REF) used for square wave, level, and offset accuracy in the HP 3326A.

REFERENCE DESIGNATOR: A36R217 SCHEMATIC: 12

EQUIPMENT:

Digital voltmeter HP 3455A

PROCEDURE:

- 1. Disconnect main power cord from the HP 3326A rear panel and remove the top cover. Reconnect main power cord.
- 2. Preset the HP 3326A.
- 3. Connect the test equipment as follows:
 - Positive voltmeter terminal to TP206 (V REF TEST) on calibrator board (A36)
 - Negative voltmeter terminal to GND (card nests)
- 4. Configure the voltmeter to measure Vdc.
- 5. Adjust R217 (V REF ADJ) until voltmeter reads 10.240 \pm 0.010 Vdc.
- 6. This completes the adjustment. Disconnect main power cord from the HP 3326A rear panel and replace the top cover.

Refer to Table 3-2 if the adjustment cannot be completed.

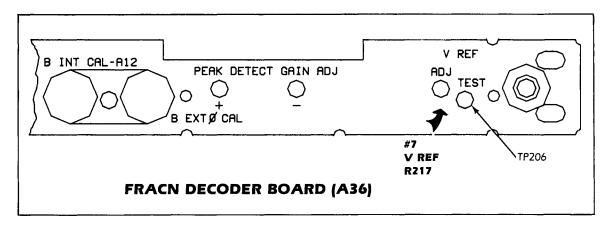


Figure 3-8. Adjustment #7 Location

3-13 ADJUSTMENT #8, PEAK DETECT GAIN

DESCRIPTION: This adjustment sets the gain of the amplitude/offset calibration path on the calibrator board (A36) by detecting negative and positive signal peaks with the peak detect voltmeter on A36.

REFERENCE DESIGNATOR: Peak Detect Gain – A36R201 Peak Detect Gain + A36R205 SCHEMATIC: 12

EQUIPMENT:

Digital voltmeter	HP 3455A
Sine wave signal source	HP 3325A
Service accessory kit	03326-84401
Phono plug to BNC (m) adapter	cable 03326-61618
1.5 Hz low pass filter	
Resistor 1M Ω	0698-8827
Capacitor 0.1 μ F	0160-4571
Calculator	

Calculator

PROCEDURE:

- 1. Disconnect main power cord from the HP 3326A rear panel and remove the top cover. Reconnect main power cord.
- 2. Preset the HP 3326A and the sine wave signal source.
- 3. Connect the test equipment as follows:
 - Disconnect A INT CAL-A2 cable (J2) from HP 3326A calibrator board (A36)
 - Connect sine wave source to J2 using phono plug to BNC adapter cable
- 4. To make a Vdc reading, connect the test equipment as follows (illustrated in Figure 3-9):
 - A INT CAL test point (TP200) on calibrator board (A36) to filter input
 - Voltmeter to filter output

NOTE

The filter is constructed in a small metal box with two BNC connectors. The components for the filter are listed under Equipment.

To make a Vrms reading, connect the test equipment as follows:

- Positive voltmeter terminal to A INT CAL test point (TP200)
- Negative voltmeter terminal to GND (card nests)
- 5. Set the 50 Ω sine wave source as follows:

Frequency	1 kHz
Amplitude	9.5 Vpp

- 6. Adjust the negative peak voltage.
 - Display negative peak voltage on the HP 3326A by using a hidden front panel command (see sub-section 6-6). Press:

- Take a Vdc reading and a Vrms reading (see step 4).
- Compute x:

$$x = Vdc - Vrms\sqrt{2}$$

- Adjust PEAK DETECT GAIN ADJ (R201) until the front panel displays x.
- 7. Adjust the positive peak voltage.
 - Display positive peak voltage on the HP 3326A by using a hidden front panel command. Press:

- Take a Vdc reading and a Vrms reading (see step 4),
- Compute y:

$$y = Vdc + Vrms\sqrt{2}$$

- Adjust PEAK DETECT GAIN ADJ + (R205) until the front panel displays y.
- 8. Repeat steps 6 and 7.
- 9. Reconnect the cable to A INT CAL-A2 (J2) to calibrator board (A36).
- 10. This completes the adjustment. Disconnect main power cord from the HP 3326A rear panel and replace the top cover.

Refer to Table 3-2 if the adjustment cannot be completed.

Figure 3-9. Equipment Setup for Measuring Vdc

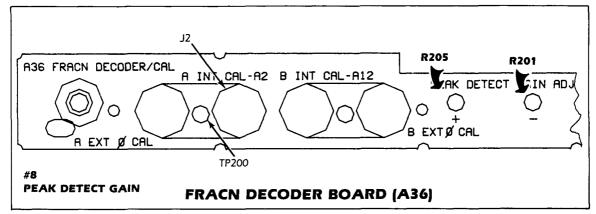
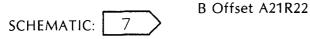



Figure 3-10. Adjustment #8 Location

3-14 ADJUSTMENT #9, A AND B OFFSET

DESCRIPTION: This procedure adjusts the residual offset to 0 V. This corrects for any error in the dc offset voltage on the offset board (A21).

REFERENCE DESIGNATOR: A Offset A21R2

EQUIPMENT:

Digital voltmeter HP 3455A

PROCEDURE:

- 1. Disconnect main power cord from the HP 3326A rear panel and remove the top cover. Reconnect main power cord.
- 2. Preset the HP 3326A.
- 3. Connect the test equipment as follows:
 - Positive voltmeter terminal to A OFFSET TEST test point (TP1) on HP 3326A offset board (A21)
 - Negative voltmeter terminal to GND (card nests)
- 4. Set the HP 3326A as follows:

Channei	CH A or CH B
Function	DC

Clear calibration constants (see sub-section 6-6):

- 5. Configure the voltmeter to measure Vdc.
- 6. Adjust A OFFSET ADJ (R2) to 0 Vdc \pm 3 mVdc.

- 7. Repeat steps 2 through 6 for channel B, using B OFFSET TEST (TP2) and ADJ (R22).
- 8. Restore the calibration constants by pressing MANUAL calibration or by cycling POWER.
- 9. This completes the adjustment. Disconnect main power cord from the HP 3326A rear panel and replace the top cover.

Refer to Table 3-2 if the adjustment cannot be completed.

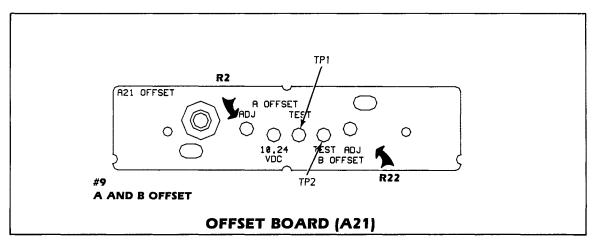


Figure 3-11. Adjustment #9 Location

3-15 ADJUSTMENT #10, 2:1 SPUR

DESCRIPTION: This adjustment minimizes the spurious signals that fall at two times the reference frequency minus the local oscillator (LO) frequency. The local oscillator frequency is the programmed frequency plus 20 MHz. These spurs fall in the dc to 13 MHz frequency band of the HP 3326A for output frequencies above 7 MHz. (The spurs would be in the 13 to 7 MHz range.)

This adjustment must be done for both channels.

REFERENCE DESIGNATOR: A5R316, A15R316 SCHEMATIC: 5

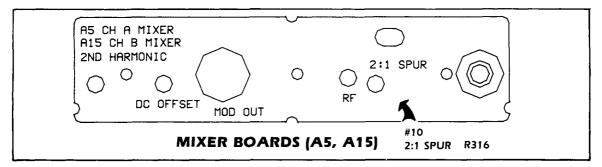
EQUIPMENT:

Spectrum analyzer HP 3585A

PROCEDURE:

- 1. Disconnect main power cord from the HP 3326A rear panel and remove the top cover. Reconnect main power cord.
- 2. Preset the HP 3326A and the spectrum analyzer.

- 3. Connect the test equipment as follows:
 - External reference output of spectrum analyzer to 1,2,5,10MHz REF IN rear panel input of HP 3326A
 - Output of HP 3326A channel under test (CH A or CH B) to 50 Ω input of spectrum analyzer
- 4. Set the HP 3326A as follows:


Channel	CH A or CH B
Frequency	7.1 MHz
Amplitude	3.15 Vpp

5. Set the spectrum analyzer to measure the level of the 12.9 MHz spurious signal relative to the 7.1 MHz sine wave carrier, as follows:

Center Frequency	7.1 MHz
Frequency Span	1 kHz
Range	20 dBm
Marker → Reference Level	On
Manual Sweep	On
Marker → Center Frequency	On
Offset	On
Enter Offset	On
Center Frequency	12.9 MHz
Video BW	1 Hz

- 6. Adjust 2:1 SPUR (R316) on the mixer board (A5 or A15) for minimum level (< -76 dBc).
- 7. Check the level of the spurs at two other frequencies.
 - Set the HP 3326A to 10.1 MHz. Set the center frequency of the spectrum analyzer to 9.9 MHz. Check that the 2:1 spur is below -76 dBc.
 - Set the HP 3326A to 12.9 MHz. Set the center frequency of the spectrum analyzer to 7.1 MHz. Check that the 2:1 spur is below -76 dBc.
 - If the spurs are not below -76 dBc, repeat step 6 and check again.
- 8. This completes the adjustment. Disconnect main power cord from the HP 3326A rear panel and replace the top cover.

Refer to Table 3-2 if the adjustment cannot be completed.

3-16 ADJUSTMENT #11, 2nd HARMONIC

DESCRIPTION: This procedure adjusts the second harmonic of the sine wave output to minimize distortion.

This adjustment must be done for both channels. It must be performed AFTER the 2:1 spur adjustment (#10).

REFERENCE DESIGNATOR: A5R424, A15R424

SCHEMATIC: 5

EQUIPMENT:

Spectrum analyzer HP 3585A

PROCEDURE:

- 1. Disconnect main power cord from the HP 3326A rear panel and remove the top cover. Reconnect main power cord.
- 2. Preset the HP 3326A and the spectrum analyzer.
- 3. Connect the test equipment as follows:
 - External reference output of spectrum analyzer to 1,2,5,10MHz REF IN rear panel input of HP 3326A
 - Output of HP 3326A channel under test (CH A or CH B) to 50 Ω input of spectrum analyzer
- 4. Set the HP 3326A as follows:
ChannelCH A or CH B
49 kHz
AmplitudeAmplitude3.15 V
- 5. Set the spectrum analyzer to measure the level of the 98 kHz second harmonic relative to the 49 kHz sine wave carrier, as follows:

Center Frequency	49 kHz
Frequency Span	1 kHz
Range	25 dBm
Marker → Reference Level	On
Manual Sweep	On
Marker → Center Frequency	On
Offset	On
Enter Offset	On
Center Frequency	98 kHz
Video BW	1 Hz

6. Adjust 2ND HARMONIC (R316) on mixer board (A5 or A15) for minimum level (< -88 dBc).

- 7. Check harmonic at low frequency to verify the adjustment.
 - Set the HP 3326A to 4.9 kHz.
 - Repeat step 5 using center frequencies of 4.9 kHz and 9.8 kHz.
 - If the harmonic is NOT below -88 dBc, readjust R316 for minimum level (< -88 dBc) and repeat steps 5 and 6.
- 8. This completes the adjustment. Disconnect main power cord from the HP 3326A rear panel and replace the top cover.

Refer to Table 3-2 if the adjustment cannot be completed.

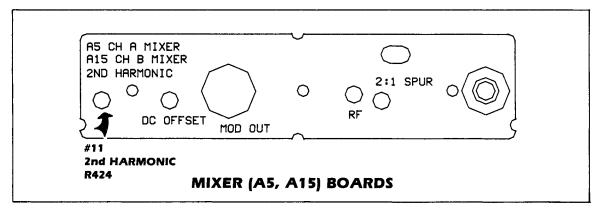


Figure 3-13. Adjustment #11 Location

3-17 ADJUSTMENT #12, DC OFFSET

DESCRIPTION: This procedure adjusts the square wave symmetry of the HP 3326A, thus minimizing the second harmonic of the square wave output. The second harmonic of the square wave is a function of the mixer board's dc offset.

This adjustment must be done for both channels.

REFERENCE DESIGNATOR: A5R400, A15R400 SCHEMATIC: 5

EQUIPMENT:

Spectrum analyzer HP 3585A

PROCEDURE:

- 1. Disconnect main power cord from the HP 3326A rear panel and remove the top cover. Reconnect main power cord.
- 2. Preset the HP 3326A and the spectrum analyzer.
- 3. Connect the test equipment as follows:
 - External reference output of spectrum analyzer to 1,2,5,10MHz REF IN rear panel input of HP 3326A

- Output of HP 3326A channel under test (CH A or CH B) to 50 Ω input of spectrum analyzer
- 4. Set the HP 3326A as follows:

Channel	CH A or CH B
Function	Square Wave
Frequency	49 kHz
Amplitude	3.15 Vpp

5. Set the spectrum analyzer to measure the level of the 98 kHz second harmonic relative to the 49 kHz sine wave carrier, as follows:

Center Frequency	49 kHz
Frequency Span	1 kHz
Range	20 dBm
Marker - Reference Level	On
Manual Sweep	On
Marker - Center Frequency	On
Offset	On
Enter Offset	On
Center Frequency	98 kHz
Video BW	1 Hz

- 6. Adjust DC OFFSET (R400) on mixer board (A5 or A15) for minimum second harmonic level of square wave (< -40 dBc).
- 7. This completes the adjustment. Disconnect main power cord from the HP 3326A rear panel and replace the top cover.

Refer to Table 3-2 if the adjustment cannot be completed.

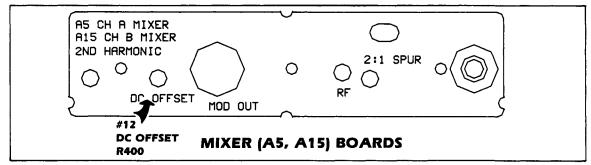


Figure 3-14. Adjustment #12 Location

3-18 ADJUSTMENT #13, FLATNESS

DESCRIPTION: This procedure adjusts the output signal level flatness at high frequencies. This is required for the HP 3326A to meet specifications (Table 1-5).

This adjustment must be done for both channels.

Always check the overshoot adjustment (#14) after performing this adjustment.

REFERENCE DESIGNATOR: A5C400, A15C400 SCHEMATIC: 5

EQUIPMENT:

Spectrum analyzer	HP 3585A
Service accessory kit	03326-84401
PC board extender	03326-66591

PROCEDURE:

- 1. Disconnect main power cord from the HP 3326A rear panel and remove the top cover. Reconnect main power cord.
- 2. While the HP 3326A is in STBY, place mixer board under test (A5 or A15) on an extender.
- 3. Preset the HP 3326A and the spectrum analyzer.
- 4. Connect the test equipment as follows:
 - External reference output of spectrum analyzer to 1,2,5,10MHz REF IN rear panel input of HP 3326A
 - Output of HP 3326A channel under test (CH A or CH B) to 50 Ω input of spectrum analyzer
 - Z-BLANK OUT rear panel output of HP 3326A to spectrum analyzer external trigger input
- 5. Set the HP 3326A as follows:

Channel	CH A or CH B
Sweep Type	Continuous
Sweep Time	5 s
Amplitude	10 Vpp

6. Set the spectrum analyzer to display the swept sine wave from 0 to 13 MHz, as follows:

Range	25 dBm
Stop Frequency	13 MHz
Sweep Time	5 s
Trigger	External
dB/division	2 dB

- Remove the top cover of the HP 3585A and put test jumper A15W1 into the test postion (accessible from the top of the board). This configures the instrument to display 0.2 dB/div when set for 2 dB/div on the front panel. Normally, only 1, 2, 5 and 10 dB/div increments are available.
- 7. Perform the adjustment with the board on the extender and check the adjustment with the board in the card nest. Repeat until the adjustment is accurate with the board in the card nest.

• Adjust C400 for best flatness (± 0.5 dB).

NOTE

The dc offset on the spectrum analyzer display may shift about 0.1 dB. This is due to uncertainty in the triggering on the HP 3585A. Increasing the sweep time stops the shifting offset.

- Turn HP 3326A off. Place board back into card nest. Replace one top cover screw to make a good ground contact. Turn instrument on. Sequentially press **RECALL**, **0** to restore HP 3326A test setup. Check flatness again.
- If the reading is correct, go to step 8. If not, turn instrument off and put board on extender. Readjust C400 until the reading is correct while the board is in the card nest.
- 8. Check overshoot adjustment (#14).
- 9. Return test jumper A15W1 on the HP 3585A to normal position.
- 10. This completes the adjustment. Disconnect main power cord from the HP 3326A rear panel and replace the top cover.

Refer to Table 3-2 if the adjustment cannot be completed.

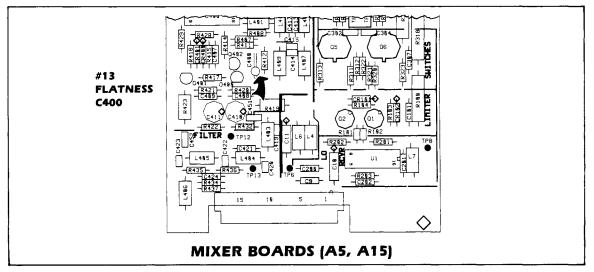


Figure 3-15. Adjustment #13 Location

3-19 ADJUSTMENT #14, OVERSHOOT

DESCRIPTION: This procedure adjusts the overshoot of the output signal to compensate for square wave level flatness.

This adjustment must be done for both channels.

Always check the flatness adjustment (#13) after performing this adjustment.

REFERENCE DESIGNATOR: A3C103, A13C103 SCHEMATIC: 3

EQUIPMENT:

Oscilloscope

HP 1715A

PROCEDURE:

- 1. Disconnect main power cord from the HP 3326A rear panel and remove the top cover. Reconnect main power cord.
- 2. Preset the HP 3326A.
- 3. Connect the test equipment as follows:
 - Output of HP 3326A channel under test (CH A or CH B) to 50 Ω input of oscilloscope.
- 4. Set the HP 3326A as follows:

Channel	CH A or CH B
Function	Square
Frequency	13 MHz
Amplitude	10 Vpp

- 5. Perform the adjustment with the board outside the instrument and check the results with the board in the card nest.
 - Turn HP 3326A off. Remove the output amplifier board under test (A3 or A13) from the instrument.
 - Adjust C103. Begin the adjustment with C103 at minimum capacitance (plates not lined up).
 - Place board back into card nest. Turn instrument on. Sequentially press RECALL, 0 to restore HP 3326A test setup. Using the oscilloscope, check to see if the peak of the waveform caused by the positive overshoot has a slightly greater magnitude than the rest of the top portion of the waveform (Figure 3-17).
 - If the waveform matches Figure 3-17, go to step 6. If not, turn instrument off and remove board. Readjust C103 until the waveform is correct while the board is in the card nest.
- 6. Check sine wave flatness adjustment (#13).
- 7. This completes the adjustment. Disconnect main power cord from the HP 3326A rear panel and replace the top cover.

Refer to Table 3-2 if the adjustment cannot be completed.

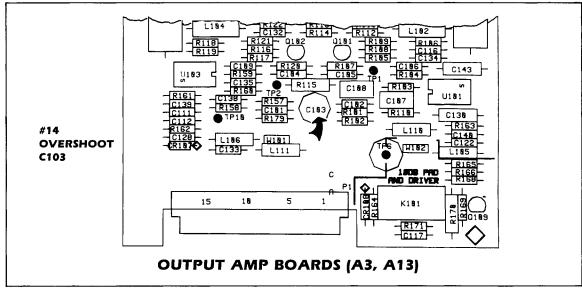


Figure 3-16. Adjustment #14 Location

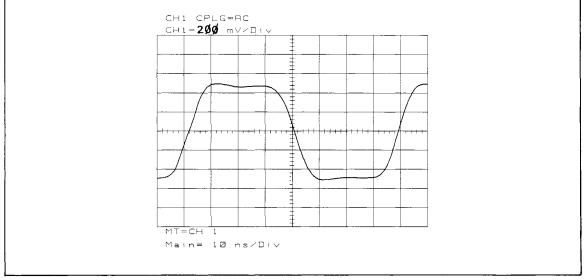


Figure 3-17. Square Wave Shape

3-20 ADJUSTMENT #15, HV OVERSHOOT

DESCRIPTION: This procedure increases the overshoot to modify the high voltage square wave shape. A 40 Vpp square wave signal is used. It also affects square wave rise time and sine wave flatness.

This adjustment must be done for both channels when the high voltage outputs option (Option 002) is in place.

REFERENCE DESIGNATOR: A1C149, A11C149

SCHEMATIC: 1

EQUIPMENT:

Oscilloscope HP 1740A Service accessory kit 03326-84401

PROCEDURE:

- 1. Disconnect main power cord from the HP 3326A rear panel and remove the top cover.
- 2. Place high voltage amplifier board under test (A1 or A11) on an extender. Reconnect main power cord.

CAUTION

Remove main power cord whenever you are placing the high voltage amplifier board (A1 or A11) on an extender. Otherwise, the +28VDC and -28VDC supplies can short to the card nests (GND) and blow the line fuse.

- 3. Preset the HP 3326A.
- 4. Connect the test equipment as follows (illustrated in Figure 3-18):
 - Output of the HP 3326A channel under test (CH A or CH B) to 1 k\Omega/50 Ω matching pad and load input.
 - 1 k Ω /50 Ω matching pad and load output to the oscilloscope 50 Ω input.

NOTE

The 1 k Ω /50 Ω matching pad and load is constructed in a small metal box with two BNC connectors. The components required are listed under Equipment.

5. Set the HP 3326A as follows:

Channel	CH A or CH B
High Voltage	On
Function	Square Wave
Amplitude	40 Vpp
Frequency	1 MHz

- 6. Set the oscilloscope to display two periods of the square wave.
- 7. Perform the adjustment with the board on the extender and check the adjustment with the board in the card nest. Repeat until the adjustment is accurate with the board in the card nest.

- Adjust **C149** until the square wave shape has good edges and minimal overshoot (Figure 3-20).
- Check the level flatness of the high voltage square wave. If there is too much overshoot, there will be bad flatness. Perform the following:
 - Set the HP 3326A to 100 kHz. Set the oscilloscope time scale to show many peaks of the square wave. Adjust the wave for full scale (100%) on the oscilloscope display by removing the oscilloscope calibration and using the vernier adjustment.
 - Set the HP 3326A to 1 MHz. Leave the oscilloscope setup as is. Check the square wave flatness. There should be \leq 10% difference (1 minor division \cong 4%). If not, readjust C118.
- Turn HP 3326A off. Place board back into card nest. Replace one top cover screw to make a good ground contact. Turn instrument on. Sequentially press **RECALL**, **0** to restore HP 3326A test setup. Check the square wave appearance and sine wave flatness again.
- If the readings are correct, go to step 8. If not, turn instrument off and put board on extender. Readjust C149 until the readings are correct while the board is in the card nest.
- 8. This completes the adjustment. Disconnect main power cord from the HP 3326A rear panel and replace the top cover.

Refer to Table 3-2 if the adjustment cannot be completed.

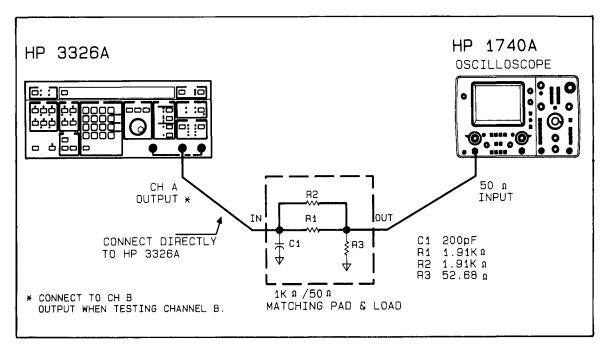


Figure 3-18. Adjustment #15 Setup

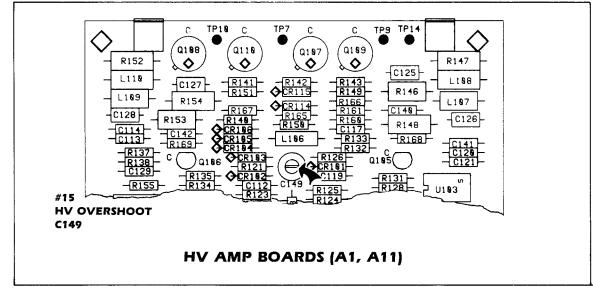


Figure 3-19. Adjustment #15 Location

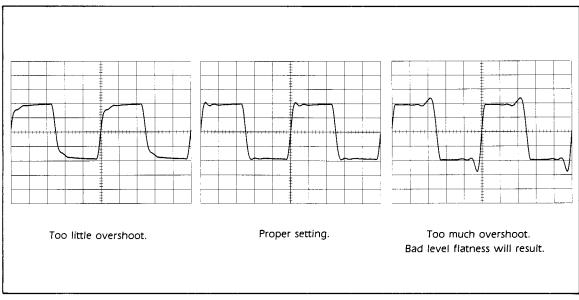


Figure 3-20. High Voltage Square Wave Shape

3-21 ADJUSTMENT #16, BIAS

DESCRIPTION: This adjustment minimizes high frequency distortion at all frequencies by adjusting the output amplifier's bias voltage level. This is required for the HP 3326A to meet specifications (Table 1-5).

This adjustment must be done for both channels.

REFERENCE DESIGNATOR: A3R130, A13R130 SCHEMATIC: 3

EQUIPMENT:

Digital voltmeter HP 3455A

Spectrum analyzer	HP 3585A
Service accessory kit	03326-84401
PC board extender	03326-66591

PROCEDURE:

- 1. Disconnect main power cord from the HP 3326A rear panel and remove the top cover. Reconnect main power cord.
- 2. While the HP 3326A is in STBY, place output amplifier board under test (A3 or A13) on an extender. (If channel A is under test, remove the SYNC cable from the top of A3. Leave it disconnected during the adjustment procedure.)
- 3. Preset the HP 3326A and the spectrum analyzer.
- 4. Connect the test equipment as follows:
 - External reference output of spectrum analyzer to 1,2,5,10MHz REF IN rear panel input of HP 3326A
 - Output of HP 3326A channel under test (CH A or CH B) to 50 Ω input of spectrum analyzer
 - Positive and negative voltmeter terminals to TP11 (BIAS) and TP7 (+15V2)
- 5. Set the HP 3326A as follows:

Channel	CH A or CH B
Frequency	13 MHz
Amplitude	10 Vpp

6. Set the spectrum analyzer to measure the level of the 39 MHz third harmonic relative to the 13 MHz sine wave carrier, as follows:

Center Frequency	13 MHz
Frequency Span	1 kHz
Range	25 dBm
Manual Sweep	13 MHz
Marker → Reference Level	On
Offset	On
Enter Offset	On
Center Frequency	39 MHz

- 7. Configure the voltmeter to measure Vdc.
- 8. There are two bias settings that will minimize the third harmonic distortion to an acceptable level (Figure 3-22). Adjust to the smaller of the two levels to avoid straining the amplifier.
 - Place R130 at the mechanical center.
 - Adjust R130 until the third harmonic distortion is at a minimum value.
 - Decrease R130 to assure the setting is at the lower bias voltage side of the minimum (null) setting to allow cooler operation. Distortion should be ≤ -35 dBc. The

absolute value of the bias voltage should be \leq 0.7 Vdc. See Figure 3-22.

NOTE

This adjustment should be accurate when the board is returned to the card nest.

9. This completes the adjustment. Disconnect main power cord from the HP 3326A rear panel. Return the board to the card nest and replace the top cover.

Refer to Table 3-2 if the adjustment cannot be completed.

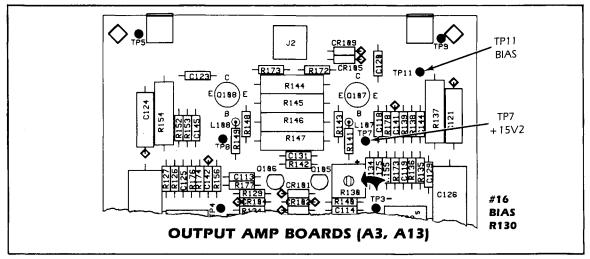


Figure 3-21. Adjustment #16 Location

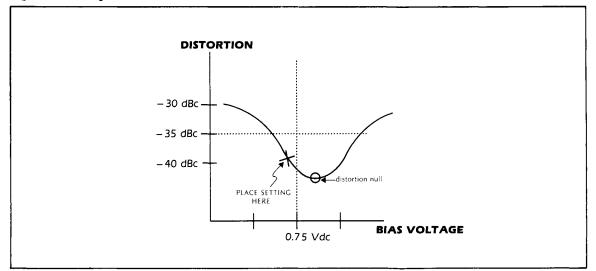


Figure 3-22. Third Harmonic Distortion at 13 MHz

3-22 ADJUSTMENT #17, BATTERY CHECK

DESCRIPTION: This procedure checks for excessive current drawn by RAM and measures the voltage of the battery on the controller board (A61).

REFERENCE DESIGNATOR: A61BT1 SCHEMATIC: 14a EQUIPMENT:

Digital voltmeter HP 3455A Service accessory kit PC board extender

03326-84401 03326-66591

PROCEDURE:

- 1. Disconnect main power cord from the HP 3326A rear panel and remove the top cover. Reconnect main power cord.
- 2. Turn the HP 3326A off (STBY). Take mechanical support off of controller board (A61). Place A61 on an extender. LEAVE THE HP 3326A IN STANDBY.
- 3. Connect the test equipment as follows:
 - Connect voltmeter positive and negative terminals across R302
- 4. Configure the voltmeter to measure Vdc.
- 5. Measure the voltage across R302. This voltage should be \leq 0.1 mVdc. A voltage greater than 0.1 mVdc indicates excessive current drain which may result in the discharge of BT1.

NOTE

If the voltage measured across R302 indicates a large current drain, suspect bad RAMs.

- 6. Measure the voltage at TP17 (CMOS PWR) with respect to GND (card nests). The voltage should be \geq 2.2 Vdc, but < 3.5 Vdc. If it is not, replace BT1.
- 7. This completes the check. Put board back into card nest. Disconnect main power cord from the HP 3326A rear panel and replace the top cover.

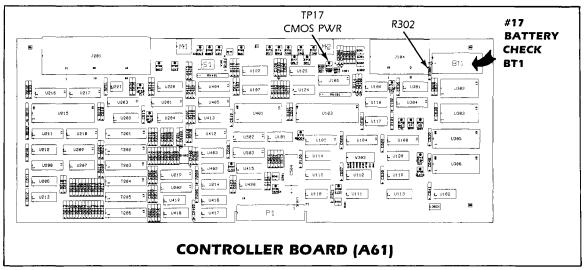
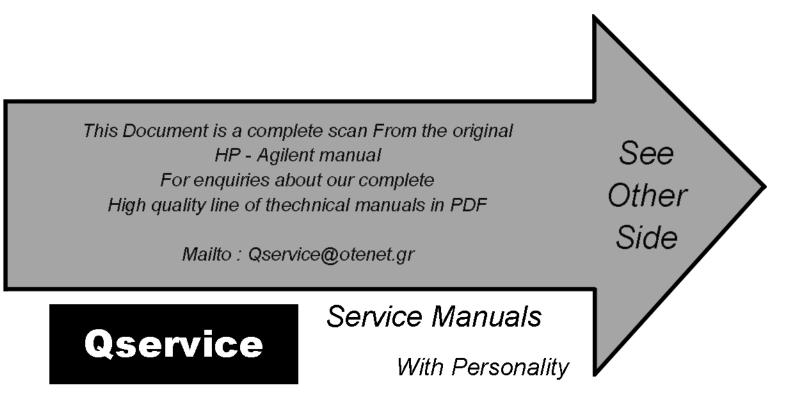



Figure 3-23. Adjustment #17 Location

For the most complete, Accurate, and legible service manuals For obsolete test equipment

SECTION IV REPLACEABLE PARTS

SECTION IV REPLACEABLE PARTS

Sub-Section	Title	Page
4-1	Introduction	4-1
4-2	Replaceable Parts List	4-1
4-3	Ordering Information	4-47

SECTION IV REPLACEABLE PARTS

4-1 INTRODUCTION

This section contains information for ordering replacement parts. Table 4-1 lists the abbreviations used in Table 4-3, Replaceable Parts List, and throughout this manual. Table 4-2 lists the names and addresses that correspond to the manufacturers' code numbers.

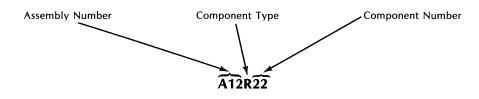

4-2 REPLACEABLE PARTS LIST

Table 4-3 is organized as follows:

- 1. PC boards and their components in alphanumeric order by reference designators.
- 2. Chassis-mounted components and hardware grouped by top, bottom, front, back and side assemblies. Groups of mechanical parts for Options 001 and 003 and the instrument frame are included. Cables are included in a separate group.

The information for each part consists of the following:

1. REFERENCE DESIGNATOR

- 2. HP PART NUMBER
- 3. CD The Check Digit used by HP to verify that an order has been transmitted correctly.
- 4. QTY The total quantity in the PC board.
- 5. DESCRIPTION The HP description of the part.
- 6. MFR CODE The manufacturer's code.
- 7. MFR PART NUMBER The manufacturer's part number.

NOTE

The total quantity of each part is given once for each board at the first appearance of the part number on the board component listing. The same system is used for total quantities for optional boards.

Table 4-1. Reference Designations and Abbreviations

Abbrev	iations
Agsilver	NPO
Alaluminum	(zero temperature coefficient
Aampere(s)	ns
Au	nsrnot separately replaceable
C	Ω
cer	obd
coef	ODoutside diamete
com	ppea
comp	pA picoampere(s
conn	pcprinted circui
depdeposited	pF picofarad(s) 10 ⁻¹² farad
DPDT. double-pole double-throw	piv peak inverse voltage
DPST double-pole single-throw	p/o
electelectrolytic	pos
encapencapsulated	poly
F	pot potentiomete
FETfield effect transistor	p-p peak-to-peal
fxdfixed	ppm
GaAs	prec
GHz gigahertz = 10^{+9} hertz	long term stability and/or tolerance
gd guard(ed)	Rresisto
Ge	Rh
gnd	rms
	••••
H	
Hgmercury	Seseleniun
Hz	sect
IDinside diameter	Si silico
impgimpregnated	si
incdincandescent	SPDT single-pole double-throw
ins insulation(ed)	SPSTsingle-pole single-throw
k Ω	Ta
kHz kilohertz = 10^{+3} hertz	TC temperature coefficien
Linductor	Ti0 ₅ titanium dioxid
lin linear taper	tog
loglogarithmic taper	tol
	trimtrimme
MHz megahertz = 10^{+6} hertz	TSTR transisto
$M\Omega \qquad megohm(s) = 10^{+6} ohms$	Vvolt(s
met flm	vacwalternating current working voltage
mfrmanufacturer	var
ms	vdcw direct current working voltag
mtgmounting	Wwatt(s
mV	w/
μFmicrofarad(s)	wiv
μs microsecond(s)	w/owithou
μV	ww
my Mylar [®]	wwwwiiewouli
	*
NC normally closed	average value shown (part may be omitted
Ne	**
NOnormally open	selected or special type
	Dupont de Nemour
Design	nators
Aassembly	Qtransisto
B	QCR transistor-diod
BT battery	R(p)
C	RT thermisto
CR	S
DL	Ttransforme
DS lamp	TBterminal boar
Emisc electronic part	TCthermocoupl
Ffuse	TPtest poin
FLfilter	TSterminal stri
HRheater	Umicrocircu
ICintegrated circuit	V
Jjack	W
Krelay	X
	XDS lampholde
الممتحدياتهما	lampnoide
Linductor	YE Z
Mmeter	XF
	XF fuseholde Y crysta Z networi

MFR NO.	MANUFACTURER NAME	ADDRESS		ZIP CODE
			<u></u>	
H9027	Schurter A G H		SW	52204
01121	Allen-Bradley Co	Milwaukee	WI	53204
01295	Texas Instr Inc Semicond Cmpnt Div	Dallas	TX	75222
02111	Spectrol Electronics Corp	City of Ind	CA	91745
03508	GE Co Semiconductor Prod Dept	Auburn	NY	13201
03888	K D I Pyrofilm Corp	Whippany	NJ	07981
04713	Motorola Semiconductor Products	Phoenix	AZ	85008
06665	Precision Monolithics Inc	Santa Clara	CA	95050
07263	Fairchile Semiconductor Div	Mountain View	CA	94042
11236	CTS of Berne Inc	Berne	IN	46711
13103	Thermalloy Co	Dallas	ТХ	75234
13606	Sprague Elect Co Semiconductor Div	Concord	NH	03301
14099	Semtech Corp	Newbury Park	CA	91320
15454	Ametek/Rodan Div	Anaheim	CA	92806
17856	Siliconix Inc	Santa Clara	CA	95054
18324	Signetics Corp	Sunnyvale	CA	94086
19701	Mepco/Electra Corp	Mineral Wells	ТХ	76067
20932	Emcon Div ITW	San Diego	CA	92129
24546	Corning Glass Works (Bradford)	Bradford	PA	16701
25403	N.V. Philips-Elcoma Department	Eindhoven	ΗL	02876
27014	National Semiconductor Cerp	Santa Clara	CA	95051
27167	Corning Glass Works (Wilmington)	Wilmington	NC	28401
28480	Hewlett-Packard Co Corporate HQ	Palo Alto	CA	94304
3L585	RCA Corp Solid State Div	Somerville	NJ	
32997	Bourns Inc Trimpot Prod Div	Riverside	CA	92507
34335	Advanced Micro Devices Inc	Sunnyvale	CA	94086
34371	Harris Semicon Div Harris-Intertype	Melbourne	FL	32901
52063	Exar Integrated Systems Inc.	Sunnyvale	CA	94086
56289	Sprague Electric Co	North Adams	MA	01247
72136	Electro Motive Corp	Florence	SC	06226
72982	Erie Technological Products Inc	Erie	PA	16512
73138	Beckman Instruments Inc Helipot Div	Fullerton	CA	92634
75915	Littelfuse Inc	Des Plaines	1L	60016
84411	TRW Capacitor Div	Ogallala	NE	69153
91637	Dale Electronics Inc	Columbus	NE	68601

Table 4-2. Manufacturers' Code List

PART NUMBER 9320-3991

Table 4-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1	03326-66501			SEE OPTION 002 PARTS LIST.		
A2	03326-66502	0	1	CHANNEL & ATTENUATOR BOARD	28480	03326-66502
A2C103-C115 A2C116-C119 A2C124-C129 A2C130 A2C131	0160-4571 0160-3847 0160-4571 0160-3875 0160-3875	8 9 8 7 8 7 8	26 5 3	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 22PF +-5% 200VDC CER 0+-30 CAPACITOR-FXD 22PF +-5% 200VDC CER 0+-30	04222 04222 04222 51642 51642 51642	MA205E104ZAA MA105C103PAA MA205E104ZAA 200-200-NP0-220J(.250LL) 200-200-NP0-220J(.250LL)
A2C132 A2C134-C139 A2C140 A2C141 A2C142	0160-3875 0160-4571 0160-3847 0160-4571 0160-4571	38988 888		CAPACITOR-FXD 22PF +-5% 200VDC CER 0+-30 CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	51642 04222 04222 04222 04222 04222	200-200-NPO-220J(.250LL) MA205E104ZAA MA105C103PAA MA205E104ZAA MA205E104ZAA
A2C143 A2CR101-CR105 A2CR106 A2CR107 A2J1	0160-4805 1901-0040 1902-0958 1902-0958 1250-0544	1 1 2 2 9	1 4 2 1	CAPACITOR-FXD 47PF +-5% 100VDC CER 0+-30 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 10V 5% DO-35 PD=.4W TC=+.075% DIODE-ZNR 10V 5% DO-35 PD=.4W TC=+.075% CONNECTOR-RF SM-SNP M SGL-HOLE-FR 50-OHM	27167 07263 04713 04713 98291	CAC02C0G470J100A FDH1088 S230035-016 S230035-016 051-049-0000-220
A2J2 A2J3 A2K101-K108 A2L100 A2L101	1251-6254 1251-6254 0490-1405 9140-0395 9100-0539	2 2 0 N N	2 8 1 1	CONNECTOR-SGL CONT RTANG-F CONNECTOR-SGL CONT RTANG-F RELAY 2C 12VDC-COIL 2A 250VAC INDUCTOR RF-CH-MLD 560NH 5% .166DX.385LG INDUCTOR RF-CH-MLD 10UH 5% .156DX.375LG	91833 91833 28480 06560 06560	901 901 DS2E-S-DC12V-H69 4425-3J 4445-2J
A2L102 A2L103 A2MP1 A2MP2 A2MP3	9100-0539 9140-0308 03326-04102 0624-0333 0624-0333	38666	2 1 2	INDUCTOR RF-CH-MLD 10UH 5% .156DX.375LG INDUCTOR RF-CH-MLD 120NH 5% .166DX.385LG CVR, ATTENUATOR SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL	06560 24226 28480 01536 01536	4445-2J 15M120J-1 03326-04102 0624-0333 0624-0333
A2MP4 A2MP5 A2P1 A2R103 A2R104	2360-0113 2360-0113 1251-8410 0698-8390 0698-7982	2 2 2 6 6 0	2 1 2 1	SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI CONN-POST TYPE 48-CONT RTANG-DPSLDR RESISTOR 96.25 .1% .5WF TC=0+-50 RESISTOR 71.16 .1% .25W F TC=0+-50	01536 01536 28480 19701 19701	2360-0113 2360-0113 1251-8410 5053R 5043R
A2R105 A2R106 A2R107 A2R108 A2R109	0698-8390 0698-7984 0698-8258 0698-7984 0698-7984	6 2 5 2 2	6 3	RESISTOR 96.25 .1% .5W F TC=0+-50 RESISTOR 61.1 .1% .5W F TC=0+-50 RESISTOR 247.5 .1% .25W F TC=0+-25 RESISTOR 61.1 .1% .5W F TC=0+-50 RESISTOR 61.1 .1% .5W F TC=0+-50	19701 19701 19701 19701 19701 19701	5053R 5053R 5043R 5053R 5053R
A2R110 A2R111 A2R112 A2R113 A2R113 A2R114	0698-8258 0698-7984 0698-7984 0698-8258 0698-7984	52252	2	RESISTOR 247.5 .1% .25W F TC=0+-25 RESISTOR 61.1 .1% .5W F TC=0+-50 RESISTOR 61.1 .1% .5W F TC=0+-50 RESISTOR 247.5 .1% .25W F TC=0+-25 RESISTOR 61.1 .1% .5W F TC=0+-50	19701 19701 19701 19701 19701 19701	5043R 5053R 5053R 5043R 5053R
A2R115 A2R116 A2R117 A2R119-R124 A2R126	0699-0760 0699-0760 0699-0760 0683-1815 0757-0465	0 0 0 5 6	3 8 2	RESISTOR 50 1% 2W MO TC=0+-200 RESISTOR 50 1% 2W MO TC=0+-200 RESISTOR 50 1% 2W MO TC=0+-200 RESISTOR 180 5% .25W CF TC=0+400 RESISTOR 100K 1% .125W F TC=0+-100	24546 24546 24546 77902 19701	FP2 FP2 FP2 R-25J 5033R
A2R127 A2R128 A2R129 A2R130 A2R131	0698-4509 0698-4499 0757-0452 0757-0452 0698-4499	1 8 1 1 8	20	RESISTOR 80.6K 1% .125W F TC=0+-100 RESISTOR 54.9K 1% .125W F TC=0+-100 RESISTOR 27.4K 1% .125W F TC=0+-100 RESISTOR 27.4K 1% .125W F TC=0+-100 RESISTOR 54.9K 1% .125W F TC=0+-100	91637 91637 19701 19701 91637	CMF-55-1, T-1 CMF-55-1, T-1 5033R 5033R CMF-55-1, T-1
A2R132 A2R133-R136 A2R137 A2R138 A2R138 A2R143	0698-4509 0757-0442 0757-0449 0757-0449 0683-1815	1 9 6 5	4 2	RESISTOR 80.6K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR 180 5% .25W CF TC=0-400	91637 19701 19701 19701 77902	CMF-55-1, T-1 5033R 5033R 5033R R-25J
A2R144 A2R145 A2TPO-TP10 A2U100 A2U101	0683-1815 0757-0465 1251-0600 1858-0047 1826-0138	5 6 0 5 8	11 1 1	RESISTOR 180 5% .25W CF TC=0-400 RESISTOR 100K 1% .125W F TC=0+-100 CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ TRANSISTOR ARRAY 16-PIN PLSTC DIP IC COMPARATOR GP QUAD 14-DIP-P PKG	77902 19701 27264 13606 27014	R-25J 5033R 16-06-0034 ULN-2003A SL24958
A2U102 A2U103 A2U104	1820-1197 1820-1206 1820-1144	9 1 6	1 1 1	IC GATE TTL LS NAND QUAD 2-INP IC GATE TTL LS NOR TPL 3-INP IC GATE TTL LS NOR QUAD 2-INP	01295 01295 01295	SN53504 SN53513 SN53243

Table 4-4. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A3	03326-66503	1	2	OUTPUT AMPLIFIER BOARDS	28480	03326-66503
A3C101 A3C103 A3C104 A3C105 A3C105 A3C106	0160-3847 0121-0451 0160-4571 0160-4571 0160-4571 0160-4571	9 3 8 8 8	13 1 15	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-V TRMR-AIR 1.7-11PF 175V CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 74970 04222 04222 04222	MA105C103PAA 187-0106-028 MA205E104ZAA MA205E104ZAA MA205E104ZAA
A3C107 A3C108 A3C109 A3C111 A3C112	0160-2237 0160-2236 0160-4571 0160-3847 0160-4571	9 8 9 8	1	CAPACITOR-FXD 1.2PF +25PF 500VDC CER CAPACITOR-FXD 1PF +25PF 500VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	52763 52763 04222 04222 04222	0160-2237 0160-2236 MA205E104ZAA MA105C103PAA MA205E104ZAA
A3C113 A3C114 A3C116 A3C117 A3C117 A3C118	0160-4571 0160-4571 0160-3847 0160-4571 0160-4571	8 8 9 8 8		CAPACITOR-FXD .1UF +80-20\$ 50VDC CER CAPACITOR-FXD .1UF +80-20\$ 50VDC CER CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD .1UF +80-20\$ 50VDC CER CAPACITOR-FXD .1UF +80-20\$ 50VDC CER	04222 04222 04222 04222 04222 04222	MA205E104ZAA MA205E104ZAA MA105C103PAA MA205E104ZAA MA205E104ZAA
A3C119 A3C120 A3C121 A3C122 A3C122 A3C123	0160-4571 0160-3847 0180-1746 0160-3847 0160-3847	89599	2	CAPACITOR-FXD .1UF +80-20\$ 50VDC CER CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD 15UF+-10\$ 20VDC TA CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD .01UF +100-0\$ 50VDC CER	04222 04222 13606 04222 04222	MA205E104ZAA MA105C103PAA 150D156X9020B2-DYS MA105C103PAA MA105C103PAA
A3C124 A3C125 A3C126 A3C127 A3C127 A3C128	0180-1746 0160-4571 0180-2506 0180-2506 0160-3847	5 8 7 9	2	CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 470UF+50-10% 25VDC AL CAPACITOR-FXD 470UF+50-10% 25VDC AL CAPACITOR-FXD .01UF +100-0% 50VDC CER	13606 04222 19701 19701 04222	150D156X9020B2-DYS MA205E104ZAA 3074GH471T025JPB 3074GH471T025JPB MA105C103PAA
A3C129 A3C130 A3C131 A3C131 A3C132 A3C133	0160-3847 0180-0197 0160-4571 0160-4571 0160-3847	9 8 8 9	2	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	04222 13606 04222 04222 04222	MA105C103PAA 150D225X9020A2-DYS MA205E104ZAA MA205E104ZAA MA105C103PAA
A3C134 A3C135 A3C138 A3C139 A3C139 A3C140	0160-3847 0160-3847 0160-3847 0160-3847 0160-3847 0160-4571	9 9 9 9 8		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 04222 04222 04222 04222 04222	MA105C103PAA MA105C103PAA MA105C103PAA MA105C103PAA MA105C103PAA MA205E104ZAA
A3C141 A3C142 A3C143 A3C144 A3C144 A3C145	0160-4571 0160-4571 0180-0197 0160-4571 0160-4571	8 8 8 8 8	3	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 04222 13606 04222 04222	MA205E104ZAA MA205E104ZAA 150D225X9020A2-DYS MA205E104ZAA MA205E104ZAA
A3CR101-CR108 A3CR109 A3CR110 A3CR110 A3J2 A3K101	1901-0040 1902-0961 1902-0961 1251-6254 0490-1405	1 7 7 2 0	8 2 1 1	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 13V 5% DO-35 PD=.4W TC=+.082% DIODE-ZNR 13V 5% DO-35 PD=.4W TC=+.082% CONNECTOR-SGL CONT RTANG-F RELAY 2C 12VDC-COIL 2A 250VAC	07263 04713 04713 91833 28480	FDH1088 SZ30035-019 SZ30035-019 901 DS2E-S-DC12V-H69
A3L102 A3L104-L106 A3L107-L108 A3L110-L111 A3MP1	9100-0539 9100-0539 9170-0894 9140-0395 03326-04103	330 37	4 2 2 1	INDUCTOR RF-CH-MLD 10UH 5% .156DX.375LG INDUCTOR RF-CH-MLD 10UH 5% .156DX.375LG CORE-SHIELDING BEAD INDUCTOR RF-CH-MLD 560NH 5% .166DX.385LG CVR, OUTPUT AMP	06560 06560 02114 06560 28480	4445-2J 4445-2J 56-590-65/4A6 4425-3J 03326-04103
A 3 MP 2 A 3 MP 3 A 3 MP 4 A 3 MP 5 A 3 MP 6	0624-0333 0624-0333 2360-0113 2360-0113 0380-1077	6 6 2 9	2 2 1	SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI STANDOFF-RVT-ON 6.35-MM-LG M3.0 X	01536 01536 01536 01536 01536 00866	0624-0333 0624-0333 2360-0113 2360-0113 0380-1077
A 3MP7 A 3MP8 A 3MP9 A 3MP10 A 3MP11	0515-0104 2580-0003 2580-0003 2580-0004 2580-0004	85566	3 2 2	SCREW-MACH M3 X 0.5 8MM-LG PAN-HD NUT-HEX-W/LKWR 8-32-THD .125-IN-THK NUT-HEX-W/LKWR 8-32-THD .125-IN-THK NUT-HEX-DBL-CHAM 8-32-THD .125-IN-THK NUT-HEX-DBL-CHAM 8-32-THD .125-IN-THK	28480 28480 28480 73734 73734	0515-0104 2580-0003 2580-0003 2580-0004 2580-0004
A3MP101-MP106 A3MP107-MP110 A3MP111-MP112 A3MP113 A3P1	1205-0235 4330-0952 0515-0104 03326-01101 T-54687	0 6 8 9 9	6 4 1 1	HEAT SINK SGL TO-18-CS INSULATOR-BEAD CERAMIC SCREW-MACH M3 X 0.5 8MM-LG PAN-HD HTSK,OUTPUT AMP DIN CONN32 PIN MALE	13103 25706 28480 28480 28480	2224-B 10-215A 0515-0104 03326-01101 T-54687
A3Q101 A3Q102	1854-0795 1853-0448	2 0	2	TRANSISTOR NPN SI TO-92 PD=625MW TRANSISTOR PNP SI TO-92 PD=625MW	04713 04713	SPS8028 SPS7848

Table 4-5. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A3Q103 A3Q104 A3Q105	1854-0795 1853-0448 1854-0215	2 0 1	2	TRANSISTOR NPN SI TO-92 PD=625MW TRANSISTOR PNP SI TO-92 PD=625MW TRANSISTOR NPN SI PD=350MW FT=300MHZ	04713 04713 04713	SPS8028 SPS7848 SPS 3611
A3Q106 A3Q107 A3Q108 A3Q109 A3R101	1853-0036 1854-0876 1853-0495 1854-0215 0698-6323	2 0 7 1	1 1 1 2	TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR NPN PD=1W FT=1GHZ TRANSISTOR PNP PD=1W FT=1GHZ TRANSISTOR NPN SI PD=350W FT=300MHZ RESISTOR 100 .1% .125W F TC=0+-25	04713 04713 04713 04713 91637	SPS-3612 SRF2955 SRF2954 SPS 3611 CMF-55-1, T-9
A3R102 A3R103 A3R104 A3R104 A3R105 A3R106	0698-6697 0698-4520 0698-3279 0683-2035 0698-8827	260 34	1 2 3 2	RESISTOR 402 .25% .125W F TC=0+-50 RESISTOR 143K 1% .125W F TC=0+-100 RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 20K 5% .25W CF TC=0-400 RESISTOR 1M 1% .125W F TC=0+-100	19701 91637 19701 77902 19701	5033R CMF-55-1, T-1 5033R R-25J 5033R
A3R107 A3R108 A3R109 A3R110 A3R111-R114	0683-1015 0757-0442 0757-0387 0698-3154 0757-0277	7 9 1 0 8	4 2 2 4	RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 27.4 1% .125W F TC=0+-100 RESISTOR 4.22K 1% .125W F TC=0+-100 RESISTOR 49.9 1% .125W F TC=0+-100	77902 19701 19701 19701 19701 19701	R-25J 5033R 5033R 5033R 5033R
A3R115 A3R116 A3R117 A3R118 A3R118 A3R119	0698-7449 0698-8827 0683-2035 0698-3279 0698-4520	4 4 3 0 6	1	RESISTOR 1K .1% .25W F TC=0+-25 RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 20K 5% .25W CF TC=0-400 RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 143K 1% .125W F TC=0+-100	19701 19701 77902 19701 91637	5043R 5033R R-25J 5033R CMF-55-1, T-1
A3R120 A3R121 A3R122 A3R123 A3R123 A3R124	0683-1015 0757-0442 0757-0387 0757-0442 0683-1015	7 9 1 9 7		RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 27.4 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 100 5% .25W CF TC=0-400	77902 19701 19701 19701 19701 77902	R-25J 5033R 5033R 5033R R-25J
A3R125 A3R126 A3R127 A3R128 A3R128 A3R129	0683-1825 0698-3228 0698-3271 0683-1825 0683-4705	7 9 2 7 8	3 2 2 4	RESISTOR 1.8K 5% .25W CF TC=0-400 RESISTOR 49.9K 1% .125W F TC=0+-100 RESISTOR 15K 1% .125W F TC=0+-100 RESISTOR 1.5K 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400	77902 19701 19701 77902 77902	R-25J 5033R 5033R R-25J R-25J
A3R130 A3R131 A3R132 A3R133 A3R133 A3R134	2100-0568 0757-0442 0683-1015 0683-1825 0683-1825	1 9 7 7 7	1	RESISTOR-TRMR 100 10% C TOP-ADJ 1-TRN RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 1.8K 5% .25W CF TC=0-400 RESISTOR 1.8K 5% .25W CF TC=0-400	73138 19701 77902 77902 77902	72PR100-102B 5033R R-25J R-25J R-25J R-25J
A3R135 A3R136 A3R137 A3R138 A3R138 A3R139	0698-3228 0698-3271 0757-0984 0757-0465 0698-4532	9 2 4 6 0	2 2 2	RESISTOR 49.9K 1% .125W F TC=0+-100 RESISTOR 115K 1% .125W F TC=0+-100 RESISTOR 10 1% .5W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 280K 1% .125W F TC=0+-100	19701 19701 19701 19701 91637	5033R 5033R 5053R 5033R CMF-55-1, T-1
A3R140 A3R141 A3R142 A3R142 A3R143 A3R144-R147	0683-4705 0683-1015 0698-6324 0683-0335 0698-7990	8 7 2 2 0	2 1 2 4	RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 187 1% .125W F TC=0+-100 RESISTOR 3.3 5% .25W CF TC=0-400 RESISTOR 200 .1% .5W F TC=0+-25	77902 77902 19701 77902 19701	R-25J R-25J 5033R R-25J 5053R
A3R148 A3R149 A3R152 A3R153 A3R153 A3R154	0683-0335 0683-1015 0757-0465 0698-4532 0757-0984	2 7 6 0 4		RESISTOR 3.3 5% .25W CF TC=0-400 RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 280K 1% .125W F TC=0+-100 RESISTOR 20 1% .5W F TC=0+-100	77902 77902 19701 91637 19701	R-25J R-25J 5033R CMP-55-1, T-1 5053R
A3R155 A3R156 A3R157 A3R157 A3R158 A3R159	0698-4489 0698-4489 0757-0438 0757-0441 0757-0438	6 6 3 8 3	1 2 2	RESISTOR 28K 1% .125W F TC=0+-100 RESISTOR 28K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 8.25K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100	91637 91637 19701 19701 19701	CMF-55-1, T-1 CMF-55-1, T-1 5033R 5033R 5033R
A3R160 A3R161 A3R162 A3R163 A3R164	0757-0441 0683-2035 0757-0449 0698-3154 0683-2015	8 36 09	1	RESISTOR 8.25K 1% .125W F TC=0+-100 RESISTOR 20K 5% .25W CF TC=0-400 RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR 4.22K 1% .125W F TC=0+-100 RESISTOR 200 5% .25W CF TC=0-400	19701 77902 19701 19701 77902	5033R R-25J 5033R 5033R R-25J
A3R165 A3R166 A3R168 A3R169 A3R169 A3R170	0683-3035 0683-1035 0698-7608 0698-6377 0699-0412	5 1 7 5 9	1 1 1	RESISTOR 30K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 192.5 .5% .125W F TC=0+-50 RESISTOR 200 .1% .125W F TC=0+-25 RESISTOR 493 .1% .25W F TC=0+-25	77902 77902 19701 91637 19701	R-25J R-25J 5033R CMF-55-1, T-9 5043R

PART NUMBER 9320-3991

Table 4-6. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A3R171 A3R172 A3R173 A3R174 A3R175	0698-7608 0757-0422 0698-4489 0698-4489 0683-4725	7 5662	1 1 3 1	RESISTOR 192.5 .5% .125W F TC=0+-50 RESISTOR 909 1% .125W F TC=0+-100 RESISTOR 28K 1% .125W F TC=0+-100 RESISTOR 28K 1% .125W F TC=0+-100 RESISTOR 4.7K 5% .25W CF TC=0-400	19701 19701 91637 91637 77902	5033R 5033R CMF-55-1, T-1 CMF-55-1, T-1 R-25J
A 3 R 177 A 3 R 178 A 3 R 179 A 3 R 180 A 3 T P 1 – T P 1 1	0683-4705 0683-4705 0698-6323 0757-0401 1251-0600	8 1 0 0	1 11	RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 100 .1% .125W F TC=0+-25 RESISTOR 100 1% .125W F TC=0+-100 CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ	77902 77902 91637 19701 27264	R-25J R-25J CMF-55-1, T-9 5033R 16-06-0034
A3U101 A3U102 A3U103 A3U104 A3W101	1826-0413 1826-0326 1826-0412 1826-0326 1251-4822	2 6 1 6 6	1 2 1 2	IC OP AMP LOW-BIAS-H-IMPD TO-99 PKG IC OP AMP GP DUAL &-DIP-P PKG IC COMPARATOR PRCN DUAL &-DIP-P PKG IC OP AMP GP DUAL &-DIP-P PKG CONN-POST TYPE .100-PIN-SPCG 3-CONT	34371 07933 27014 07933 27264	HA2-2605-B1392-001 RC4558NB SL33675 RC4558NB 22-03-2031
A 3 W 10 1 A A 3 W 10 2 A 3 W 10 2 A	1258-0141 1251-4822 1258-0141	8 6 8	2	JMPR-REM .025P CONN-POST TYPE .100-PIN-SPCG 3-CONT JMPR-REM .025P	22526 27264 22526	65474-004 22-03-2031 65474-004
A4	03326-66504	2	2	PREAMPLIFIER BOARDS	28480	03326-66504
A4C102-C103 A4C109-C112 A4C113 A4C113 A4C114 A4C115	0160-4571 0160-4571 0160-4805 0180-1746 0180-1746	8 8 1 5 5	12 1 6	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 47PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA	04222 04222 27167 13606 13606	MA205E104ZAA MA205E104ZAA CAC02C0G470J100A 150D156X9020B2-DYS 150D156X9020B2-DYS
A4C117 A4C118 A4C120 A4C121 A4C122	0160-4571 0180-1746 0160-4571 0160-3847 0160-4571	8 5 8 9 8	7	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 13606 04222 04222 04222	MA205E104ZAA 150D156X9020B2-DYS MA205E104ZAA MA105C103PAA MA205E104ZAA
A4C124 A4C125 A4C127 A4C128 A4C128 A4C129	0160-4571 0180-1746 0180-0161 0160-3847 0180-1746	8 5695	2	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 3.3UF+-10% 35VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 15UF+-10% 20VDC TA	04222 13606 13606 04222 13606	MA205E104ZAA 150D156X9020B2-DYS 150D335X9035B2-DYS MA105C103PAA 150D156X9020B2-DYS
A4C130 A4C131 A4C132 A4C133 A4C133 A4C134	0160-3847 0180-1746 0180-0161 0160-4820 0160-4389	9 5 6 0 6	1	CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD 15UF+-10\$ 20VDC TA CAPACITOR-FXD 3.3UF+-10\$ 35VDC TA CAPACITOR-FXD 1800PF +-5\$ 100VDC CER CAPACITOR-FXD 100PF +-5PF 200VDC CER	04222 13606 13606 27167 51642	MA105C103PAA 150D156X9020B2-DYS 150D335X9035B2-DYS CAC04C0G182J100A 200-200-NP0-101J
A4C135 A4C136 A4C137 A4C138 A4C138 A4C144	0160-4547 0160-4547 0160-4389 0160-4804 0160-2235	8 8 6 7	2 1 1	CAPACITOR-FXD 150PF +-5% 200VDC CER CAPACITOR-FXD 150PF +-5% 200VDC CER CAPACITOR-FXD 100PF +-5PF 200VDC CER CAPACITOR-FXD 50FF +-5% 100VDC CER 0+-30 CAPACITOR-FXD .75PF +25PF 500VDC CER	51642 51642 51642 27167 52763	200-200-NP0-151J 200-200-NP0-151J 200-200-NP0-151J CACO2C00550J100A 0160-2235
A4C145 A4C146 A4C147-C150 A4CR101-CR105 A4K101	0160-4571 0160-4571 0160-3847 1901-0040 0490-1405	8 9 1 0	5 1	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER DIODE-SWITCHING 30V 50MA 2NS DO-35 RELAY 2C 12VDC-COIL 2A 250VAC	04222 04222 04222 07263 28480	MA205E104ZAA MA205E104ZAA MA105C103PAA FDH1088 DS2E-S-DC12V-H69
A4L102 A4L103 A4L104 A4L105 A4L105 A4L107	9100-3551 9100-0539 9100-0539 9140-0454 9140-0349	5 3 3 5 7	1 4 1 7	INDUCTOR RF-CH-MLD 10H 5% .166DX.385LG INDUCTOR RF-CH-MLD 10UH 5% .156DX.375LG INDUCTOR RF-CH-MLD 10UH 5% .156DX.375LG INDUCTOR RF-CH-MLD 18UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 1.10H 5% .166DX.385LG	24226 06560 06560 06560 24226	15M101J 4445-2J 4445-2J 4445-5J 15M111J
A4L109 A4L110 A4MP1 A4MP2 A4MP3	9100-0539 9100-0539 03326-04104 0624-0333 0624-0333	3 3 8 6 6	1 2	INDUCTOR RF-CH-MLD 10UH 5% .156DX.375LG INDUCTOR RF-CH-MLD 10UH 5% .156DX.375LG CVR, PREAMP SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL	06560 06560 28480 01536 01536	4445-2J 4445-2J 03326-04104 0624-0333 0624-0333
A4MP4 A4MP5 A4MP101-MP108 A4P1 A4Q101	2360-0113 2360-0113 1205-0235 1252-0266 1854-0795	2 2 2 0 6 2	2 8 1 1	SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI HEAT SINK SGL TO-18-CS DIN CONN16 PIN MALE TRANSISTOR NPN SI TO-92 PD=625MW	01536 01536 13103 06383 04713	2360-0113 2360-0113 2224-B 100-316-033 SFS8028
A4Q102 A4Q103	1853-0448 1854-0795	0 2	1	TRANSISTOR PNP SI TO-92 PD=625MW TRANSISTOR NPN SI TO-92 PD=625MW	04713 04713	SPS7848 SPS8028

See introduction to this section for ordering information *Indicates factory selected value

PART NUMBER 9320-3991

Table 4-7. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A4Q104 A4Q105 A4Q106	1853-0448 1854-0795 1853-0448	020		TRANSISTOR PNP SI TO-92 PD=625MW TRANSISTOR NPN SI TO-92 PD=625MW TRANSISTOR PNP SI TO-92 PD=625MW	04713 04713 04713	SPS7848 SP58028 SPS7848
A4Q107 A4Q108 A4Q109 A4R101 A4R104	1854-0215 1853-0036 1854-0215 0757-0401 0698-4520	1 2 1 0 6	1 1 3 2	TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR NPN SI PD=310MW FT=250MHZ TRANSISTOR NPN SI PD=350MW FT=300MHZ RESISTOR 100 1∯ .125W F TC=0+-100 RESISTOR 143K 1≸ .125W F TC=0+-100	04713 04713 04713 19701 91637	SPS 3611 SPS-3612 SPS 3611 5033R CMF-55-1, T-1
A4R105 A4R106 A4R107 A4R108 A4R108 A4R109	0757-0428 0683-2035 0698-8827 0683-1015 0757-0442	1 34 7 9	1 2 6 2	RESISTOR 1.62K 1% .125W F TC=0+-100 RESISTOR 20K 5% .25W CF TC=0-400 RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 10K 1% .125W F TC=0+-100	19701 77902 19701 77902 19701	5033R R-25J 5033R R-25J 5033R
A4R110 A4R111 A4R112 A4R113 A4R114	0698-0085 0698-0085 0757-0283 0757-0442 0698-8827	0 0 6 9 4	2	RESISTOR 2.61K 1% .125W F TC=0+-100 RESISTOR 2.61K 1% .125W F TC=0+-100 RESISTOR 2K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 1M 1% .125W F TC=0+-100	19701 19701 19701 19701 19701 19701	5033R 5033R 5033R 5033R 5033R
A4R115 A4R116 A4R117 A4R118 A4R118 A4R119	0683-2035 0683-1015 0757-0428 0698-4520 0757-0802	3 7 1 6 5	1	RESISTOR 20K 5% .25W CF TC=0-400 RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 1.62K 1% .125W F TC=0+-100 RESISTOR 143K 1% .125W F TC=0+-100 RESISTOR 142K 1% .5W F TC=0+-100	77902 77902 19701 91637 19701	R-25J R-25J 5033R CMF-55-1, T-1 5053R
A4R120-R123 A4R124 A4R127 A4R128 A4R128 A4R129	0698-3427 0757-0802 0683-4705 0683-1035 0683-1035	0 5 1 1	4 5	RESISTOR 13.3 1% .125W F TC=0+-100 RESISTOR 162 1% .5W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400	91637 19701 77902 77902 77902	CMF-55-1, T-1 5053R R-25J R-25J R-25J R-25J
A4R130 A4R131 A4R132 A4R133 A4R133 A4R136	0683-1015 0698-3432 0698-6324 0683-1015 0683-4705	7 7 2 7 8	1	RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 26.1 1% .125W F TC=0+-100 RESISTOR 187 1% .125W F TC=0+-100 RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400	77902 19701 19701 77902 77902	R-25J 5033R 5033R R-25J R-25J
A4R137 A4R138 A4R139 A4R140 A4R141	0683-1035 0683-1035 0698-3228 0757-0465 0683-2015	1 1 9 6 9	2 2 2	RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 49.9K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 200 5% .25W CF TC=0-400	77902 77902 19701 19701 77902	R-25J R-25J 5033R 5033R R-25J
A4R142 A4R143-R144 A4R145 A4R146 A4R146 A4R147	0683-4705 0683-1005 0683-4705 0683-2015 0757-0465	8 5 8 9 6	2	RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 10 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 200 5% .25W CF TC=0-400 RESISTOR 100K 1% .125W F TC=0+-100	77902 77902 77902 77902 19701	R-25J R-25J R-25J R-25J 5033R
A4R148 A4R150 A4R151 A4R152 A4R153	0698-3228 0757-0277 0683-1815 0683-3035 0683-1035	9 8 5 5 1	1	RESISTOR 49.9K 1% .125W F TC=0+-100 RESISTOR 49.9 1% .125W F TC=0+-100 RESISTOR 180 5% .25W CF TC=0-400 RESISTOR 30K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400	19701 19701 77902 77902 77902	5033R 5033R R-25J R-25J R-25J R-25J
A4R154 A4R156-R157 A4R158 A4R159 A4R159 A4R160	0698-6323 0757-0401 0757-0422 0683-1015 0683-1015	1 0 5 7 7	1	RESISTOR 100 .1% .125W F TC=0+-25 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 909 1% .125W F TC=0+-100 RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 100 5% .25W CF TC=0-400	91637 19701 19701 77902 77902	CMF-55-1, T-9 5033R 50338 R-25J R-25J R-25J
A4R161 A4R163 A4TPO-TP10 A4U101 A4U102-U103	0757-0378 0757-0277 1251-0600 1826-0715 1826-0326	0 8 0 7 6	1 1 11 1 2	RESISTOR 11 1% .125W F TC=0+-100 RESISTOR 49.9 1% .125W F TC=0+-100 CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ IC OP AMP LOW-NOISE 8-DIP-P PKG IC OP AMP GP DUAL 8-DIP-P PKG	91637 19701 27264 18324 07933	CMF-55-1, T-1 5033R 16-06-0034 CC3802 RC4558NB
A5	03326-66505	3	2	MIXER BOARDS	28480	03326-66505
A5C9 A5C10-C11 A5C21 A5C22 A5C101	0160-4571 0180-1746 0160-5412 0160-4389 0160-4571	8 5 8 6 8	10 2 1 3	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 16PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 100PF +-5PF 200VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 13606 27167 51642 04222	MA205E104ZAA 150D156X9020B2-DYS CAC02C0G160J100A 200-200-NPO-101J MA205E104ZAA

Table 4-8. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A5C200-C202 A5C302 A5C304 A5C305 A5C307	0160-3847 0160-3878 0160-3878 0160-3847 0160-3847	96699	6 2	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 1000PF +-20% 100VDC CER CAPACITOR-FXD 1000PF +-20% 100VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	04222 51642 51642 04222 04222	MA105C103PAA 200-100-X7R-102M(.250LL) 200-100-X7R-102M(.250LL) MA105C103PAA MA105C103PAA
A5C309 A5C400 A5C401 A5C402 A5C403	0160-3847 0121-0168 0160-4571 0160-4805 0160-4571	9 9 8 1 8	1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-V TRMR-PSTN .2-1.5PF 600V CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 47PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 74970 04222 27167 04222	MA105C103PAA 273-0001-011 MA205E104ZAA CAC02C06470J100A MA205E104ZAA
A5C404 A5C406 A5C407 A5C408 A5C409	0160-4571 0160-4571 0160-4571 0160-4571 0160-4571 0160-4571	8 8 8 8 8		CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 04222 04222 04222 04222 04222	MA205E104ZAA MA205E104ZAA MA205E104ZAA MA205E104ZAA MA205E104ZAA MA205E104ZAA
A5C410-C411 A5C413 A5C414-C415 A5C417 A5C419	0180-2765 0160-4796 0160-3875 0160-4796 0160-4389	09396	5	CAPACITOR-FXD 15UF+-20% 20VDC TA CAPACITOR-FXD 3.9PF +25PF 100VDC CER CAPACITOR-FXD 22PF +-5% 200VDC CER 0+-30 CAPACITOR-FXD 3.9PF +25PF 100VDC CER CAPACITOR-FXD 100PF +-5PF 200VDC CER	28480 27167 51642 27167 51642	MD7-020-156-20/9038 CAC02C0G3B9C100A 200-200-NP0-220J(.250LL) CAC02C0G3B9C100A 200-200-NP0-101J
A5C420 A5C421 A5C422 A5C423 A5C423 A5C424	0160-4547 0160-4804 0160-4547 0160-4389 0160-4820	8 0 8 6 0	2 1 1	CAPACITOR-FXD 150PF +-5% 200VDC CER CAPACITOR-FXD 56PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 150PF +-5% 200VDC CER CAPACITOR-FXD 100PF +-5% 100VDC CER CAPACITOR-FXD 1800PF +-5% 100VDC CER	51642 27167 51642 51642 27167	200-200-NPO-151J CAC02C0G560J100A 200-200-NPO-151J 200-200-NPO-151J CAC04C0G182J100A
A5C425 A5C450 A5C451-C452 A5CR101-CR102 A5CR302	0160-4571 0160-3873 0160-3558 1901-0518 1901-0040	8 1 9 8 1	1 2 2 3	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 4.7PF +5FF 200VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER DIODE-SCHOTTKY SM SIG DIODE-SWITCHING 30V 50MA 2NS DO-35	04222 51642 04222 28480 07263	MA205E104ZAA 200-200-NP0-479D(.250LL) SR205E104MAA 1901-0518 FDH1088
A5CR400-CR401 A5CR402-CR403 A5J1 A5L4 A5L6-L7	1901-0040 1902-0686 1251-6254 9100-1791 9100-1791	1 3 2 1 1	2 1 3	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 6.2V 2% DO-7 PD=.4W TC=+.002% CONNECTOR-SGL CONT RTANG-F CORE-FERRITE CHOKE-WIDEBAND;IMP:>360 CORE-FERRITE CHOKE-WIDEBAND;IMP:>360	07263 04713 91833 02114 02114	FDH1088 SZ 12170 901 VK200-19/4B VK200-19/4B
A5L20 A5L400-L401 A5L404 A5L406 A5L407	9100-3547 9100-1626 9140-0349 9140-0454 9100-3562	9 1 7 5 8	1 2 1 1 2	INDUCTOR RF-CH-MLD 4.3UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 36UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 1.1UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 18UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 4.7UH 5% .166DX.385LG	24226 06560 24226 06560 24226	15M431J-1 15-1315-1J 15M111J 4445-5J 15M471J
A5L408 A5L409 A5L410 A5MP1 A5MP2-MP3	9100-3553 9100-3562 9100-3553 03326-04105 0624-0333	7 8 7 9 6	2 1 2	INDUCTOR RF-CH-MLD 3.9UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 4.7UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 3.9UH 5% .166DX.385LG CVR, MIXER SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL	24226 24226 24226 28480 01536	15M391J 15M471J 15M391J 03326-04105 0624-0333
A5MP4-MP6 A5MP7 A5MP8 A5P1 A5Q1-Q2	2360-0113 03326-00601 03326-00602 1252-0266 1853-0448	22 20 20 20 20	3 1 1 1	SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI SHIELD 1, MIXER SHIELD 2, MIXER DIN CONN16 PIN MALE TRANSISTOR PNP SI TO-92 PD=625MW	01536 28480 28480 06383 04713	2360-0113 03326-00601 03326-00602 100-316-033 SPS7848
A5Q3 A5Q5-Q6 A5Q7 A5Q400 A5Q401	1854-0357 1854-0357 1854-0071 1854-0795 1853-0448	2 2 7 2 0	3 1 1	TRANSISTOR-DUAL NPN PD=360MW TRANSISTOR-DUAL NPN PD=360MW TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI TO-92 PD=625MW TRANSISTOR PNP SI TO-92 PD=625MW	04713 04713 13606 04713 04713	SD-2608 SD-2608 CT-1200 SFS8028 SFS7848
A5Q402 A5R100 A5R101 A5R102 A5R103	1853-0448 0757-0815 0698-7212 0698-7212 0757-0401	0 0 9 9 0	1 2 14	TRANSISTOR PNP SI TO-92 PD=625MW RESISTOR 562 1% .5W F TC=0+-100 RESISTOR 100 1% .05W F TC=0+-100 RESISTOR 100 1% .05W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100	04713 19701 24546 24546 19701	SPS7848 5053R C-3, T-0 C-3, T-0 5033R
A5R104 A5R201 A5R202 A5R203 A5R305	0757-0401 0757-0416 0757-0416 0757-0394 0699-0487	0 7 7 8	2 3 4	RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR 500 .1% .1W F TC=0+-10	19701 19701 19701 19701 19701 19701	5033R 5033R 5033R 5033R 5023Z
A5R306 A5R307 A5R308 A5R309	0699-0487 0757-0394 0683-4705 0683-4705	8 0 8 8	7	RESISTOR 500 .1% .1W F TC=0+-10 RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400	19701 19701 77902 77902	50232 5033R R-25J R-25J

Table 4-9. Replaceable Parts

HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
0698-4420	5	1	RESISTOR 226 1% .125W F TC=0+-100	91637	CMF-55-1, T-1
0699-0487 0683-4705 0683-4705 0757-0401 0757-0394	8 8 0 0		RESISTOR 500 .1% .1W F TC=0+-10 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 47 5% .25W F TC=0-400 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 51.1 1% .125W F TC=0+-100	19701 77902 77902 19701 19701	5023Z R-25J R-25J 5033R 5033R
2100-3751 0757-0814 0698-4862 0683-2715 0683-2415	0 9 9 6 3	1 1 1 1 1	RESISTOR-TRMR 10 10% C SIDE-ADJ 17-TRN RESISTOR 511 1% .5W F TC=0+-100 RESISTOR 453 1% .5W F TC=0+-100 RESISTOR 270 5% .25W CF TC=0-400 RESISTOR 240 5% .25W CF TC=0-400	73138 19701 91637 77902 77902	67XR10 5053R CMF-65-2 R-25J R-25J R-25J
0699-0487 0683-4705 0683-4705 0757-0401 0757-1094	8 8 8 9	2	RESISTOR 500 .1% .1W F TC=0+-10 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 1.47K 1% .125W F TC=0+-100	19701 77902 77902 19701 19701	5023Z R-25J R-25J 5033R 5033R
0757-0401 0757-0439 0683-4705 2100-0545 0698-7850	0 4 8 4 1	1 2 2	RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 6.81K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR-TRMR 10% C SIDE-ADJ 17-TRN RESISTOR 9.455K .1% .125W F TC=0+-25	19701 19701 77902 73138 19701	5033R 5033R R-25J 67XR1K 5033R
0698-7850 0757-0401 0757-0283 0757-0422 0757-0384	1 0 5 8	1 2 2	RESISTOR 9.455K .1% .125W F TC=0+-25 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 2K 1% .125W F TC=0+-100 RESISTOR 909 1% .125W F TC=0+-100 RESISTOR 20 1% .125W F TC=0+-100	19701 19701 19701 19701 19701	5033R 5033R 5033R 5033R 5033R
0757-0401 0757-0384 0757-0422 0698-6320 0757-0401	0 8 5 8 0	3	RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 20 1% .125W F TC=0+-100 RESISTOR 909 1% .125W F TC=0+-100 RESISTOR 5K .1% .125W F TC=0+-25 RESISTOR 100 1% .125W F TC=0+-100	19701 19701 19701 91637 19701	5033R 5033R 5033R CMF-55-1, T-9 5033R
0757-0407 0698-4427 0757-0401 0757-0401 0686-4715	6 2 0 0 6	1 1 2	RESISTOR 200 1% .125W F TC=0+-100 RESISTOR 1.65K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 470 5% .5W CC TC=0+529	19701 91637 19701 19701 01121	5033R CMF-55-1, T-1 5033R 5033R EB4715
0757-0346 0757-0346 0698-4491 0686-4715 2100-0545	2 2 0 6 4	3 1	RESISTOR 10 1≸ .125W F TC≈0+-100 RESISTOR 10 1≸ .125W F TC=0+-100 RESISTOR 30.9K 1≸ .125W F TC=0+-100 RESISTOR 470 5≸ .5W CC TC=0+529 RESISTOR-TRMR 1K 10≸ C SIDE-ADJ 17-TRN	91637 91637 91637 01121 73138	CMF-55-1, T-1 CMF-55-1, T-1 CMF-55-1, T-1 EB4715 67XR1K
0757-0450 0757-1094 0698-4445 0757-0401 0757-0401	9 9 4 0	1	RESISTOR 22.1K 1% .125W F TC=0+-100 RESISTOR 1.47K 1% .125W F TC=0+-100 RESISTOR 5.76K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100	19701 19701 91637 19701 19701	5033R 5033R CMF-55-1, T-1 5033R 5033R
0698-3512 0698-3512 0757-0401 0757-0346 0757-0401	4 4 2 0	1	RESISTOR 1.18K 1% .125W F TC=0+-100 RESISTOR 1.18K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100	19701 19701 19701 91637 19701	5033R 5033R 5033R CMF-55-1, T-1 5033R
0757-0401 0757-0280 0698-4440 0757-0424 08552-6044	0 3 9 7 1	1 1 1 1	RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 3.4K 1% .125W F TC=0+-100 RESISTOR 1.1K 1% .125W F TC=0+-100 TRANS 6 TURNS	19701 19701 91637 19701 28480	5033R 5033R CMF-55-1, T-1 5033R 08552-6044
08552-6024 1251-0600 1820-0810 1858-0040	9 0 1 8	1 8 1 1	TRANS CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ IC ROVR ECL LINE RCVR TPL 2-INP TRANSISTOR ARRAY 16-PIN PLSTC DIP	28480 27264 04713 3L585	08552-6024 16-06-0034 SC63470P116 90978
03326-66506	4	2	MODULATOR BOARDS	28480	03326-66506
0160-4571 0160-4571 0160-4571 0160-4571 0180-1746 0180-1746	8 8 5 5	3	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA	04222 04222 04222 13606 13606	MA205E104ZAA MA205E104ZAA MA205E104ZAA 150D156X9020B2-DYS 150D156X9020B2-DYS
		ļ			
	Number 0698-4420 0699-0487 0683-4705 0757-0401 0757-0814 0698-4862 0683-2415 0683-2415 0699-0487 0683-2415 0699-0487 0683-2415 0699-0487 0683-2415 0699-0487 0683-4705 0683-4705 0683-4705 0683-4705 0683-4705 0699-0487 0683-4705 0699-0487 0683-4705 0699-7850 0698-7850 0757-0401 0757-0401 0757-0401 0757-0401 0757-0401 0757-0401 0757-0401 0757-0401 0757-0401 0757-0401 0757-0401 0757-0401 0757-0401 0757-0401 0757-0401 0757-0401 0757-0401 07	Number D 0698-4420 5 0699-0487 8 0683-4705 8 0757-0394 0 2100-3751 0 0757-0394 0 2100-3751 0 0757-0394 0 0683-2715 0 0683-2415 3 0699-0487 8 0683-2415 3 0699-0487 8 0683-4705 8 0683-4705 8 0757-0401 0 0757-0401 0 0757-0401 0 0757-0401 0 0757-0401 0 0757-0401 0 0757-0401 0 0757-0384 8 0757-0401 0 0757-0384 8 0757-0401 0 0757-0346 2 0688-4715 4 0757-0401 0 0757-0346 2 0757-0401 </td <td>Number D Q(9) 0698-4420 5 1 0699-0487 8 8 0683-4705 8 757-0401 0 0757-0314 9 1 0 0757-0314 9 1 0 0683-4705 8 757-0401 0 0683-4705 8 757-0401 0 0683-2415 3 1 0 0683-4705 8 757-0401 0 0757-0401 0 1 0 0757-0401 0 757-0401 0 0757-0401 0 757-0401 0 0757-0401 0 757-0401 0 0757-0401 0 757-0401 0 0757-0401 0 1 0 0757-0401 0 1 0 0757-0401 0 1 0 0757-0401 0 1 0 0757-0401 0 1 0<</td> <td>Number D Qty Description 0698-4420 5 1 RESISTOR 226 15 .125W F TC=0+-100 0683-4705 8 RESISTOR 500 .15 .1W F TC=0-100 0683-4705 8 RESISTOR 500 .15 .1W F TC=0-400 0757-0401 0 RESISTOR 510 15 .125W F TC=0-400 0757-0401 1 RESISTOR 511 15 .25W F TC=0-400 0683-4705 8 RESISTOR 511 15 .25W F TC=0-400 0683-4705 8 RESISTOR 500 .15 .1W F TC=0-100 0683-4705 8 RESISTOR 500 .15 .1W F TC=0-400 0683-4705 8 RESISTOR 500 .15 .1W F TC=0-400 0683-4705 8 RESISTOR 10 15 .125W F TC=0-400 0757-0401 0 RESISTOR 10 15 .125W F TC=0-400 0757-0403 0 RESISTOR 9.455K .15 .125W F TC=0-400 0757-0403 0 RESISTOR 9.455K .15 .125W F TC=0-400 0757-0401 0 RESISTOR 9.455K .15 .125W F TC=0-400 0757-0403 1 RESISTOR 9.455K .15 .125W F TC=0-400 0757-0403 1 RESISTOR 9.455K .15 .125W F TC=0-400 0757-0401 RESISTOR 9.45</td> <td>Number Description Code 0698-4420 5 1 RESISTOR 226 15 .125W F TCs0100 91637 0698-44705 8 RESISTOR 226 15 .125W F TCs0100 19701 0683-4705 8 RESISTOR 47 55 .25W CF TCs0-100 19701 0757-0401 0 RESISTOR 47 55 .25W CF TCs0-100 19701 0757-0814 0 RESISTOR 511 15 .25W F TCs0-100 19701 0683-4705 1 RESISTOR 511 15 .5W F TCs0-100 19701 0683-4705 1 RESISTOR 500 .15 .2W CF TCs0-100 19701 0683-4705 8 RESISTOR 500 .15 .2W CF TCs0-100 19701 0683-4705 8 RESISTOR 500 .15 .2W CF TCs0-100 19701 0757-0431 9 2 RESISTOR 100 .15 .12W F TCs0-100 19701 0757-0431 9 2 RESISTOR 100 .15 .12W F TCs0-100 19701 0757-0431 9 2 RESISTOR 1.4TW K 105 C SIDE-AD 17.TRN 73138 0757-0431 9 755 .25W CF Tcs0-100 19701 0757-0434 1 RESISTOR 2.9 .15 .25W</td>	Number D Q(9) 0698-4420 5 1 0699-0487 8 8 0683-4705 8 757-0401 0 0757-0314 9 1 0 0757-0314 9 1 0 0683-4705 8 757-0401 0 0683-4705 8 757-0401 0 0683-2415 3 1 0 0683-4705 8 757-0401 0 0757-0401 0 1 0 0757-0401 0 757-0401 0 0757-0401 0 757-0401 0 0757-0401 0 757-0401 0 0757-0401 0 757-0401 0 0757-0401 0 1 0 0757-0401 0 1 0 0757-0401 0 1 0 0757-0401 0 1 0 0757-0401 0 1 0<	Number D Qty Description 0698-4420 5 1 RESISTOR 226 15 .125W F TC=0+-100 0683-4705 8 RESISTOR 500 .15 .1W F TC=0-100 0683-4705 8 RESISTOR 500 .15 .1W F TC=0-400 0757-0401 0 RESISTOR 510 15 .125W F TC=0-400 0757-0401 1 RESISTOR 511 15 .25W F TC=0-400 0683-4705 8 RESISTOR 511 15 .25W F TC=0-400 0683-4705 8 RESISTOR 500 .15 .1W F TC=0-100 0683-4705 8 RESISTOR 500 .15 .1W F TC=0-400 0683-4705 8 RESISTOR 500 .15 .1W F TC=0-400 0683-4705 8 RESISTOR 10 15 .125W F TC=0-400 0757-0401 0 RESISTOR 10 15 .125W F TC=0-400 0757-0403 0 RESISTOR 9.455K .15 .125W F TC=0-400 0757-0403 0 RESISTOR 9.455K .15 .125W F TC=0-400 0757-0401 0 RESISTOR 9.455K .15 .125W F TC=0-400 0757-0403 1 RESISTOR 9.455K .15 .125W F TC=0-400 0757-0403 1 RESISTOR 9.455K .15 .125W F TC=0-400 0757-0401 RESISTOR 9.45	Number Description Code 0698-4420 5 1 RESISTOR 226 15 .125W F TCs0100 91637 0698-44705 8 RESISTOR 226 15 .125W F TCs0100 19701 0683-4705 8 RESISTOR 47 55 .25W CF TCs0-100 19701 0757-0401 0 RESISTOR 47 55 .25W CF TCs0-100 19701 0757-0814 0 RESISTOR 511 15 .25W F TCs0-100 19701 0683-4705 1 RESISTOR 511 15 .5W F TCs0-100 19701 0683-4705 1 RESISTOR 500 .15 .2W CF TCs0-100 19701 0683-4705 8 RESISTOR 500 .15 .2W CF TCs0-100 19701 0683-4705 8 RESISTOR 500 .15 .2W CF TCs0-100 19701 0757-0431 9 2 RESISTOR 100 .15 .12W F TCs0-100 19701 0757-0431 9 2 RESISTOR 100 .15 .12W F TCs0-100 19701 0757-0431 9 2 RESISTOR 1.4TW K 105 C SIDE-AD 17.TRN 73138 0757-0431 9 755 .25W CF Tcs0-100 19701 0757-0434 1 RESISTOR 2.9 .15 .25W

Table 4-10. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A6C6 A6C10 A6C11 A6C12 A6C13	0180-1746 0160-3847 0160-3847 0160-3879 0160-3847	59979	7	CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	13606 04222 04222 28480 04222	150D156X9020B2-DYS MA105C103PAA MA105C103PAA C320C103M1R5CA MA105C103PAA
A6C14 A6C15 A6C20 A6C30 A6C40	0160-3847 0160-3847 0160-3847 0160-3847 0160-3847 0160-4571	9 9 9 9 9 9 8		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 04222 04222 04222 04222 04222	MA105C103PAA MA105C103PAA MA105C103PAA MA105C103PAA MA205E104ZAA
A6C41 A6C42 A6C50 A6C51 A6C52	0160-3879 0160-3879 0160-5412 0160-4350 0160-4389	7 7 8 1 6	3 1 1 1	CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD 16PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 66PF +-5% 200VDC CER 0+-30 CAPACITOR-FXD 100PF +-5PF 200VDC CER	28480 28480 27167 51642 51642	C320C103M1R5CA C320C103M1R5CA CAC02C0G160J100A 200-200-NPO-680J(.250LL) 200-200-NPO-101J
A6C53 A6C60 A6CR30 A6J1 A6L1	0160-4788 0160-4814 1901-0040 1251-6254 9100-3560	9 2 1 2 6	1 1 1 3	CAPACITOR-FXD 18PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 150PF +-5% 100VDC CER DIODE-SWITCHING 30V 50MA 2NS DO-35 CONNECTOR-SGL CONT RTANG-F INDUCTOR RF-CH-MLD 5.6UH 5% .166DX.385LG	04222 27167 07263 91833 24226	MA101A180JAA CAC02C0G151J100A FDH1088 901 15M561J
A6L2 A6L3 A6L51 A6L52 A6MP1	9100-3560 9100-3560 9100-3547 9100-3547 03326-04106	6 6 9 9	2	INDUCTOR RF-CH-MLD 5.6UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 5.6UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 4.3UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 4.3UH 5% .166DX.385LG CVR, MODULATOR	24226 24226 24226 24226 28480	15M561J 15M561J 15M431J - 1 15M431J - 1 03326-04106
A6MP2 A6MP3 A6MP4 A6MP5 A6P1	0624-0333 0624-0333 2360-0113 2360-0113 1252-0266	6 6 2 2 6	2 2 1	SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI DIN CONN16 PIN MALE	01536 01536 01536 01536 01536 06383	0624-0333 0624-0333 2360-0113 2360-0113 100-316-033
A6Q1 A6Q2 A6R12 A6R13 A6R14	1854-0215 1854-0215 0757-0277 0757-0277 0757-0216	1 1 8 7	2 3 2	TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR NPN SI PD=350MW FT=300MHZ RESISTOR 49.9 1% .125W F TC=0+-100 RESISTOR 49.9 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100	04713 04713 19701 19701 19701	SPS 3611 SPS 3611 5033R 5033R 5033R
A6R15 A6R16 A6R17 A6R20 A6R21	0757-0416 0757-0280 0757-0280 0757-0401 0757-0401	7 3 3 0 0	4 2	RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100	19701 19701 19701 19701 19701 19701	5033R 5033R 5033R 5033R 5033R
A6R22 A6R23 A6R30 A6R31 A6R32	0757-0446 0757-0442 0757-0428 0698-3152 0757-0280	3 9 1 8 3	1 2 1 1	RESISTOR 15K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 1.62K 1% .125W F TC=0+-100 RESISTOR 3.48K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	19701 19701 19701 19701 19701	5033R 5033R 5033R 5033R 5033R
A6R33 A6R34 A6R35 A6R36 A6R37	0683-4705 0683-4705 0698-0085 0757-0443 0698-0085	8 8 0 0 0 0 0 0	8 2 1	RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 2.61K 1% .125W F TC=0+-100 RESISTOR 11K 1% .125W F TC=0+-100 RESISTOR 2.61K 1% .125W F TC=0+-100	77902 77902 19701 19701 19701	R-25J R-25J 5033R 5033R 5033R
A6R40-R45 A6R46 A6R47 A6R50 A6R60	0683-4705 0757-0384 0757-0277 0757-0442 0757-0280	8 8 8 9 3 3	1	RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 20 1% .125W F TC=0+-100 RESISTOR 49.9 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	77902 19701 19701 19701 19701 19701	R-25J 5033R 5033R 5033R 5033R
A6R61 A6TP1A-TP7 .A6U1 A6U2	0757-0420 1251-0600 1820-0810 1858-0063	3 0 1 5	1 8 1 1	RESISTOR 750 1% .125W F TC=0+-100 CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ IC RCVR ECL LINE RCVR TPL 2-INP TRANSISTOR ARRAY 14-PIN PLSTC DIP	19701 27264 04713 3L585	5033R 16-06-0034 SC63470P116 90977
A12	03326-66512	2	1	CHANNEL B ATTENUATOR BOARD	28480	03326-66512
A12C103-C110 A12C111 A12C113-C115 A12C116-C119 A12C124-C129	0160-4571 0160-5271 0160-4571 0160-3847 0160-4571	8 7 8 9 8	24 1 5	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 30PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 27167 04222 04222 04222	MA205E104ZAA CAC02C0G300J100A MA205E104ZAA MA105C103PAA MA205E104ZAA
				introduction to this section for ordering information	l	L

See introduction to this section for ordering information *Indicates factory selected value

4-11

Table 4-11. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A12C130-C132 A12C134-C136 A12C138-C139 A12C140 A12C141	0160-3875 0160-4571 0160-4571 0160-3847 0160-4571	38898 98	3	CAPACITOR-FXD 22PF +-5% 200VDC CER 0+-30 CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	51642 04222 04222 04222 04222 04222	200-200-NP0-220J(.250LL) MA205E104ZAA MA205E104ZAA MA105C103PAA MA205E104ZAA
A12C142 A12C143 A12CR101-CR102 A12CR104-CR105 A12CR106-CR107	0160-4571 0160-4805 1901-0040 1901-0040 1902-0958	8 1 1 2	1 4 2	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 47PF +-5% 100VDC CER 0+-30 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 10V 5% DO-35 PD=.4W TC=+.075%	04222 27167 07263 07263 04713	MA205E104ZAA CAC02C0G470J100A FDH1088 SZ30035-016
A12J1 A12J2 A12J3 A12K101-K104 A12K106-K108	1250-0544 1251-6254 1251-6254 0490-1405 0490-1405	9 2 2 0 0 0 0 2 0 0	1 2 7	CONNECTOR-RF SM-SNP M SGL-HOLE-FR 50-OHM CONNECTOR-SGL CONT RTANG-F CONNECTOR-SGL CONT RTANG-F RELAY 2C 12VDC-COIL 2A 250VAC RELAY 2C 12VDC-COIL 2A 250VAC	98291 91833 91833 28480 28480	051-049-0000-220 901 901 DS2E-S-DC12V-H69 DS2E-S-DC12V-H69
A12L100 A12L101 A12L102 A12L103 A12L103 A12MP1	9140-0395 9100-0539 9100-0539 9140-0308 03326-04112	3 7 7 8 8 8 8	1 1 1 1	INDUCTOR RF-CH-MLD 560NH 5% .166DX.385LG INDUCTOR RF-CH-MLD 10UH 5% .156DX.375LG INDUCTOR RF-CH-MLD 10UH 5% .156DX.375LG INDUCTOR RF-CH-MLD 120NH 5% .166DX.385LG CVR, ATTENUATOR-2	06560 06560 06560 24226 28480	4425-3J 4445-2J 4445-2J 15M120J-1 03326-04112
A12MP2-MP3 A12MP4-MP5 A12P1 A12R103 A12R104	0624-0333 2360-0113 1251-8410 0698-8390 0698-7982	6 2 6 6 0	2 2 1 2 1	SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI CONN-POST TYPE 48-CONT RTANG-DPSLDR RESISTOR 96.25 .1% .5WF TC=0+-50 RESISTOR 71.16 .1% .25W F TC=0+-50	01536 01536 28480 19701 19701	0624-0333 2360-0113 1251-8410 5053R 5043R
A12R105 A12R106 A12R107 A12R108-R109 A12R108-R109	0698-8390 0698-7984 0698-8258 0698-7984 0698-8258	62525	6 3	RESISTOR 96.25 .1% .5W F TC=0+-50 RESISTOR 61.1 .1% .5W F TC=0+-50 RESISTOR 247.5 .1% .25W F TC=0+-25 RESISTOR 61.1 .1% .5W F TC=0+-50 RESISTOR 247.5 .1% .25W F TC=0+-25	19701 19701 19701 19701 19701	5053R 5053R 5043R 5053R 5043R
A12R111-R112 A12R113 A12R114 A12R118 A12R119-R122	0698-7984 0698-8258 0698-7984 0699-0760 0683-1815	2 5 2 0 5	1 7	RESISTOR 61.1 .1% .5W F TC=0+-50 RESISTOR 247.5 .1% .25W F TC=0+-25 RESISTOR 61.1 .1% .5W F TC=0+-50 RESISTOR 50 1% 2W MO TC=0+-200 RESISTOR 180 5% .25W CF TC=0-400	19701 19701 19701 24546 77902	5053R 5043R 5053R FP2 R-25J
A12R124 A12R126 A12R127 A12R128 A12R129-R130	0683-1815 0757-0465 0698-4509 0698-4499 0757-0452	5 6 1 8 1	2 2 2 2 2 2	RESISTOR 180 5% .25W CF TC=0-400 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 80.6K 1% .125W F TC=0+-100 RESISTOR 54.9K 1% .125W F TC=0+-100 RESISTOR 27.4K 1% .125W F TC=0+-100	77902 19701 91637 91637 19701	R-25J 5033R CMF-55-1, T-1 CMF-55-1, T-1 5033R
A12R131 A12R132 A12R133-R136 A12R137-R138 A12R139-R140	0698-4499 0698-4509 0757-0442 0757-0449 0757-0433	8 1 9 6 8	4 2 2	RESISTOR 54.9K 1% .125W F TC=0+-100 RESISTOR 80.6K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR 3.32K 1% .125W F TC=0+-100	91637 91637 19701 19701 19701	CMF-55-1, T-1 CMF-55-1, T-1 5033R 5033R 5033R
A12R143-R144 A12R145 A12TP0-TP10 A12U100 A12U101	0683-1815 0757-0465 1251-0600 1858-0047 1826-0138	56058	11 1 1	RESISTOR 180 5% .25W CF TC=0-400 RESISTOR 100K 1% .125W F TC=0+-100 CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ TRANSISTOR ARRAY 16-PIN PLSTC DIP IC COMPARATOR GP QUAD 14-DIP-P PKG	77902 19701 27264 13606 27014	R-25J 5033R 16-06-0034 ULN-2003A SL24958
A12U102 A12U103 A12U104	1820-1197 1820-1206 1820-1144	9 1 6	1 1 1	IC GATE TTL LS NAND QUAD 2-INP IC GATE TTL LS NOR TPL 3-INP IC GATE TTL LS NOR QUAD 2-INP	01295 01295 01295	SN53504 SN53513 SN53243
A21	03326-66521	3	1	OFFSET BOARD	28480	03326-66521
A21C1 A21C2 A21C3 A21C4 A21C4 A21C6	0160-3847 0160-3847 0160-4803 0160-3847 0160-3847	9 9 9 9 9 9 9 9 9	18 2	CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD 68PF +-5\$ 100VDC CER 0+-30 CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD .01UF +100-0\$ 50VDC CER	04222 04222 27167 04222 04222	MA105C103PAA MA105C103PAA CAC02C0G680J100A MA105C103PAA MA105C103PAA
A21C7 A21C8 A21C21 A21C22 A21C22 A21C23	0160-3847 0160-3847 0160-3847 0160-3847 0160-3847 0160-4803	9 9 9 9 9 9 9 9 9 9 9 9		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 68PF +-5% 100VDC CER 0+-30	04222 04222 04222 04222 27 167	MA105C103PAA MA105C103PAA MA105C103PAA MA105C103PAA CAC02C0G680J100A
A21C24 A21C41	0160-3847 0160-3847	9 9		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	04222 04222	MA105C103PAA Ma105C103PAA
				·		

Table 4-12. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A21C42 A21C43 A21C46	0160-3847 0160-3847 0160-3847	999		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	04222 04222 04222	MA 105 C 103 P AA MA 105 C 103 P AA MA 105 C 103 P AA MA 105 C 103 P AA
A21C51 A21C52 A21C53 A21C54 A21C54 A21C60	0160-3847 0180-0116 0160-4571 0160-3847 0180-0116	9 1 8 9 1	3 1	CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD 6.8UF+-10\$ 35VDC TA CAPACITOR-FXD .1UF +80-20\$ 50VDC CER CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD 6.8UF+-10\$ 35VDC TA	04222 13606 04222 04222 13606	MA105C103PAA 150D685X9035B2-DYS MA205E104ZAA MA105C103PAA 150D685X9035B2-DYS
A21C61 A21C62 A21C63 A21C64 A21C64 A21C65	0160-3847 0180-0116 0160-3847 0180-0229 0160-3847	9 1 9 7 9	1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 6.8UF+-10% 35VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 33UF+-10% 10VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER	04222 13606 04222 13606 04222	MA105C103PAA 150D685X9035B2-DYS MA105C103PAA 150D336X9010B2-DYS MA105C103PAA
A21K1 A21K21 A21L60-L62 A21MP1 A21MP2-MP3	0490-1405 0490-1405 9100-3560 03326-04121 0624-0333	00696	2 3 1 2	RELAY 2C 12VDC-COIL 2A 250VAC RELAY 2C 12VDC-COIL 2A 250VAC INDUCTOR RF-CH-MLD 5.6UH 5% .166DX.385LG CVR, OFFSET SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL	28480 28480 24226 28480 01536	DS2E-S-DC12V-H69 DS2E-S-DC12V-H69 15M561J 03326-04121 0624-0333
A21MP4-MP5 A21P1 A21Q50 A21R1 A21R2	2360-0113 1251-8410 1854-0071 0698-7957 2100-3351	2 6 7 9 6	2 1 1 2 2	SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI CONN-POST TYPE 46-CONT RTANG-DPSLDR TRANSISTOR NPN SI PD=300MW FT=200MHZ RESISTOR 9.8K 1% .125W F C=0+-25 RESISTOR-TRMR 500 10% C SIDE-ADJ 1-TRN	01536 28480 13606 19701 73138	2360-0113 1251-8410 CT-1200 5033R 72XR500-142B
A21R3 A21R4 A21R5 A21R6 A21R7	0757-0442 0698-6320 0698-6348 0683-1825 0683-1045	9 8 0 7 3	4 2 2 2 2	RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 5K .1% .125W F TC=0+-25 RESISTOR 3K .1% .125W F TC=0+-25 RESISTOR 1.8K 5% .25W CF TC=0-400 RESISTOR 1.0K 5% .25W CF TC=0-400	19701 91637 19701 77902 77902	5033R CMF-55-1, T-9 5033R R-25J R-25J R-25J
A21R9 A21R21 A21R22 A21R23 A21R23 A21R24	0683-1815 0698-7957 2100-3351 0757-0442 0698-6320	59698	2	RESISTOR 180 5% .25W CF TC=0-400 RESISTOR 9.8K 1% .125W F TC=0+-25 RESISTOR-TRMR 500 10% C SIDE-ADJ 1-TRN RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 5K .1% .125W F TC=0+-25	77902 19701 73138 19701 91637	R-25J 5033R 72XR500-142B 5033R CMF-55-1, T-9
A21R25 A21R26 A21R27 A21R29 A21R52	0698-6348 0683-1825 0683-1045 0683-1815 0757-0442	0 7 35 9		RESISTOR 3K .1% .125W F TC=0+-25 RESISTOR 1.8K 5% .25W CF TC=0-400 RESISTOR 100K 5% .25W CF TC=0-400 RESISTOR 180 5% .25W CF TC=0-400 RESISTOR 10K 1% .125W F TC=0+-100	19701 77902 77902 77902 19701	5033R R-25J R-25J R-25J 5033R
A21R53 A21R71 A21R72 A21R73 A21R100	0757-0442 0683-2035 0683-1035 0683-1035 0683-1025	9 3 1 1 9	1 2 1	RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 20K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400	19701 77902 77902 77902 77902 77902	5033R R-25J R-25J R-25J R-25J R-25J
A21TPO-TP6 A21U1 A21U2 A21U3 A21U4	1251-0600 1820-1730 1820-3465 1826-0705 1826-0521	0 6 8 5 3	7 4 3 2 1	CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL ALS D-TYPE POS-EDGE-TRIG COM D/A 12-BIT 20-CERDIP BPLR IC OP AMP LOW-BIAS-H-IMPD DUAL 8-DIP-P	27264 01295 01295 34335 01295	16-06-0034 SN58039 SN74ALS174N AM6012DC SN99855P
A21U5 A21U21 A21U22 A21U22 A21U23 A21U41	1858-0047 1820-1730 1820-3465 1826-0705 1820-1641	56858	1	TRANSISTOR ARRAY 16-PIN PLSTC DIP IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL ALS D-TYPE POS-EDGE-TRIG COM D/A 12-BIT 20-CERDIP BPLR IC DRVR TTL LS BUS HEX 1-INP	13606 01295 01295 34335 01295	ULN-2003A SN58039 SN74ALS174N AM6012DC SN57698N
A21042 A21043 A21045 A21046 A21046 A21051	1820-3465 1820-1216 1820-1730 1820-1730 1820-1730 1826-0493	8 76 8 8	1	IC FF TTL ALS D-TYPE POS-EDGE-TRIG COM IC DCDR TTL LS 3-TO-8-LINE 3-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG COM	01295 01295 01295 01295 27014	SN74ALS174N SN53522 SN58039 SN58039 SL35068
A21U70	1820-0668	7	1	IC BFR TTL NON-INV HEX 1-INP	01295	SN24107
A22	03326-66522	4	1	LEVEL/AM BOARD	28480	03326-66522
A22C1 A22C2 A22C3 A22C100 A22C101	0160-4571 0180-0116 0160-4822 0160-4803 0160-4814	8 1 2 9 2	20 1 2 1	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 6.8UF+10% 35VDC TA CAPACITOR-FXD 1000FF +-5% 100VDC CER CAPACITOR-FXD 68FF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 150PF +-5% 100VDC CER	04222 13606 27167 27167 27167 27167	MA205E104ZAA 150D685X9035B2-DYS CAC03C06102J100A CAC02C0G680J100A CAC02C0G680J100A CAC02C0G151J100A

Table 4-13. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A22C102 A22C103 A22C104 A22C105 A22C105 A22C106	0160-4571 0160-4571 0160-4808 0160-4571 0160-4571	8 8 4 8 8	1	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 470PF +-5% 100VDC CER CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 04222 27167 04222 04222	MA205E104ZAA MA205E104ZAA CAC02C0G471J100A MA205E104ZAA MA205E104ZAA
A22C107 A22C108 A22C109 A22C110 A22C111	0160-4571 0160-4791 0160-4571 0160-4571 0160-3847	8 4 8 9	1	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 10PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	04222 27167 04222 04222 04222	MA205E104ZAA CAC02C0G100J100A MA205E104ZAA MA205E104ZAA MA105C104ZAA
A22C112 A22C113 A22C116 A22C200 A22C201	0160-4571 0160-4571 0160-3847 0160-4803 0160-4871	8 8 9 9 8	1	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 68FF +-5% 100VDC CER 0+-30 CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 04222 04222 27167 04222	MA205E104ZAA MA205E104ZAA MA105C103PAA CAC02C0G680J100A MA205E104ZAA
A22C202 A22C203 A22C204 A22C205 A22C205 A22C206	0160-4571 0160-4822 0160-4571 0160-4571 0160-4571 0160-4571	8 2 8 8 8 8 8 8		CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 1000PF +-5% 100VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 27167 04222 04222 04222	MA205E104ZAA CAC03C0G102J100A MA205E104ZAA MA205E104ZAA MA205E104ZAA
A22C207 A22C208 A22C209 A22C210 A22C211	0160-4791 0160-4571 0160-4571 0160-3847 0160-4571	4 8 9 8	1	CAPACITOR-FXD 10PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	27 167 04222 04222 04222 04222 04222	CAC02C0G100J100A MA205E104ZAA MA205E104ZAA MA105C103PAA MA205E104ZAA
A22C212 A22C300 A22C301 A22C302 A22C303	0160-4571 0180-0116 0180-0116 0180-0309 0160-4571	8 1 1 4 8	2	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 6.8UF+-10% 35VDC TA CAPACITOR-FXD 6.8UF+-10% 35VDC TA CAPACITOR-FXD 4.7UF+-20% 10VDC TA CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 13606 13606 13606 04222	MA205E104ZAA 150D685X9035B2-DYS 150D685X9035B2-DYS 150D475X0010A2-DYS MA205E104ZAA
A22C304 A22C305 A22CR100 A22CR101 A22CR102	0160-4571 0160-4571 1902-0948 1902-0948 1901-0050	8 8 0 3	2 4	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER DIODE-ZNR 3.9V 5% DO-35 PDE.4W TC=012% DIODE-XNR 3.9V 5% DO-35 PDE.4W TC=012% DIODE-SWITCHING 80V 200MA 2NS DO-35	04222 04222 04713 04713 07263	MA205E104ZAA MA205E104ZAA SZ30035-006 SZ30035-006 FDH 6308
A22CR200 A22CR201 A22CR202 A22CR202 A22L1 A22L2	1901-0050 1901-0050 1901-0050 9140-0129 9140-0129	3 3 3 1	2	DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 INDUCTOR RF-CH-MLD 220UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 220UH 5% .166DX.385LG	07263 07263 07263 04072 04072	FDH 6308 FDH 6308 FDH 6308 9210-92 9210-92
A22L3 A22MP1 A22MP2 A22MP3 A22MP4	9100-3560 03326-04122 0624-0333 0624-0333 2360-0113	6 0 6 2	1 1 2 2	INDUCTOR RF-CH-MLD 5.6UH 5% .166DX.385LG CVR, LEVEL/AM SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI	24226 28480 01536 01536 01536	15M561J 03326-04122 0624-0333 0624-0333 2360-0113
A22MP5 A22P1 A22Q1 A22R1 A22R2	2360-0113 1251-8410 1854-0071 0757-0465 0757-0465	2 6 7 6 6	1 1 1 1	SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI CONN-POST TYPE 48-CONT RTANG-DPSLDR TRANSISTOR NPN SI PD=300MW FT=200MHZ RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100	01536 28480 13606 19701 19701	2360-0113 1251-8410 CT-1200 5033R 5033R
A22R10 A22R100 A22R101 A22R102 A22R103	0683-1025 0698-3484 0698-4440 0698-3484 0698-3484	9 9 9 9 9 9 9 9 9	1 2 2	RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 6.65K 1% .125W F TC=0+-100 RESISTOR 3.4K 1% .125W F TC=0+-100 RESISTOR 6.65K 1% .125W F TC=0+-100 RESISTOR 3.4K 1% .125W F TC=0+-100	77902 19701 91637 19701 91637	R-25J 5033R CMF-55-1, T-1 5033R CMF-55-1, T-1
A22R104 A22R105 A22R106 A22R106 A22R107 A22R108	0757-0428 0698-3582 0757-0442 0698-4519 0698-4424	1 8 9 3 9	1 1 1 2	RESISTOR 1.62K 1% .125W F TC=0+-100 RESISTOR 41.2K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 140K 1% .125W F TC=0+-100 RESISTOR 1.4K 1% .125W F TC=0+-100	19701 19701 19701 91637 91637	5033R 5033R 5033R CMF-55-1, T-1 CMF-55-1, T-1
A22R109 A22R110 A22R111 A22R111 A22R112 A22R113	0698-3152 0699-0131 0699-0131 0698-4476 0698-7848	8 9 1 7	2 4 2 2	RESISTOR 3.48K 1% .125W F TC=0+-100 RESISTOR 5.12K .25% .125W F TC=0+-50 RESISTOR 5.12K .25% .125W F TC=0+-50 RESISTOR 10.2K 1% .125W F TC=0+-100 RESISTOR 1.25K .1% .125W F TC=0+-25	19701 19701 19701 91637 19701	5033R 5033R 5033R GWF-55-1, T-1 5033R
A22R114 A22R115 A22R116	0698-0063 0698-3279 0683-1515	4 0 2	2 4 4	RESISTOR 5.23K 1% .125W F TC=0+-100 RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 150 5% .25W CF TC=0-400	19701 19701 77902	5033R 5033R R-25J
			:			

Table 4-14. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A22R117	0683-1515	2		RESISTOR 150 5% .25W CF TC=0-400	77902	R-25J
A22R119 A22R200 A22R201 A22R202 A22R203 A22R203 A22R204	0683-1045 0698-3279 0698-3279 0698-3148 0698-4486 0698-4424	3 002 00	2 1 1	RESISTOR 100K 5% .25W CF TC=0-400 RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 102K 1% .125W F TC=0+-100 RESISTOR 24.9K 1% .125W F TC=0+-100 RESISTOR 1.4K 1% .125W F TC=0+-100	77902 19701 19701 19701 91637 91637	R-25J 5033R 5033R 5033R CMF-55-1, T-1 CMF-55-1, T-1
A22R205 A22R206 A22R207 A22R207 A22R208 A22R209	0698-3152 0699-0131 0699-0131 0698-4476 0698-7848	8 9 9 1 7		RESISTOR 3.48K 1% .125W F TC=0+-100 RESISTOR 5.12K .25% .125W F TC=0+-50 RESISTOR 5.12K .25% .125W F TC=0+-50 RESISTOR 10.2K 1% .125W F TC=0+-100 RESISTOR 1.25K .1% .125W F TC=0+-25	19701 19701 19701 91637 19701	5033R 5033R 5033R CMF-55-1, T-1 5033R
A22R210 A22R211 A22R212 A22R213 A22R215	0698-0063 0698-3279 0683-1515 0683-1515 0683-1045	4 0 2 2 3		RESISTOR 5.23K 1% .125W F TC=0+-100 RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 150 5% .25W CF TC=0-400 RESISTOR 150 5% .25W CF TC=0-400 RESISTOR 100K 5% .25W CF TC=0-400	19701 19701 77902 77902 77902	5033R 5033R R-25J R-25J R-25J
A22TP0-TP16 A22U1 A22U2 A22U3 A22U3 A22U4	1251-0600 1826-0519 1820-1971 1826-0521 1826-0705	0 9 7 3 5	17 1 4 2 2	CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ IC OP AMP LOW-BIAS-H-IMPD 8-DIP-P PKG ANALOG SWITCH 4 SPST 16 -DIP-P IC OP AMP LOW-BIAS-H-IMPD DUAL 8-DIP-P D/A 12-BIT 20-CERDIP BPLR	27264 01295 17856 01295 34335	16-06-0034 SN99853P DG201CJ SN99855P AM6012DC
A22U5 A22U6 A22U7 A22U8 A22U8 A22U9	1820-1971 1820-1971 1826-0521 1826-0705 1820-1971	7 7 3 5 7		ANALOG SWITCH 4 SPST 16 -DIP-P ANALOG SWITCH 4 SPST 16 -DIP-P IC OP AMP LOW-BIAS-H-IMPD DUAL 8-DIP-P D/A 12-BIT 20-CERDIP BPLR ANALOG SWITCH 4 SPST 16 -DIP-P	17856 17856 01295 34335 17856	DG201CJ DG201CJ SN99855P AM6012DC DG201CJ
A22U10-U13 A22U14 A22U15 A22U16	1820-1730 1820-3465 1820-1216 1820-1197	6 8 3 9	4 1 1 1	IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL ALS D-TYPE POS-EDGE-TRIG COM IC DCDR TTL LS 3-TO-8-LINE 3-INP IC GATE TTL LS NAND QUAD 2-INP	01295 01295 01295 01295 01295	SN58039 SN74ALS174N SN53522 SN53504
A23	03326-66523	5	1	SQUARE BOARD	28480	03326-66523
A23C1 A23C2 A23C3 A23C100 A23C101	0180-0116 0180-0309 0180-0116 0160-4794 0160-4794	1 4 1 7 7	1 3 1 4	CAPACITOR-FXD 6.8UF+-10% 35VDC TA CAPACITOR-FXD 4.7UF+-20% 10VDC TA CAPACITOR-FXD 6.8UF+-10% 35VDC TA CAPACITOR-FXD 5.6FF +5FF 100VDC CER CAPACITOR-FXD 5.6FF +5FF 100VDC CER	13606 13606 13606 27167 27167	150 D685X90 35B2- DYS 150 D475X00 10 A2- DYS 150 D685X90 35B2- DYS CAC02 C0G5 R6 D100 A CAC02 C0G5 R6 D100 A
A23C102-C105 A23C200 A23C201 A23C202-C205 A23C300	0160-4571 0160-4794 0160-4794 0160-4794 0160-4571 0160-4571	8 7 7 8 8	31	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 5.6PF +5PF 100VDC CER CAPACITOR-FXD 5.6PF +5PF 100VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 27167 27167 04222 04222	MA205E104ZAA CAC02C0G5R6D100A CAC02C0G5R6D100A MA205E104ZAA MA205E104ZAA
A23C301 A23C302 A23C303 A23C303 A23C304 A23C305	0180-0309 0160-4787 0160-4787 0160-4787 0160-4571 0180-0309	4 8 8 8 4	4	CAPACITOR-FXD 4.7UF+-20% 10VDC TA CAPACITOR-FXD 22PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 22PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 10F +80-20% 50VDC CER CAPACITOR-FXD 4.7UF+-20% 10VDC TA	13606 27167 27167 04222 13606	150D475X0010A2-DYS CAC02C0G220J100A CAC02C0G220J100A MA205E104ZAA 150D475X0010A2-DYS
A23C306 A23C307 A23C308 A23C400-C409 A23C500-C509	0160-4787 0160-4787 0160-4571 0160-4571 0160-4571 0160-4571	8 8 8 8 8		CAPACITOR-FXD 22PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 22PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	27167 27167 04222 04222 04222	CAC02C0G220J100A CAC02C0G220J100A MA205E104ZAA MA205E104ZAA MA205E104ZAA
A23CR100 A23CR101 A23CR300 A23CR301 A23CR302	1902-0952 1902-0952 1901-0050 1902-0953 1902-0953	6 6 3 7 7	6 2 2	DIODE-ZNR 5.6V 5% DO-35 PD=.4W TC=+.046% DIODE-ZNR 5.6V 5% DO-35 PD=.4W TC=+.046% DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-ZNR 6.2V 5% DO-35 PD=.4W TC=+.053% DIODE-ZNR 6.2V 5% DO-35 PD=.4W TC=+.053%	04713 04713 07263 04713 04713	SZ30035-010 SZ30035-010 FDH 6308 SZ30035-011 SZ30035-011
A23CR303 A23CR400 A23CR401 A23CR402 A23CR402 A23CR403	1901-0050 1902-0957 1902-0952 1902-0957 1902-0952	3 1 6 1 6	4	DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-ZNR 9.1V 5% DO-35 PD=.4W TC=+.069% DIODE-ZNR 9.1V 5% DO-35 PD=.4W TC=+.046% DIODE-ZNR 9.1V 5% DO-35 PD=.4W TC=+.046% DIODE-ZNR 5.6V 5% DO-35 PD=.4W TC=+.046%	07263 04713 04713 04713 04713 04713	FDH 6308 SZ30035-015 SZ30035-010 SZ30035-015 SZ30035-010
A23CR500 A23CR501 A23CR502	1902-0957 1902-0952 1902-0957	1 6 1		DIODE-ZNR 9.1V 5% DO-35 PD=.4W TC=+.069% DIODE-ZNR 5.6V 5% DO-35 PD=.4W TC=+.046% DIODE-ZNR 9.1V 5% DO-35 PD=.4W TC=+.069%	04713 04713 04713	SZ30035-015 SZ30035-010 SZ30035-015

Table 4-15. Replaceable Parts

5.6V 5% DO-35 PD=.4W TC=+.046% F-CH-MLD 5.6UH 5% .166DX.385LG F-CH-MLD 5.6UH 5% .166DX.385LG F-CH-MLD 5.1UH 5% .100 F-CH-10	04713 24226 24226 24226 24226 24226 24226 24226 24226 24226 24226 24480 04713 19701	SZ30035-010 15M561J 15M511J-1 15M511J-1 03226-04123 0624-0333 0624-0333 0624-0333 0624-0333 2360-0113 T-54687 SPS 3611 5033R 5033R 5033R 5033R 5033R 5033R 5033R 5033R 5033R 5033R 5033R 5033R
<pre>7-CH-MLD 5.1UH 5\$.166DX.385LG 9-20 .25-IN-LG PAN-HD-POZI STL 4-20 .25-IN-LG PAN-HD-POZI STL 6-32 .25-IN-LG PAN-HD-POZI STL 6-32 .25-IN-LG PAN-HD-POZI 32 PIN MALE NPN SI PD=350MW FT=300MHZ NPN SI PD=350MW FT=300MHZ 00 1\$.125W F TC=0+-100 10 1\$.125W F TC=0+-100 10 1\$.125W F TC=0+-100 15 .125W F TC=0+-100 16 1\$.125W F TC=0+-100 17 .125W F TC=0+-100 18 .125W F TC=0+-100 19 1\$.125W F TC=0+-100 10 1\$.125W F TC=0+-100 14 .125W F TC=0+-100 15 .125W F TC=0+-100 16 1\$.125W F TC=0+-100 16 1\$.125W F TC=0+-100 17 .125W F TC=0+-100 10 1\$.125W</pre>	24226 24226 28480 01536 01536 01536 28480 04713 19701	15M511J-1 15M511J-1 0326-04123 0624-0333 2360-0113 T-54687 SPS 3611 SPS 3611 5033R 5033R 5033R 5033R 5033R 5033R 5033R 5033R 5033R 5033R 5033R 5033R 5033R 5033R 5033R 5033R 5033R 5033R 5033R
6-32 .25-IN-LG PAN-HD-POZI 6-32 .25-IN-LG PAN-HD-POZI 32 PIN MALE NPN SI PD=350MW FT=300MHZ 00 1% .125W F TC=0+-100 00 1% .125W F TC=0+-100 1% .125W F TC=0+-100 1% .125W F TC=0+-100 00K 1% .125W F TC=0+-100 00K 1% .125W F TC=0+-100 1% .125W F TC=0+-100 00 1% .125W F TC=0+	01536 01536 28480 04713 04713 19701 19701 19701 19701 19701 19701 19701 19701 19701 19701 19701 19701 19701 19701 19701 19701 19701 19701	2360-0113 2360-0113 T-54687 SPS 3611 5033R 5033R 5033R 5033R 5033R 5033R 5033R 5033R 5033R 5033R 8-25J 5033R 8-25J
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19701 19701 19701 91637 19701 19701 19701 19701 19701 19701 19701 19701 19701 19701 91637	5033R 5033R 5033R CMF-55-1, T-1 5033R 5033R 5033R 7033R 5033R 5033R 5033R 5033R 5033R
<pre>(1% .125W F TC=0+-100 33 1% .125W F TC=0+-100)4 1% .125W F TC=0+-100 .2 5% .25W CF TC=0-400 (1% .125W F TC=0+-100 00 1% .125W F TC=0+-100 00 1% .125W F TC=0+-100 00K 1% .125W F TC=0+-100 00K 1% .125W F TC=0+-100 (1% .125W F TC=0+-100 (3 1% .125W F TC=0+-100 (3 1% .125W F TC=0+-100</pre>	19701 19701 19701 77902 19701 19701 19701 19701 91637	5033R 5033R 5033R R-25J 5033R 5033R 5033R
20 1% .125W F TC=0+-100 20K 1% .125W F TC=0+-100 49 1% .125W F TC=0+-100 20K 1% .125W F TC=0+-100 C 1% .125W F TC=0+-100 33 1% .125W F TC=0+-100	19701 19701 19701 91637	5033R 5033R
(1% .125W F TC=0+-100 33 1% .125W F TC=0+-100	10701	CMF-55-1, T-1
2 5% .25W CF TC=0-400	19701 19701 19701 19701 77902	5033R 5033R 5033R 5033R R-25J
<pre>% 1% .125W F TC=0+-100 7 5% .25W F TC=0+400 % 1% .125W F TC=0+-100 7 5% .25W F TC=0-400 % 1% .125W F TC=0+-100</pre>	19701 77902 19701 77902 19701	5033R R-25J 5033R R-25J 5033R
(1% .125W F TC=0+-100 (1% .125W F TC=0+-100 (1% .125W F TC=0+-100 (1% .125W F TC=0+-100 (1% .125W F TC=0-+100 (7 5% .25W CF TC=0-400	19701 19701 19701 19701 77902	5033R 5033R 5033R 5033R R=25J
13.125W F TC=0+-100 13.125W F TC=0+-100 13.125W F TC=0+-100 13.125W F TC=0+-100 13.125W F TC=0+-100 13.125W F TC=0+-100	19701 19701 19701 19701 19701 19701	5033R 5033R 5033R 5033R 5033R
X 1% .125W F TC=0+-100 10 5% .25W CF TC=0-400 10 1% .125W F TC=0+-100 K .1% .125W F TC=0+-50 1% .125W F TC=0+-50	19701 77902 19701 19701 19701	5033R R-25J 5033R 5033R 5033R
9.6 .1≴ .125W F TC=0+-25 0 1≸ .125W F TC=0+-100 8.7 1≸ .125W F TC=0+-100	19701 19701 19701 91637 91637	5033R 5033R 5035R
19 1% .125₩ F TC±0+-100 9 1% .125₩ F TC=0+-100 0K 1% .125₩ F TC=0+-100	91637 91637 91637 19701 19701	CMF-55-1, T-1 CMF-55-1, T-1 CMF-55-1, T-1 5033R 5033R
1% 1% .125W F TC=0+-100 34K 1% .125W F TC=0+-100 1% 1% .125W F TC=0+-100	19701 19701 19701 19701 91637	5033R 5033R 5033R 5033R CMF-55-1, T-1
	1	
9994 ·4491 ·C ·C	59.6 .1% .125W F TC=0+-25 59.6 .1% .125W F TC=0+-25 50.1% .125W F TC=0+-100 80.7 1% .125W F TC=0+-100 40 1% .125W F TC=0+-100 49 1% .125W F TC=0+-100 49 1% .125W F TC=0+-100 1% 1% .125W F TC=0+-100 1% 1% .125W F TC=0+-100 .49K 1% .125W F TC=0+-100 0K 1% .125W F TC=0+-100 0X 1% .125W F TC=0+-100 .42K 1% .125W F TC=0+-100	59.6.1\$ $.125W F TC=0+-25$ 19701 $50.1$$ $.125W F TC=0+-100$ 91637 $40.1$$ $.125W F TC=0+-100$ 91637 $40.1$$ $.125W F TC=0+-100$ 91637 $40.1$$ $.125W F TC=0+-100$ 91637 $44.1$$ $.125W F TC=0+-100$ 91637 $49.1$$ $.125W F TC=0+-100$ 91637 $49.1$$ $.125W F TC=0+-100$ 91637 $90K 1$$ $.125W F TC=0+-100$ 19701 $11K 1$$ $.125W F TC=0+-100$ 19701 $.49K 1$$ $.125W F TC=0+-100$ 19701 $.49K 1$$ $.125W F TC=0+-100$ 19701 $.49K 1$$ $.125W F TC=0+-100$ 19701 $.34K 1$$ $.125W F TC=0+-100$ 19701 $.34K 1$$ $.125W F TC=0+-100$ 19701 $.34K 1$$ $.125W F TC=0+-100$ 19701

PART NUMBER 9320-3991

Table 4-16. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A23R421-R424 A23R500 A23R501 A23R502 A23R503	0683-4705 0757-0442 0683-5615 0757-0401 0698-6943	8 9 1 0 1	8	RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 560 5% .25W CF TC=0-400 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 20K .1% .125W F TC=0+-50	77902 19701 77902 19701 19701	R-25J 5033R R-25J 5033R 5033R
A23R504 A23R506 A23R507 A23R508 A23R509	0698-6943 0699-0189 0699-0189 0757-0284 0698-4381	1 7 7 7 7		RESISTOR 20K .1% .125W F TC=0+-50 RESISTOR 259.6 .1% .125W F TC=0+-25 RESISTOR 259.6 .1% .125W F TC=0+-25 RESISTOR 150 1% .125W F TC=0+-100 RESISTOR 48.7 1% .125W F TC=0+-100	19701 19701 19701 19701 91637	5033R 5033R 5033R 5033R CMF-55-1, T-1
A23R510 A23R511 A23R512 A23R513 A23R514	0698-4451 0698-4424 0698-4421 0698-4421 0698-8343	29669		RESISTOR 340 1% .125W F TC=0+-100 RESISTOR 1.4K 1% .125W F TC=0+-100 RESISTOR 249 1% .125W F TC=0+-100 RESISTOR 249 1% .125W F TC=0+-100 RESISTOR 590K 1% .125W F TC=0+-100	91637 91637 91637 91637 19701	CMF-55-1, T-1 CMF-55-1, T-1 CMF-55-1, T-1 CMF-55-1, T-1 5033R
A23R515 A23R516 A23R517 A23R518 A23R519	0757-0482 0698-3226 0757-0449 0698-3516 0757-0442	7 7 8 9		RESISTOR 511K 1% .125W F TC=0+-100 RESISTOR 6.49K 1% .125W F TC=0+-100 RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR 6.34K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	19701 19701 19701 19701 19701	5033R 5033R 5033R 5033R 5033R
A23R520 A23R521-R524 A23TP1-TP4 A23TP100 A23TP200	0698-4442 0683-4705 1251-0600 1251-0600 1251-0600	1 8 0 0 0	15	RESISTOR 4.42K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ	91637 77902 27264 27264 27264	CMF-55-1, T-1 R-25J 16-06-0034 16-06-0034 16-06-0034
A23TP300-TP301 A23TP400-TP402 A23TP500-TP503 A23U100 A23U200	1251-0600 1251-0600 1251-0600 1826-0244 1826-0244	0 0 7 7	2	CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ IC COMPARATOR HS 14-DIP-P PKG IC COMPARATOR HS 14-DIP-P PKG	27264 27264 27264 18324 18324	16-06-0034 16-06-0034 16-06-0034 CR546 CR546
A23U300 A23U301 A23U302 A23U400 A23U401	1820-0817 1820-1400 1820-1400 1826-0023 1826-0522	8 7 0 4	1 2 2 2	IC FF ECL D-M/S DUAL IC GATE ECL AND QUAD 2-INP IC GATE ECL AND QUAD 2-INP IC MODULATOR 14-DIP-C FKG IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-P	04713 04713 04713 04713 04713 01295	SC63470P131 SC63470P104 SC63470P104 SC14912LK SN99856N
A23U500 A23U501	1826-0023 1826-0522	0 4		IC MODULATOR 14-DIP-C PKG IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-P	04713 01295	SC 1 49 12 LK SN99856 N
A24	03326-66524	6	1	RF SWITCH BOARD	28480	03326-66524
A24C1 A24C2 A24C3 A24C10 A24C11	0160-3847 0160-4571 0160-3847 0160-4571 0160-3847	98989	13 10	CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD .1UF +80-20\$ 50VDC CER CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD .1UF +80-20\$ 50VDC CER CAPACITOR-FXD .01UF +100-0\$ 50VDC CER	04222 04222 04222 04222 04222 04222	MA105C103PAA MA205E104ZAA MA105C103PAA MA205E104ZAA MA105C103PAA
A24C12 A24C20 A24C21 A24C22 A24C22 A24C30	0160-3847 0160-3847 0160-4571 0160-3847 0160-3847	99899		CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD .1UF +80-20\$ 50VDC CER CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD .01UF +100-0\$ 50VDC CER	04222 04222 04222 04222 04222 04222	MA105C103PAA MA105C103PAA MA205E104ZAA MA105C103PAA MA105C103PAA
A24C31 A24C32 A24C40 A24C41 A24C42	0160-4571 0160-3847 0160-4571 0160-3847 0160-3847	898999		CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	04222 04222 04222 04222 04222 04222	MA205E104ZAA MA105C103PAA MA205E104ZAA MA105C103PAA MA105C103PAA
A24C43 A24C50 A24C51 A24C52 A24C70-C73	0160-3847 0160-3847 0160-4571 0160-3847 0160-4571	99898		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 04222 04222 04222 04222 04222	MA105C103PAA MA105C103PAA MA205E104ZAA MA105C103PAA MA205E104ZAA
A24C81 A24C82 A24CR1-CR3 A24CR20-CR22 A24CR30-CR32	0180-0116 0180-0116 1901-0040 1901-0040 1901-0040	1	2 12	CAPACITOR-FXD 6.8UF+-10% 35VDC TA CAPACITOR-FXD 6.8UF+-10% 35VDC TA DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	13606 13606 07263 07263 07263	150D685X9035B2-DYS 150D685X9035B2-DYS FDH1088 FDH1088 FDH1088
A24CR50-CR52 A24J2-J3 A24L10	1901-0040 1251-6254 9100-0539	1 2 3	2 1	DIODE-SWITCHING 30V 50MA 2NS DO-35 CONNECTOR-SGL CONT RTANG-F INDUCTOR RF-CH-MLD 10UH 5% .156DX.375LG	07263 91833 06560	FDH1088 901 4445-2J

See introduction to this section for ordering information *Indicates factory selected value PART NUMBER 9320 3991

Table 4-17. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A24L81-L82 A24MP1	9100-1791 03326-04124	1	2	CORE-FERRITE CHOKE-WIDEBAND;IMP:>360 CVR, RF SWITCH	02114 28480	VK200-19/4B 03326-04124
A24MP2-MP3 A24MP4-MP5 A24P1 A24Q1-Q8 A24R1	0624-0333 2360-0113 T-54687 1854-0795 0683-4705	62928 828	2 2 1 8 16	SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI DIN CONN32 PIN MALE TRANSISTOR NPN SI TO-92 PD=625MW RESISTOR 47 5% .25W CF TC=0-400	01536 01536 28480 04713 77902	0624-0333 2360-0113 T-54687 \$P\$8028 R-25J
A24R2 A24R3 A24R4 A24R5 A24R6	0757-0424 0757-1094 0757-0424 0683-4705 0757-0410	7 9 7 8 1	10 4 4	RESISTOR 1.1K 1% .125W F TC=0+-100 RESISTOR 1.47K 1% .125W F TC=0+-100 RESISTOR 1.1K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 301 1% .125W F TC=0+-100	19701 19701 19701 77902 19701	5033R 5033R 5033R R-25J 5033R
A24R7 A24R8 A24R9 A24R10 A24R11	0683-4705 0683-2225 0698-3438 0757-0416 0757-0416	83377	4 9	RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 2.2K 5% .25W CF TC=0-400 RESISTOR 147 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100	77902 77902 19701 19701 19701	R-25J R-25J 5033R 5033R 5033R
A24R12 A24R13 A24R14 A24R15 A24R15 A24R16	0757-0416 0683-4705 0757-0280 0757-0280 0698-3160	7 8 3 3 8	4 14	RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 31.6K 1% .125W F TC=0+-100	19701 77902 19701 19701 19701	5033R R-25J 5033R 5033R 5033R
A24R17 A24R20 A24R21 A24R22 A24R22 A24R23	0698-3160 0683-4705 0757-0424 0757-1094 0757-0424	8 8 7 9 7		RESISTOR 31.6K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 1.1K 1% .125W F TC=0+-100 RESISTOR 1.47K 1% .125W F TC=0+-100 RESISTOR 1.1K 1% .125W F TC=0+-100	19701 77902 19701 19701 19701	5033R R-25J 5033R 5033R 5033R
A24R24 A24R25 A24R26 A24R27 A24R27 A24R28	0683-4705 0757-0410 0683-4705 0683-2225 0698-3438	8 1 8 3 3		RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 301 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 2.2K 5% .25W CF TC=0-400 RESISTOR 147 1% .125W F TC=0+-100	77902 19701 77902 77902 19701	R-25J 5033R R-25J F-25J 5033R
A24R29 A24R30 A24R31 A24R32 A24R32 A24R33	0757-0416 0757-0424 0757-1094 0757-0424 0683-4705	7 7 9 7 8		RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 1.1K 1% .125W F TC=0+-100 RESISTOR 1.47K 1% .125W F TC=0+-100 RESISTOR 1.1K 1% .125W F TC=0+-100 RESISTOR 1.7K 1% .25W F TC=0+-100	19701 19701 19701 19701 77902	5033R 5033R 5033R 5033R 8-25J
A24R34 A24R35 A24R36 A24R37 A24R38	0757-0410 0683-4705 0683-2225 0698-3438 0757-0416	1 8 3 7		RESISTOR 301 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 2.2K 5% .25W CF TC=0-400 RESISTOR 147 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100	19701 77902 77902 19701 19701	5033R R-25J R-25J 5033R 5033R
A24R41 A24R42 A24R43 A24R44 A24R44 A24R45	0757-0416 0757-0416 0757-0416 0757-0280 0757-0280	7 7 7 3 3		RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	19701 19701 19701 19701 19701 19701	5033R 5033R 5033R 5033R 5033R 5033R
A24R46 A24R47 A24R50 A24R51 A24R52	0698-3160 0698-3160 0757-0424 0757-1094 0757-0424	8 8 7 9 7		RESISTOR 31.6K 1% .125W F TC=0+-100 RESISTOR 31.6K 1% .125W F TC=0+-100 RESISTOR 1.1K 1% .125W F TC=0+-100 RESISTOR 1.47K 1% .125W F TC=0+-100 RESISTOR 1.47K 1% .125W F TC=0+-100	19701 19701 19701 19701 19701 19701	5033R 5033R 5033R 5033R 5033R 5033R
A24R53 A24R54 A24R55 A24R56 A24R56 A24R57	0683-4705 0757-0410 0683-4705 0683-2225 0698-3438	8 1 8 3 3		RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 301 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 2.2K 5% .25W CF TC=0-400 RESISTOR 147 1% .125W F TC=0+-100	77902 19701 77902 77902 19701	R-25J 5033R R-25J R-25J 5033R
A24R58 A24R60 A24R69 A24R70 A24R71	0757-0416 0683-4705 0757-0424 0757-0424 0757-0424	7 8 7 7 9	2	RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 1.1K 1% .125W F TC=0+-100 RESISTOR 1.1K 1% .125W F TC=0+-100 RESISTOR 1.0K 1% .125W F TC=0+-100	19701 77902 19701 19701 19701	5033R R-25J 5033R 5033R 5033R
A24R72 A24R73 A24R74 A24R80 A24R81	0757-0442 0698-3156 0698-3161 0683-4705 0683-4705	9 N 9 8 8	1 1	RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 14.7K 1% .125W F TC=0+-100 RESISTOR 38.3K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400	19701 19701 19701 77902 77902	5033R 5033R 5033R R-25J R-25J

Table 4-18. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A24R82 A24R83 A24TP1-TP8 A24U1 A24U2	0683-4705 0683-4705 1251-0600 1820-0810 1820-0810	8 8 0 1	8 2	RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ IC RCVR ECL LINE RCVR TPL 2-INP IC RCVR ECL LINE RCVR TPL 2-INP	77902 77902 27264 04713 04713	R-25J R-25J 16-06-0034 S663470P116 Sc63470P116
A24U4 A24U5	1826-0138 1820-2488	8 3	1	IC COMPARATOR GP QUAD 14-DIP-P PKG IC FF TTL ALS D-TYPE POS-EDGE-TRIG	27014 01295	SL24958 SN71171N
A31	03326-66531	5	2	VCO BOARDS	28480	03326-66531
A31C1 A31C2 A31C3 A31C5 A31C7	0180-0228 0160-4571 0160-3847 0160-4040 0160-0127	6 8 9 6 2	1 1 6 1 3	CAPACITOR-FXD 22UF+-10% 15VDC TA CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 1000PF +-5% 100VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER	13606 04222 04222 04222 13606	1500226X9015B2-DYS MA205E104ZAA MA105C103PAA SR201A102JAA 2C37Z5U105M025A
A31C8 A31C9 A31C10 A31C11 A31C12	0160-3876 0160-0571 0160-0127 0160-4801 0160-3847	4 0 2 7 9	1 1 1	CAPACITOR-FXD 47PF +-20% 200VDC CER CAPACITOR-FXD 470PF +-20% 100VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD 100PF +-5% 100VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	51642 51642 13606 27167 04222	200-200-X7R-470M(.250LL) 200-100-X7R-471M(.250LL) 2037Z5U105M025A CAC02C0G101J100A MA105C103PAA
A31C13 A31C14 A31C15 A31C16 A31C16 A31C17	0180-0309 0180-0374 0160-0127 0160-3879 0160-3879	4 3 2 7 7	1 1 2	CAPACITOR-FXD 4.7UF+-20% 10VDC TA CAPACITOR-FXD 10UF+-10% 20VDC TA CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD 01UF +-20% 100VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER	13606 13606 13606 28480 28480	150D475X0010A2-DYS 150D106X9020B2-DYS 203725U105M025A 0320C103M1R5CA C320C103M1R5CA
A31C18 A31C19 A31C20 A31C22 A31C22 A31C23	0160-3847 0180-0100 0160-3847 0160-3847 0160-3847	93999	1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 4.7UF+-10% 35VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	04222 13606 04222 04222 04222	MA105C103PAA 150D475X9035B2-DYS MA105C103PAA MA105C103PAA MA105C103PAA
A31CR1 A31CR2 A31CR3 A31CR3 A31CR4 A31CR5	1901-0040 1901-0040 0122-0162 0122-0162 1901-0518	1 1 5 5 8	2 2 1	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-VVC 29FF 10% BVR=30V DIODE-VVC 29FF 10% BVR=30V DIODE-SCHOTTKY SM SIG	07263 07263 25403 25403 28480	FDH1088 FDH1088 BB809 BB809 1901-0518
A31CR6 A31J1 A31J2 A31L1 A31L2	1902-0959 1250-0544 1250-0544 9140-0257 9100-0539	39963	1 2 1 1	DIODE-ZNR 11V 5% DO-35 PD=.4W TC=+.076% CONNECTOR-RF SM-SNP M SGL-HOLE-FR 50-OHM CONNECTOR-RF SM-SNP M SGL-HOLE-FR 50-OHM COIL-VAR 297NH-363NH Q=140 PC-MTG INDUCTOR RF-CH-MLD 10UH 5% .156DX.375LG	04713 98291 98291 28480 06560	SZ30035-017 051-049-0000-220 051-049-0000-220 Q2.33TAPPED 4445-2J
A31L3 A31L4 A31L5 A31MP1 A31MP2	9140-0349 9100-1791 9100-1791 03326-04131 0624-0333	7 1 1 6	1 2 1 2	INDUCTOR RF-CH-MLD 1.1UH 5% .166DX.385LG CORE-FERRITE CHOKE-WIDEBAND,IMP:>360 CORE-FERRITE CHOKE-WIDEBAND;IMP:>360 CVR, VCO SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL	24226 02114 02114 28480 01536	15M111J VK200-19/4B VK200-19/4B 03226-04131 0624-0333
A31MP3 A31MP4-MP6 A31P1 A31Q1-Q3 A31R1	0624-0333 2360-0113 1252-0266 1854-0345 0757-0280	6 2 6 8 3	3 1 3 6	SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI DIN CONN16 PIN MALE TRANSISTOR NPN 2N5179 SI TO-72 PD=200MW RESISTOR 1K 1% .125W F TC=0+-100	01536 01536 06383 04713 19701	0624-0333 2360-0113 100-316-033 SRF5064 5033R
A 3 1 R 2 A 3 1 R 3 A 3 1 R 4 A 3 1 R 5 A 3 1 R 6	0683-2205 0757-0439 0698-4443 0698-4405 0757-0280	94263	1 1 1	RESISTOR 22 5% .25W CF TC=0-400 RESISTOR 6.81K 1% .125W F TC=0+-100 RESISTOR 4.53K 1% .125W F TC=0+-100 RESISTOR 107 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	77902 19701 91637 91637 19701	R-25J 5033R CMF-55-1, T-1 CMF-55-1, T-1 5033R
A 31 R7 A 31 R8 A 31 R9 A 31 R10 A 31 R10 A 31 R11	0757-0442 0698-4490 0757-0280 0683-1015 0683-1015	99377	2 1 3	RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 29.4K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 100 5% .25W CF TC=0-400	19701 91637 19701 77902 77902	5033R CMF-55-1, T-1 5033R R-25J R-25J R-25J
A31R12 A31R13 A31R14 A31R15 A31R15 A31R16	0757-0280 0757-0394 0757-0280 0698-3279 0757-0442	30 30 9	1	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	19701 19701 19701 19701 19701	5033R 5033R 5033R 5033R 5033R
A31R17 A31R18 A31R19	0698-3279 0757-0280 0683-1015	0 3 7		RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 100 5% .25W CF TC=0-400	19701 19701 77902	5033R 5033R R-25J

See introduction to this section for ordering information *Indicates factory selected value

PART NUMBER 9320-3991

Table 4-19. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A31R20	0757-0283	6	1	RESISTOR 2K 1% .125W F TC=0+-100	19701	5033R
A 31 R2 1 A 31 R2 2 A 31 R2 3 A 31 R2 4 A 31 R2 5 A 31 R2 6	0757-0427 0683-1025 0757-0316 0683-3915 0683-3915 0757-0316	0 9 6 0 6	1 2 2	RESISTOR 1.5K 1% .125W F TC=0++100 RESISTOR 1K 5% .25W CF TC=0+400 RESISTOR 42.2 1% .125W F TC=0++100 RESISTOR 390 5% .25W CF TC=0-400 RESISTOR 390 5% .25W CF TC=0-400 RESISTOR 42.2 1% .125W F TC=0++100	19701 77902 19701 77902 77902 19701	5033R R-25J 5033R R-25J R-25J 5033R
A31R27 A31R28 A31TP1-TP4 A31U1	0683-4725 8150-3375 1251-0600 1820-0802	2 5 1	1 1 4 1	RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR-ZERO OHMS 22 AWG LEAD DIA CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ IC GATE ECL NOR QUAD 2-INP	77902 75042 27264 04713	R-25J ZEROHM 16-06-0034 SC63470P102
A32	03326-66532	6	2	VCO CONTROL BOARDS	28480	03326-66532
A32C1 A32C2 A32C3 A32C4 A32C5	0160-0362 0160-0299 0160-0154 0160-6146 0160-0300	7 9 5 7 3	1 1 1 1	CAPACITOR-FXD 510PF +-5% 300VDC MICA CAPACITOR-FXD 1800PF +-10% 200VDC POLYE CAPACITOR-FXD 2200PF +-10% 200VDC POLYE C-F 910PF +-5% CAPACITOR-FXD 2700PF +-10% 200VDC POLYE	00853 13606 13606 27167 13606	0160-0362 192P18292 192P22292 C&C03C0G911J100A 192P27292
A32C6 A32C7 A32C8 A32C9 A32C10	0160-3847 0160-3847 0160-3847 0160-5349 0160-5349 0160-5349	99900	9 2	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 200FF +-5% 100VDC CER CAPACITOR-FXD 200FF +-5% 100VDC CER	04222 04222 04222 13606 13606	MA 105C103P AA MA 105C103P AA MA 105C103P AA 292CC00201J 100B 292CC00201J 100B
A32C11 A32C12 A32C13 A32C14 A32C16	0180-0309 0180-0100 0180-0100 0160-4787 0160-0128	4 M M & M	1 2 1 1	CAPACITOR-FXD 4.7UF+-20% 10VDC TA CAPACITOR-FXD 4.7UF+-10% 35VDC TA CAPACITOR-FXD 4.7UF+-10% 35VDC TA CAPACITOR-FXD 2.2F +-5% 100VDC CER 0+-30 CAPACITOR-FXD 2.2UF +-20% 50VDC CER	13606 13606 13606 27167 13606	150D475X0010A2-DYS 150D475X9035B2-DYS 150D475X9035B2-DYS CACO2C0G220J100A 3C3725U225M050A
A32C21 A32C22 A32C23 A32C24 A32C50	0160-4801 0160-4532 0160-3847 0160-3847 0180-0374	7 1 9 3	1 1 1	CAPACITOR-FXD 100PF +-5% 100VDC CER CAPACITOR-FXD 1000PF +-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 10UF+-10% 20VDC TA	27167 27167 04222 04222 13606	CAC02C0G101J100A CAC02X7R102M100A MA105C103PAA MA105C103PAA 150D106X9020B2-DYS
A32C51 A32C55 A32C56 A32C57 A32C57 A32CR5	0160-3847 0160-3847 0160-3847 0160-3847 1990-0486	9 9 9 9 9 9 9 9 9 9 9 9 9	1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER LED-LAMP LUM-INT=2MCD IF=25MA-MAX BVR=5V	04222 04222 04222 04222 28480	MA 105C103P AA MA 105C103P AA MA 105C103P AA MA 105C103P AA M3 105C103P AA 1990-0486
A32CR21 A32CR22 A32CR23 A32J1 A32J1A	1901-0040 1902-0943 1902-0943 1251-4670 1258-0141	1 5 2 8	1 2 1	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 2.4V 5% DO-35 PD=.4W TC=037% DIODE-ZNR 2.4V 5% DO-35 PD=.4W TC=037% CONN-POST TYPE .100-PIN-SPCG 3-CONT JMPR-REM .025P	07263 04713 04713 22526 22526	FDH1088 SZ30035-001 SZ30035-001 65500-103 65474-004
A32L1 A32L2 A32L3 A32L4 A32L4 A32L5	9100-2575 9100-2578 9100-3345 9100-3345 9100-3345 9100-3345	1 4 5 5 5	1 1 3	INDUCTOR RF-CH-MLD 1.5MH 10% INDUCTOR RF-CH-MLD 2.7MH 10% INDUCTOR RF-CH-MLD 2UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 2UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 2UH 5% .166DX.385LG	06560 06560 06560 06560 06560	158-152K 158-272K 1582R0J 15A2R0J 15A2R0J 15A2R0J
A 32MP 1 A 32MP 2 A 32MP 3 A 32MP 4 A 32MP 5	03326-04132 0624-0333 0624-0333 2360-0113 2360-0113	2 6 6 2 N	1 2 2	CVR, VCO CONTROL SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI	28480 01536 01536 01536 01536 01536	03326-04132 0624-0333 0624-0333 2360-0113 2360-0113
A32P1 A32Q1 A32Q21 A32R1 A32R2	T-54687 1854-0215 1855-0081 0757-0280 0683-1015	9 1 1 3 7	1 1 5 2	DIN CONN32 PIN MALE TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR J-FET N-CHAN D-MODE SI RESISTOR 1K 1%.125W FTC=0+-100 RESISTOR 1K0 5%.25W CF TC=0-400	28480 04713 34677 19701 77902	T-54687 SPS 3611 F1843 5033R R-25J
A 32 R4 A 32 R5 A 32 R6 A 32 R7 A 32 R8	0757-0280 0757-0426 0698-4470 0698-4453 0698-4461	39544	1 1 2 1	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1.3K 1% .125W F TC=0+-100 RESISTOR 6.98K 1% .125W F TC=0+-100 RESISTOR 402 1% .125W F TC=0+-100 RESISTOR 698 1% .125W F TC=0+-100	19701 19701 91637 91637 91637	5033R 5033R CMF-55-1, T-1 CMF-55-1, T-1 CMF-55-1, T-1
A32R9 A32R10 A32R11	0698-4453 0683-1035 0683-1035	4 1 1	2	RESISTOR 402 1% .125W F TC=0+-100 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400	91637 77902 77902	CMF-55-1, T-1 R-25J R-25J

Table 4-20. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A32R12 A32R13	0683-1555 0683-1555	0	2	RESISTOR 1.5M 5% .25W CF TC=0-900 RESISTOR 1.5M 5% .25W CF TC=0-900	77902 77902	R-25J R-25J
A32R14 A32R15-R17 A32R18 A32R18 A32R19 A32R21	0757-0411 0757-0280 0683-3025 0757-0442 0683-1025	20000	1 2 1 4	RESISTOR 332 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 3K 5% .25W CF TC=0-400 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0-400	19701 19701 77902 19701 77902	5033R 5033R R-25J 5033R R-25J
A 32 R22 A 32 R23 A 32 R24 A 32 R25 A 32 R25 A 32 R26	0683-1015 0683-3025 0698-4125 0683-1045 0683-1045	73733	1	RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 3K 5% .25W CF TC=0-400 RESISTOR 953 1% .125W F TC=0+-100 RESISTOR 100K 5% .25W CF TC=0-400 RESISTOR 100K 5% .25W CF TC=0-400	77902 77902 19701 77902 77902	R-25J R-25J 5033R R-25J R-25J R-25J
A 32 R27 A 32 R28 A 32 R29 A 32 R30 A 32 R30 A 32 R31	0757-0444 0698-3152 0757-0427 0683-1025 0698-3279	1 8 0 9 0	1 1 1 2	RESISTOR 12.1K 1% .125W F TC=0+-100 RESISTOR 3.48K 1% .125W F TC=0+-100 RESISTOR 1.5K 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0+40 RESISTOR 1K 5% .25W CF TC=0+-100	19701 19701 19701 77902 19701	5033R 5033R 5033R R-25J 5033R
A32R32 A32R50 A32R60 A32R61 A32R61 A32TP1-TP8	0698-3279 0837-0275 0683-1025 0683-1025 1251-0600	06990	1 8	RESISTOR 4.99K 1% .125W F TC=0+-100 THERMISTOR DISC 50-0HM TC=+2.35%/C-DEG RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400 CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ	19701 28480 77902 77902 27264	5033R RL3006-50-110-25-PT0 R-25J R-25J 16-06-0034
A32U1 A32U2 A32U4 A32U21 A32U21 A32U22	1826-0715 1826-0138 1820-2488 1820-1197 1820-1971	7 8 3 9 7	1 1 1 1	IC OP AMP LOW-NOISE 8-DIP-P PKG IC COMPARATOR GP QUAD 14-DIP-P PKG IC FF TIL ALS D-TYPE POS-EDGE-TRIG IC GATE TIL LS NAND QUAD 2-INP ANALOG SWITCH 4 SPST 16 -DIP-P	18324 27014 01295 01295 17856	CC3802 SL24958 SN71171N SN53504 DG201CJ
A32U23	1826-0139	9	1	IC OP AMP GP DUAL 8-DIP-P PKG	04713	SC25137P1
A33	03326-66533	7	2	PHASE DETECTOR BOARDS	28480	03326-66533
A33C1-C4 A33C5 A33C6 A33C7 A33C8	0160-3847 0180-0553 0160-3847 0180-0553 0180-2765	9 0 9 0 0	26 6 18	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 22UF+-20% 25VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 22UF+-20% 25VDC TA CAPACITOR-FXD 15UF+-20% 20VDC TA	04222 28480 04222 28480 28480	MA105C103PAA T362C226M025ASC8245 MA105C103PAA T362C226M025ASC8245 MD7-020-156-20/9038
A33C10 A33C11 A33C12 A33C13 A33C14	0160-4787 0160-5306 0160-5306 0160-4461 0160-4461	89955	3 2 2	CAPACITOR-FXD 22PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD .1UF +-10% 100VDC CAPACITOR-FXD .1UF +-10% 100VDC CAPACITOR-FXD 150PF +-2.5% 630VDC POLYP CAPACITOR-FXD 150PF +-2.5% 630VDC POLYP	27167 19701 19701 25088 25088	CAC02C0G220J100A 719A1CA104PK101SA 719A1CA104PK101SA B33062/150PF/2.5\$/630V B33062/150PF/2.5\$/630V
A33C15 A33C16 A33C17 A33C18 A33C18 A33C19	0160-3847 0160-3847 0160-2207 0160-2207 0160-2207 0160-3847	999999	2	CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD 300PF +-5\$ 300VDC MICA CAPACITOR-FXD 300PF +-5\$ 300VDC MICA CAPACITOR-FXD .01UF +100-0\$ 50VDC CER	04222 04222 00853 00853 04222	MA105C103PAA MA105C103PAA 0160-2207 0160-2207 MA105C103PAA
A33C20 A33C21 A33C22-C26 A33C29 A33C30	0160-3847 0160-4793 0160-0576 0180-2765 0180-2765	96500	1 7	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 6.8PF +5PF 100VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 15UF+-20% 20VDC TA CAPACITOR-FXD 15UF+-20% 20VDC TA	04222 27167 04222 28480 28480	MA105C103PAA CAC02C0G6R8D100A SR205C104MAA MD7-020-156-20/9038 MD7-020-156-20/9038
A33C32 A33C34 A33C35 A33C37 A33C37 A33C38	0180-0309 0160-3847 0160-3847 0180-0553 0180-0553	49900	1	CAPACITOR-FXD 4.7UF+-20% 10VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 22UF+-20% 25VDC TA CAPACITOR-FXD 22UF+-20% 25VDC TA	13606 04222 04222 28480 28480	150D475X0010A2-DYS MA105C103PAA MA105C103PAA T362C226M025ASC8245 T362C226M025ASC8245
A33C39 A33C44 A33C45 A33C46 A33C46 A33C47	0160-3847 0160-4787 0180-0553 0160-3847 0180-2765	98090		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 22PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 22UF+-20% 25VDC TA CAPACITOR-FXD 01UF +100-0% 50VDC CER CAPACITOR-FXD 15UF+-20% 20VDC TA	04222 27167 28480 04222 28480	MA105C103PAA CAC02C0G220J100A T362C226M025ASC8245 MA105C103PAA MD7-020-156-20/9038
A33C48 A33C49 A33C50 A33C51 A33C52	0160-4787 0160-4789 0180-2765 0160-3847 0160-4789	80090	2	CAPACITOR-FXD 22PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 15PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 15UF+-20% 20VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 15PF +-5% 100VDC CER 0+-30	27 167 27 167 28480 04222 27 167	CAC02C0G220J100A CAC02C0G150J100A MD7-020-155-20/9038 MA105C103PAA CAC02C0G150J100A

See introduction to this section for ordering information *Indicates factory selected value

PART NUMBER 9320-3991

Table 4-21. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A33C55-C59 A33C63 A33C64 A33C66 A33C66	0180-2765 0180-0553 0160-3847 0160-3847 0160-3847	0 0 9 9		CAPACITOR-FXD 15UF+-20% 20VDC TA CAPACITOR-FXD 22UF+-20% 25VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 04222 04222 04222 04222	MD7-020~156-20/9038 T362C226M025ASC8245 MA105C103PAA MA105C103PAA MA105C103PAA
A33C72 A33C76 A33C77 A33C78 A33C80-C82	0160-3847 0160-4571 0160-4571 0180-2765 0160-3847	98809	3	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 15UF+-20% 20VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER	04222 04222 04222 28480 04222	MA105C103PAA MA205E104ZAA MA205E104ZAA MA205E104ZAA M07-020-156-20/9038 MA105C103PAA
A33C83 A33C84 A33C85 A33C86 A33C86 A33C87	0160-0576 0160-3847 0160-3847 0160-0576 0160-3847	50050		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	04222 04222 04222 04222 04222 04222	SR205C104MAA MA105C103PAA MA105C103PAA SR205C104MAA MA105C103PAA
A33C90 A33C91 A33C92 A33C93 A33C94	0160-3847 0160-3847 0180-2794 0180-2794 0180-2794 0180-2765	99550	1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 3.3UF+-20% 35VDC TA CAPACITOR-FXD 3.3UF+-20% 35VDC TA CAPACITOR-FXD 15UF+-20% 20VDC TA	04222 04222 28480 28480 28480	MA105C103PAA MA105C103PAA MD6-035-335-20/9038 MD6-035-335-20/9038 MD7-020-156-20/9038
A33C95 A33C96 A33C97 A33C98 A33C100-C103	0160-3847 0180-2765 0180-2765 0160-4571 0180-2765	9 0 0 8 0		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 15UF+-20% 20VDC TA CAPACITOR-FXD 15UF+-20% 20VDC TA CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 15UF+-20% 20VDC TA	04222 28480 28480 04222 28480	MA105C103PAA MD7-020-156-20/9038 MD7-020-156-20/9038 MA205E104ZAA MD7-020-156-20/9038
A33C104 A33C105 A33CR1 A33CR5 A33CR6	0180-0229 0160-2243 1901-0040 1901-0040 1901-0040	7 7 1 1	1 1 13	CAPACITOR-FXD 33UF+-10% 10VDC TA CAPACITOR-FXD 2.7PF +25PF 500VDC CER DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	13606 52763 07263 07263 07263	150D336X9010B2-DYS 0160-2243 FDH1088 FDH1088 FDH1088 FDH1088
A33CR11 A33CR12 A33CR13-CR15 A33CR17 A33CR18-CR20	1901-0040 1902-3054 1901-0040 1902-0777 1901-0040	1 5 1 3 1	1	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 3.65V 5% DO-35 PD=.4W DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 1N825 6.2V 5% DO-7 PD=.4W DIODE-SWITCHING 30V 50MA 2NS DO-35	07263 04713 07263 04713 07263	FDH1088 SZ30016~056 FDH1088 SZ14376 RL FDH1088
A33CR21 A33CR30 A33CR31 A33CR36 A33J1	1902-0777 1901-0040 1901-0040 1901-0040 1250-0544	3 1 1 9	1	DIODE-ZNR 1N825 6.2V 5% DO-7 PD=.4W DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 CONNECTOR-RF SM-SNP M SGL-HOLE-FR 50-0HM	04713 07263 07263 07263 98291	SZ14376RL FDH1088 FDH1088 FDH1088 051-049-0000-220
A33L1 A33L2-L12 A33L100-L103 A33MP1 A33MP2	9140-0748 9100-3560 9100-3560 03326-04133 0624-0333	06636	1 16 1 2	INDUCTOR 250UH 25% .25DX.5LG Q=3 INDUCTOR RF-CH-MLD 5.6UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 5.6UH 5% .166DX.385LG CVR, PHASE DETECTOR SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL	04213 24226 24226 28480 01536	1670-1 15M561J 03326-04133 0624-0333
A 3 3 MP 3 A 3 3 MP 4 A 3 3 MP 5 A 3 3 MP 6 A 3 3 MP 7	0624-0333 2360-0113 2360-0113 2360-0113 0515-0886	ы N N N O N	3	SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI SCREW-MACH M3 X 0.5 6MM-LG PAN-HD	01536 01536 01536 01536 28480	0624-0333 2360-0113 2360-0113 2360-0113 0515-0886
A33MP8 A33P1 A33Q1 A33Q2 A33Q3	0535-0004 1251-8410 1853-0448 1853-0448 1854-0345	9 6 0 0 8	1 1 3	NUT-HEX DBL-CHAM M3 X 0.5 2.4MM-THK CONN-POST TYPE 48-CONT RTANG-DPSLDR TRANSISTOR PNP SI TO-92 PD=625MW TRANSISTOR PNP SI TO-92 PD=625MW TRANSISTOR NPN 2N5179 SI TO-72 PD=200MW	28480 28480 04713 04713 04713	0535-0004 1251-8410 SPS7848 SPS7848 SRF5064
A33Q4 A33Q6 A33Q7 A33Q8 A33Q9-Q12	1853-0448 1855-0308 1855-0081 1855-0081 1854-0215	0 5 1 1	1 7 8	TRANSISTOR PNP SI TO-92 PD=625MW TRANSISTOR-JFET DUAL N-CHAN D-MODE SI TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR NPN SI PD=350MW FT=300MHZ	04713 17856 34677 34677 04713	SPS7848 DN 324 F1843 F1843 SPS 3611
A33Q13-Q17 A33Q18 A33Q19 A33Q20 A33Q21	1853-0089 1855-0081 1854-0795 1854-0215 1854-0215	5 1 2 1 1	6 1	TRANSISTOR PNP 2N4917 SI PD=200MW TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR NPN SI TO-92 PD=625MW TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR NPN SI PD=350MW FT=300MHZ	07263 34677 04713 04713 04713	S33022 F1843 SPS8028 SPS 3611 SPS 3611
A33Q22-Q24 A33Q25 A33Q26	1855-0081 1855-0082 1855-0082	1 2 2	2	TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR J-FET P-CHAN D-MODE SI TRANSISTOR J-FET P-CHAN D-MODE SI	34677 04713 04713	F1843 SS3723 SS3723
·						

Table 4-22. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A 3 3 Q 2 7 A 3 3 Q 2 9	1854-0215 1855-0081	1		TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR J-FET N-CHAN D-MODE SI	04713 34677	SPS 3611 F1843
A 33 Q 30 A 33 Q 31 A 33 Q 32 A 33 R 1 A 33 R 2	1854-0215 1854-0830 1853-0089 0683-4705 0683-4705	16588	1 20	TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR-DUAL NPN PD=500MW TRANSISTOR PNP 2N4917 SI PD=200MW RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400	04713 27014 07263 77902 77902	SPS 3611 LM394H S33022 R-25J R-25J
A 3 3 R 3 A 3 3 R 4 A 3 3 R 5 A 3 3 R 6 A 3 3 R 7	0683-3915 0683-4705 0683-3915 0683-4705 0683-3915	0 8 0 8 0	7	RESISTOR 390 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 390 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 390 5% .25W CF TC=0-400	77902 77902 77902 77902 77902 77902	R-25J R-25J R-25J R-25J R-25J R-25J
A 33 R8 A 33 R9 A 33 R10 A 33 R1 1 A 33 R12	0683-4705 0683-3915 0683-4705 0683-4705 0683-4705 0683-3915	8080 880	1	RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 390 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 390 5% .25W CF TC=0-400	77902 77902 77902 77902 77902 77902	R-25J R-25J R-25J R-25J R-25J R-25J
A33R13 A33R14 A33R15 A33R16 A33R16 A33R17	0683-4705 0683-3915 0683-4705 0683-3915 0683-4705	8 0 8 0 8 0 8		RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 390 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 390 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400	77902 77902 77902 77902 77902 77902	R-25J R-25J R-25J R-25J R-25J R-25J
A 33 R 18 A 33 R 19 A 33 R 20 A 33 R 2 1 A 33 R 2 2	0683-3915 0683-4705 0683-3325 0757-0402 0698-3700	0 8 1 2	1 1 1	RESISTOR 390 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 3.3K 5% .25W CF TC=0-400 RESISTOR 110 1% .125W F TC=0+-100 RESISTOR 715 1% .125W F TC=0+-100	77902 77902 77902 19701 19701	R-25J R-25J R-25J 5033R 5033R
A 3 3 R 2 3 A 3 3 R 2 4 A 3 3 R 2 5 A 3 3 R 2 6 A 3 3 R 2 7	0683-2015 0683-2205 0683-5125 0683-4715 0698-3441	9 9 8 0 8	1 1 2 1	RESISTOR 200 5% .25W CF TC=0-400 RESISTOR 22 5% .25W CF TC=0-400 RESISTOR 5.1K 5% .25W CF TC=0-400 RESISTOR 470 5% .25W CF TC=0-400 RESISTOR 215 1% .125W F TC=0+-100	77902 77902 77902 77902 19701	R-25J R-25J R-25J R-25J 5033R
A33R28 A33R31 A33R32 A33R33 A33R33 A33R35	0683-1015 0698-3156 0698-3156 0757-0450 0683-1035	7 2 9 1	2 2 1 1	RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 14.7K 1% .125W F TC=0+-100 RESISTOR 14.7K 1% .125W F TC=0+-100 RESISTOR 22.1K 1% .125W F TC=0+-100 RESISTOR 10K 5% .25W CF TC=0-400	77902 19701 19701 19701 77902	R-25J 5033R 5033R 5033R R-25J
A33R36 A33R37 A33R38 A33R39 A33R40-R43	0757-0280 0698-4422 0698-4422 2100-3875 0683-4705	3 7 7 9 8	3 2 1	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1.27K 1% .125W F TC=0+-100 RESISTOR 1.27K 1% .125W F TC=0+-100 RESISTOR-TRMR 2K 10% C TOP-ADJ 17-TRN RESISTOR 47 5% .25W CF TC=0-400	19701 91637 91637 32997 77902	5033R CMF-55-1, T-1 CMF-55-1, T-1 3299W-DM3-202 R-25J
A 33 R 4 4 A 33 R 4 5 A 33 R 4 6 A 33 R 4 7 A 33 R 4 8	0757-0421 0757-0421 0757-0416 0757-0416 0683-4705	4 4 7 8	2	RESISTOR 825 1% .125W F TC=0+-100 RESISTOR 825 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400	19701 19701 19701 19701 77902	5033R 5033R 5033R 5033R R-25J
A 33 R49 A 33 R50 A 33 R51 A 33 R52 A 33 R52 A 33 R53	0757-0439 0683-1835 0683-1025 0683-1025 0757-0283	49996	1 1 8	RESISTOR 6.81K 1% .125W F TC=0+-100 RESISTOR 18K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 2K 1% .125W F TC=0+-100	19701 77902 77902 77902 19701	5033R R-25J R-25J R-25J 5033R
A 33 R5 4 A 33 R5 5 A 33 R5 7 A 33 R5 8 A 33 R5 8	8150-3375 8150-3375 0683-6815 0683-1825 0683-4705	55578	2 1 1	RESISTOR-ZERO OHMS 22 AWG LEAD DIA RESISTOR-ZERO OHMS 22 AWG LEAD DIA RESISTOR 680 5% .25W CF TC=0-400 RESISTOR 1.8K 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400	75042 75042 77902 77902 77902 77902	ZEROHM ZEROHM R-25J R-25J R-25J
A33R60 A33R61 A33R62 A33R63 A33R64	0683-1525 0757-0278 0757-0444 0683-1025 0757-0440	4 9 1 9 7	1 1 1 2	RESISTOR 1.5K 5% .25W CF TC±0-400 RESISTOR 1.78K 1% .125W F TC=0+-100 RESISTOR 12.1K 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 7.5K 1% .125W F TC=0+-100	77902 19701 19701 77902 19701	R-25J 5033R 5033R R-25J 5033R
A 33 R65 A 33 R66 A 33 R67 A 33 R68 A 33 R69	0757-0418 0757-1094 0757-1094 0698-3440 0757-0401	9 9 9 9 7 0	1 2 1 1	RESISTOR 619 1% .125W F TC=0+-100 RESISTOR 1.47K 1% .125W F TC=0+-100 RESISTOR 1.47K 1% .125W F TC=0+-100 RESISTOR 1.47K 1% .125W F TC=0+-100 RESISTOR 196 1% .125W F TC=0+-100	19701 19701 19701 19701 19701 19701	5033R 5033R 5033R 5033R 5033R
		L		introduction to this section for ordering information	L	

See introduction to this section for ordering information *Indicates factory selected value

PART NUMBER 9320 3991

Table 4-23. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A33R70 A33R71 A33R72 A33R73 A33R73 A33R74	0698-3443 0698-0083 0757-0280 0698-3151 0698-0083	0 8 3 7 8	1 2 2	RESISTOR 287 1% .125W F TC=0+-100 RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 2.87K 1% .125W F TC=0+-100 RESISTOR 1.96K 1% .125W F TC=0+-100	19701 19701 19701 19701 19701 19701	5033R 5033R 5033R 5033R 5033R
A 33 R75 A 33 R76 A 33 R77 A 33 R78 - R82 A 33 R83	0757-0280 0698-3151 0698-3512 0698-4469 0757-0440	3 7 4 2 7	1 8	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 2.87K 1% .125W F TC=0+-100 RESISTOR 1.18K 1% .125W F TC=0+-100 RESISTOR 1.15K 1% .125W F TC=0+-100 RESISTOR 7.5K 1% .125W F TC=0+-100	19701 19701 19701 91637 19701	5033R 5033R 50338 CMF-55-1, T-1 50338
A 3 3 R84 A 3 3 R85 A 3 3 R86 A 3 3 R87 A 3 3 R88	2100-3054 0757-0442 2100-3352 0698-3279 0757-0283	6 9 7 0 6	1 2 1 1 2	RESISTOR-TRMR 50K 10% C SIDE-ADJ 17-TRN RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR-TRMR 1K 10% C SIDE-ADJ 1-TRN RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 2K 1% .125W F TC=0+-100	73138 19701 73138 19701 19701	89 PR50K 5033 R 7 2X R1K - 143 B 5033 R 5033 R
A 33 R89 A 33 R90 A 33 R91 A 33 R92 A 33 R93	0757-0488 2100-0552 0757-0346 0757-0442 0698-8827	3 N 2 9 4	1 1 1 3	RESISTOR 909K 1% .125W F TC=0+-100 RESISTOR-TRMR 50 10% C SIDE-ADJ 1-TRN RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 1M 1% .125W F TC=0+-100	19701 73138 91637 19701 19701	5033R 72XR50-139B CMF-55-1, T-1 5033R 5033R
A 33 R94 A 33 R95 A 33 R96 A 33 R97 A 33 R98	0698-3512 0683-2435 0757-0465 0683-5615 0683-4715	4 7 6 1 0	1 2 1 1	RESISTOR 1.18K 1% .125W F TC=0+-100 RESISTOR 24K 5% .25W CF TC=0-400 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 560 5% .25W CF TC=0-400 RESISTOR 470 5% .25W CF TC=0-400	19701 77902 19701 77902 77902	5033R R-25J 5033R R-25J R-25J
A33R99 A33R101 A33R102 A33R103 A33R104	0683-1025 0683-1015 0698-4469 0698-4434 0698-4434	9 7 2 1 1	2	RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 1.15K 1% .125W F TC=0+-100 RESISTOR 2.32K 1% .125W F TC=0+-100 RESISTOR 2.32K 1% .125W F TC=0+-100	77902 77902 91637 91637 91637	R-25J R-25J CMF-55-1, T-1 CMF-55-1, T-1 CMF-55-1, T-1
A33R105 A33R106 A33R108 A33R117 A33R118	0698-4469 0698-4469 0683-2435 0757-0430 0757-0430	2 2 7 5 5	2	RESISTOR 1.15K 1% .125W F TC=0+-100 RESISTOR 1.15K 1% .125W F TC=0+-100 RESISTOR 24K 5% .25W CF TC=0-400 RESISTOR 2.21K 1% .125W F TC=0+-100 RESISTOR 2.21K 1% .125W F TC=0+-100	91637 91637 77902 19701 19701	CMF-55-1, T-1 CMF-55-1, T-1 R-25J 5033R 5033R
A33R119 A33R121 A33R122 A33R125 A33R126	0683-1025 0683-4705 0683-4705 0683-1025 0683-1025	9 8 8 9 9		RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400	77902 77902 77902 77902 77902 77902	R-25J R-25J R-25J R-25J R-25J R-25J
A33R127 A33R128 A33R129 A33R130 A33R131	0683-1025 0698-8827 0698-8827 0683-7515 0683-0275	9 4 4 9	1	RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 750 5% .25W CF TC=0-400 RESISTOR 2.7 5% .25W CF TC=0-400	77902 19701 19701 77902 77902	R-25J 5033R 5033R R-25J R-25J
A33R132 A33R135 A33R136 A33R139 A33TP1-TP9	2100-3354 0683-4705 0683-4705 0686-1015 1251-0600	9 8 3 0	1 1 9	RESISTOR-TRMR 50K 10% C SIDE-ADJ 1-TRN RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 100 5% .5W CC TC=0-529 CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ	73138 77902 77902 01121 27264	72XR50K-149B R-25J R-25J E81015 16-06-0034
A 33 U 1 A 33 U 2 A 33 U 3 A 33 U 4 A 33 U 5	1820-0802 1820-0802 1820-0817 1826-0715 1826-0700	1 1 8 7 0	2 1 3 1	IC GATE ECL NOR QUAD 2-INP IC GATE ECL NOR QUAD 2-INP IC FF ECL D-M/S DUAL IC OP AMP LOW-NOISE 8-DIP-P PKG IC OP AMP WB 14-DIP-C PKG	04713 04713 04713 18324 34371	SC63470P102 SC63470P102 SC63470P131 CC3802 HA1-5195-B2544
A33U6 A33U8 A33U10 A33U11 A33U12	1826-0208 1826-0551 1820-0693 1820-1196 1826-0226	3 9 8 5 5	1 1 1 2	IC OP AMP GP 8-DIP-P PKG IC V RGLTR-FKD-POS 4.9/5.1V TO-220 PKG IC FF TTL S D-TYPE POS-EDGE-TRIG IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC V RGLTR-FXD-POS 11.5/12.5V TO-39 PKG	27014 27014 01295 01295 07263	SL27613 SL36385 SN24661 SN53525 SL24564
A 33 U 15 A 33 U 17 A 33 U 18 A 33 U 19 A 33 U 20	1810-0294 1826-0715 1826-0139 1826-0716 1826-0715	4 7 9 8 7	1 1 1	NETWORK-RESISTOR 16 PIN DIP; RES IC OP AMP LOW-NOISE 8-DIP-P PKG IC OP AMP GP DUAL 8-DIP-P PKG IC OP AMP LOW-NOISE DUAL 8-DIP-C PKG IC OP AMP LOW-NOISE 8-DIP-P PKG	28480 18324 04713 18324 18324	1810-0294 CC3802 SC25137P1 CC3895 CC3895
A33U21 A33U24 A33U25 A33W101	1826-0476 1858-0040 1826-0226 03335-61617	7 8 5 9	1 1 1	ANALOG SWITCH SPDT 8 -DIP-P TRANSISTOR ARRAY 16-PIN PLSTC DIP IC V RGLTR-FXD-POS 11.5/12.5V TO-39 PKG CBL ASSY	01295 3L585 07263 28480	SN99487P 90978 SL24564 03335-61617

Table 4-24. Replaceable Parts

HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
03326-66534	8	2	FRACN DIGITAL BOARDS	28480	03326-66534
0160-3847 0180-0229 0160-3847 0160-3847 0160-4811	9 7 9 9	32 2 1	CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD 33UF+-10\$ 10VDC TA CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD 270PF +-5\$ 100VDC CER	04222 13606 04222 04222 27167	MA105C103PAA 150D336X9010B2-DYS MA105C103PAA MA105C103PAA CAC02C0G271J100A
0160-3847 0160-3847 0180-0553 0160-3847 0180-2765	9 9 0 9 0	4 6	CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD 22UF+-20\$ 25VDC TA CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD 15UF+-20\$ 20VDC TA	04222 04222 28480 04222 28480	MA105C103PAA MA105C103PAA T362C226M025ASC8245 MA105C103PAA MD7-020-156-20/9038
0160-3847 0160-3847 0180-0553 0160-3847 0160-3847	9 9 0 9 9		CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD 22UF+-20\$ 25VDC TA CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD .01UF +100-0\$ 50VDC CER	04222 04222 28480 04222 04222	MA105C103PAA MA105C103PAA T362C226M025ASC8245 MA105C103PAA MA105C103PAA
0160-3847 0160-3847 0160-4789 0160-3847 0180-2765	9 9 0 9 0	1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 15FF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 01UF +100-0% 50VDC CER CAPACITOR-FXD 15UF+-20% 20VDC TA	04222 04222 27167 04222 28480	MA105C103PAA MA105C103PAA CAC02C0G150J100A MA105C103PAA MD7-020-156-20/9038
0180-2765 0160-3847 0160-4787 0160-3847 0180-2765	0 9 8 9 0	1	CAPACITOR-FXD 15UF+-20% 20VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 22PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 15UF+-20% 20VDC TA	28480 04222 27167 04222 28480	MD7-020-156-20/9038 MA105C103PAA CAC02C0G220J100A MA105C103PAA MD7-020-156-20/9038
0160-3847 0180-2765 0160-3847 0180-2765 0160-3847	9 0 9 0 9	2	CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD 15UF+-20\$ 20VDC TA CAPACITOR-FXD .01UF +100-0\$ 50VDC CER CAPACITOR-FXD 15UF+-20\$ 20VDC TA CAPACITOR-FXD .01UF +100-0\$ 50VDC CER	04222 28480 04222 28480 04222	MA105C103PAA MD7-020-156-20/9038 MA105C103PAA MD7-020-156-20/9038 MA105C103PAA
1902-0945 1901-0040 1901-0040 1250-0544 9100-3560	7 1 9 6	1 2 1 2	DIODE-ZNR 3V 5% DO-35 PD=.4W TC=043% DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 CONNECTOR-RF SM-SNP M SGL-HOLE-FR 50-0HM INDUCTOR RF-CH-MLD 5.6UH 5% .166DX.385LG	04713 07263 07263 98291 24226	SZ30035-003 FDH1088 FDH1088 051-049-0000-220 15M561J
9100-3560 9100-1791 9100-1791 9100-1791 9100-7748	6 1 1 1 0	3	INDUCTOR RF-CH-MLD 5.6UH 5% .166DX.385LG CORE-FERRITE CHOKE-WIDEBAND;IMP:>360 CORE-FERRITE CHOKE-WIDEBAND; IMP:>360 CORE-FERRITE CHOKE-WIDEBAND;IMP:>360 INDUCTOR 250UH 25% .25DX.5LG Q=3	24226 02114 02114 02114 02114 04213	15M561J VK200-19/4B VK200-19/4B VK200-19/4B 1670-1
9100-3345 03326-04134 0624-0333 0624-0333 2360-0113	5 4 6 2	3 1 2 3	INDUCTOR RF-CH-MLD 2UH 5% .166DX.385LG CVR, FRAC-N DIGITAL SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI	06560 28480 01536 01536 01536	15A2R0J 03326-04134 0624-0333 2360-0113
1251-8410 1854-0215 1854-0795 1853-0448 1853-0448	6 1 2 0 0	1 2 1 2	CONN-POST TYPE 48-CONT RTANG-DPSLDR TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR NPN SI TO-92 PD=625MW TRANSISTOR PNP SI TO-92 PD=625MW TRANSISTOR PNP SI TO-92 PD=625MW	28480 04713 04713 04713 04713	1251-8410 SPS 3611 SPS8028 SPS7848 SPS7848
1854-0215 0683-1025 0683-1025 0683-1025 0683-1025 0683-1025	1 9 9 9	8	TRANSISTOR NPN SI PD=350MW FT=300MHZ RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400	04713 77902 77902 77902 77902 77902	SPS 3611 R-25J R-25J R-25J R-25J R-25J
0683-4315 0683-2715 0683-1035 0683-1035 0683-4715	6 6 1 1 0	3 3 4 2	RESISTOR 430 5% .25W CF TC=0-400 RESISTOR 270 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 470 5% .25W CF TC=0-400	77902 77902 77902 77902 77902 77902	R-25J R-25J R-25J R-25J R-25J R-25J
0683-4715 0757-0401 0698-3152 0757-0444 0683-2025	0 0 8 1 1	1 1 1 1	RESISTOR 470 5% .25W CF TC=0-400 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 3.48K 1% .125W F TC=0+-100 RESISTOR 12.1K 1% .125W F TC=0+-100 RESISTOR 2K 5% .25W CF TC=0-400	77902 19701 19701 19701 19701 77902	R-25J 5033R 5033R 5033R R-25J
0683-1015 0683-1025	7 9	1	RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400	77902 77902	R-25J R-25J
		:			
	Number 03326-66534 0160-3847 0180-2765 0160-3847 0180-2765 0160-3847 0180-2765 0160-3847 0180-2765 0160-3847 0180-2765 0160-3847 0180-2765 0160-3847 0180-2765	Number D 03326-66534 8 0160-3847 9 0180-0229 7 0160-3847 9 0180-2765 0 0160-3847 9 0180-2765 0 0160-3847 9 0180-2765 0 0160-3847 9 0180-2765	NumberDQty $03326-66534$ 82 $0160-3847$ 932 $0160-3847$ 932 $0160-3847$ 91 $0180-2765$ 01 $0180-2765$ 01 $0180-2765$ 01 $0180-2765$ 02 $0160-3847$ 91 $0180-2765$ 02 $0160-3847$ 91 $0180-2765$ 01 $0180-2765$ 01 $0180-2765$ 01 $0180-2765$ 01 $0180-2765$ 01 $0180-2765$ 01 $0180-2765$ 11 $9010-1791$ 11 $9100-1791$ 13 $9100-1791$ 13 $9100-1791$ <td< td=""><td>Number o QUY Description 03326-66534 8 2 FRACH DIGITAL BOARDS 0160-2847 9 2 CAPACITOR-FXD 3UPL-106 10VC CER 0160-3847 9 2 CAPACITOR-FXD 3UPL-106 10VC CER 0160-3847 9 1 CAPACITOR-FXD 3UPL-100-05 50VDC CER 0160-3847 9 CAPACITOR-FXD 3UPL-100-05 50VDC CER 0180-0557 0 4 CAPACITOR-FXD 3UPL-100-05 50VDC CER 0180-0557 0 4 CAPACITOR-FXD 3UPL-205 29VC CER 0180-0557 0 4 CAPACITOR-FXD 3UPL-205 29VC CER 0180-0553 0 4 CAPACITOR-FXD 3UPL-205 29VC CER 0180-0553 0 CAPACITOR-FXD 3UPL-205 29VDC CER 0180-0553 0 CAPACITOR-FXD 3UPL-205 29VDC CER 0180-0553 0 CAPACITOR-FXD 3UPL-205 29VDC CER 0180-2765 0 CAPACITOR-FXD 3UPL-205 29VDC CER 0180-2765 0 CAPACITOR-FXD 3UPL-205 29VDC TA 0180-2765 0 CAPACITOR-FXD 3UPL-400-05 50VDC CER 0180-2765 0</td><td>Number Description Code 03326-66534 8 2 FRACE DIGITAL BOARDS 28480 0160-3847 9 32 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0160-3847 9 2 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0160-3847 9 2 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0160-3847 9 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0160-3847 9 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0160-3847 9 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0180-2765 0 6 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0180-3847 9 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0180-3847 9 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0180-3847 9 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0180-2765 0 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0180-2765 0 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222</td></td<>	Number o QUY Description 03326-66534 8 2 FRACH DIGITAL BOARDS 0160-2847 9 2 CAPACITOR-FXD 3UPL-106 10VC CER 0160-3847 9 2 CAPACITOR-FXD 3UPL-106 10VC CER 0160-3847 9 1 CAPACITOR-FXD 3UPL-100-05 50VDC CER 0160-3847 9 CAPACITOR-FXD 3UPL-100-05 50VDC CER 0180-0557 0 4 CAPACITOR-FXD 3UPL-100-05 50VDC CER 0180-0557 0 4 CAPACITOR-FXD 3UPL-205 29VC CER 0180-0557 0 4 CAPACITOR-FXD 3UPL-205 29VC CER 0180-0553 0 4 CAPACITOR-FXD 3UPL-205 29VC CER 0180-0553 0 CAPACITOR-FXD 3UPL-205 29VDC CER 0180-0553 0 CAPACITOR-FXD 3UPL-205 29VDC CER 0180-0553 0 CAPACITOR-FXD 3UPL-205 29VDC CER 0180-2765 0 CAPACITOR-FXD 3UPL-205 29VDC CER 0180-2765 0 CAPACITOR-FXD 3UPL-205 29VDC TA 0180-2765 0 CAPACITOR-FXD 3UPL-400-05 50VDC CER 0180-2765 0	Number Description Code 03326-66534 8 2 FRACE DIGITAL BOARDS 28480 0160-3847 9 32 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0160-3847 9 2 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0160-3847 9 2 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0160-3847 9 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0160-3847 9 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0160-3847 9 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0180-2765 0 6 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0180-3847 9 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0180-3847 9 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0180-3847 9 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0180-2765 0 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222 0180-2765 0 CAPACITOR-FKD 0.01F +100-05 50VDC CER 04222

See introduction to this section for ordering information *Indicates factory selected value PART NUMBER 9320-3991

PART NUMBER 9320 3991

Table 4-25. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A 3 4 R 2 2 A 3 4 R 2 7 A 3 4 R 2 8	0683-1025 1810-0275 1810-0275	9 1 1	2	RESISTOR 1K 5% .25W CF TC=0-400 NETWORK-RES 10-SIP 1.0K OHM X 9 NETWORK-RES 10-SIP 1.0K OHM X 9	77902 91637 91637	R-25J CSC10A01-102G/MSP10A01-102G CSC10A01-102G/MSP10A01-102G
A 34 R 29 A 34 R 10 1 A 34 R 10 2 A 34 R 10 3 A 34 R 10 4	0683-1025 0683-8205 0683-2015 0683-2715 0683-4315	9 1 9 6 6	1 1	RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 82 5% .25W CF TC=0-400 RESISTOR 200 5% .25W CF TC=0-400 RESISTOR 270 5% .25W CF TC=0-400 RESISTOR 430 5% .25W CF TC=0-400	77902 77902 77902 77902 77902 77902	R-25J R-25J R-25J R-25J R-25J
A 34 R 105 A 34 R 106 A 34 R 107 A 34 R 108 A 34 R 109	0683-8215 0683-8215 0683-3915 0683-3915 0683-4705	3 3 0 8	6 9 11	RESISTOR 820 5% .25W CF TC=0-400 RESISTOR 820 5% .25W CF TC=0-400 RESISTOR 390 5% .25W CF TC=0-400 RESISTOR 390 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400	77902 77902 77902 77902 77902 77902	R-25J R-25J R-25J R-25J R-25J R-25J
A34R110 A34R111 A34R113 A34R114 A34R115	0683-3915 0683-8215 0683-4705 0683-3915 0683-1025	0 3 8 0 9		RESISTOR 390 5% .25W CF TC=0-400 RESISTOR 820 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 390 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400	77902 77902 77902 77902 77902 77902	R-25J R-25J R-25J R-25J R-25J R-25J
A34R116 A34R117 A34R118 A34R119 A34R120	0683-4705 0683-4705 0698-7332 0698-7332 0683-3915	8 8 4 0	2	RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 390 5% .25W CF TC=0-400	77902 77902 19701 19701 77902	R-25J R-25J 5033R 5033R R-25J
A 34 R 12 1 A 34 R 12 2 A 34 R 12 3 A 34 R 12 4 A 34 R 12 5	0683-4705 0683-3915 0683-7515 0683-4705 0757-0316	8 0 4 8 6	1	RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 390 5% .25W CF TC=0-400 RESISTOR 750 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 42.2 1% .125W F TC=0+-100	77902 77902 77902 77902 19701	R-25J R-25J R-25J R-25J 5033R
A 34R126 A 34R128 - R1 30 A 34R1 31 A 34R1 32 A 34R1 32 - R1 36	0683-3915 0683-8215 0683-4705 0683-3915 0683-4705	0 3 8 0 8		RESISTOR 390 5% .25W CF TC=0-400 RESISTOR 820 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 390 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400	77902 77902 77902 77902 77902 77902	R-25J R-25J R-25J R-25J R-25J R-25J
A34R137 A34R140 A34R141 A34TP1-TP2 A34TP4-TP16	0683-3915 0683-2715 0683-4315 1251-0600 1251-0600	0 6 6 0 0	15	RESISTOR 390 5% .25W CF TC=0-400 RESISTOR 270 5% .25W CF TC=0-400 RESISTOR 430 5% .25W CF TC=0-400 CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ	77902 77902 77902 27264 27264 27264	R-25J R-25J R-25J 16-06-0034 16-06-0034
A34U1 A34U2 A34U3 A34U4 A34U5	1820-0629 1820-0629 1820-1196 1820-1196 1820-1196 1820-1279	0 0 8 8 8 8	4 2 2	IC FF TTL S J-K NEG-EDGE-TRIG IC FF TTL S J-K NEG-EDGE-TRIG IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC CNTR TTL LS DECD UP/DOWN SYNCHRO	01295 01295 01295 01295 01295 01295	SN23357 SN23357 SN53525 SN53525 SN53645
A 34 U 6 A 34 U 7 A 34 U 8 A 34 U 9 A 34 U 1 0	1820-1279 1820-0681 1820-0681 1820-1322 1820-0629	8 4 4 0	3	IC CNTR TTL LS DECD UP/DOWN SYNCHRO IC GATE TTL S NAND QUAD 2-INP IC GATE TTL S NAND QUAD 2-INP IC GATE TTL S NOR QUAD 2-INP IC FF TTL S J-K NEG-EDGE-TRIG	01295 01295 01295 01295 01295 01295	SN53645 SN24649 SN24649 SN84650 SN84050 SN23357
A34U11 A34U12 A34U13 A34U14 A34U14 A34U15	1820-0629 1820-0683 1820-0693 1820-1367 1820-1641	0 6 8 5 8	1 2 1 1	IC FF TTL S J-K NEG-EDGE-TRIG IC INV TTL S HEX 1-INP IC FF TTL S D-TYPE POS-EDGE-TRIG IC GATE TTL S AND QUAD 2-INP IC DRVR TTL LS BUS HEX 1-INP	01295 01295 01295 01295 01295 01295	SN23357 SN24651 SN24661 SN85092N SN57698N
A34U16 A34U17 A34U18 A34U19 A34U20	1820-1144 1820-0693 1820-2004 1820-1445 1820-0681	6 8 9 0 4	1 1 1	IC GATE TTL LS NOR QUAD 2-INP IC FF TTL S D-TYPE POS-EDGE-TRIG IC MISC NMOS IC LCH TTL LS 4-BIT IC GATE TTL S NAND QUAD 2-INP	01295 01295 28480 01295 01295	SN53243 SN24661 1820-2004 SN57206 SN24649
A34U21 A34U22 A34U101 A34U102 A34U102 A34U103	1820-1112 1820-1201 1820-0817 1820-0820 1820-0817	8 6 8 3 8) 1 4 1	IC FF TTL LS D-TYPE POS-EDGE-TRIG IC GATE TTL LS AND QUAD 2-INP IC FF ECL D-M/S DUAL IC FF ECL J-BAR K-BAR COM CLOCK DUAL IC FF ECL D-M/S DUAL	01295 01295 04713 04713 04713	SN53030 SN53508 SC63470P131 SC63470L135 SC63470P131
A34U104 A34U105 A34U106 A34U107 A34U107 A34U108	1820-0817 1820-0803 1826-0715 1820-0802 1820-0817	8 2 7 1 8	1 1 1	IC FF ECL D-M/S DUAL IC GATE ECL OR-NOR TPL IC OP AMP LOW-NOISE 8-DIP-P PKG IC GATE ECL NOR QUAD 2-INP IC FF ECL D-M/S DUAL	04713 04713 18324 04713 04713	SC63470P131 SC63470P105 CC3802 SC63470P102 SC63470P131

Table 4-26. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A35	03326-66535	9	2	VCO/2 BOARDS	28480	03326-66535
A35C1 A35C2 A35C3 A35C4 A35C5	0160-3847 0180-0228 0160-3847 0160-3847 0180-0228	9 6 9 9 6	9 3	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 22UF+-10% 15VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 22UF+-10% 15VDC TA	04222 13606 04222 04222 13606	MA105C103PAA 150D226X9015B2-DYS MA105C103PAA MA105C103PAA 150D226X9015B2-DYS
A35C6 A35C7 A35C8 A35C9-C13 A35CR1	0180-0228 0160-3847 0160-4819 0160-3847 1902-0950	6 9 7 9 4	1	CAPACITOR-FXD 22UF+-10% 15VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 2200FF +-5% 100VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER DIODE-ZNR 4.7V 5% DO-35 PD=.4W TC=+.025%	13606 04222 27167 04222 04713	150D226X9015B2-DYS MA105C103PAA CAC04C0G222J100A MA105C103PAA SZ30035-008
A35CR2 A35CR3 A35J1 A35J2 A35L1-L3	1901-0040 1901-0040 1250-0544 1251-6254 9100-3345	1 1 9 2 5	2 1 1 3	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 CONNECTOR-RF SM-SNP M SGL-HOLE-FR 50-OHM CONNECTOR-SGL CONT RTANG-F INDUCTOR RF-CH-MLD 2UH 5% .166DX.385LG	07263 07263 98291 91833 06560	FDH1088 FDH1088 051-049-0000-220 901 15A2ROJ
A35MP1 A35MP2-MP3 A35MP4-MP6 A35P1 A35R1	03326-04135 0624-0333 2360-0113 1252-0266 0683-3915	5 6 2 6 0	1 2 3 1 6	CVR, VCO/2 SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI DIN CONN16 PIN MALE RESISTOR 390 5% .25W CF TC=0-400	28480 01536 01536 06383 77902	03326-04135 0624-0333 2360-0113 100-316-033 R-25J
A 35 R2 A 35 R3 A 35 R4 A 35 R5 A 35 R6	0683-4705 0683-4705 0683-3915 0683-4705 0683-4315	8 8 0 8 6	5	RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 390 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 430 5% .25W CF TC=0-400	77902 77902 77902 77902 77902 77902	R-25J R-25J R-25J R-25J R-25J R-25J
A 35 R7 A 35 R8 - R1 1 A 35 R12 A 35 R1 3 A 35 R1 4	0683-2715 0683-3915 0683-4705 0683-4705 8150-3375	6 0 8 5	1	RESISTOR 270 5% .25W CF TC=0-400 RESISTOR 390 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR-ZERO OHMS 22 AWG LEAD DIA	77902 77902 77902 77902 75042	R-25J R-25J R-25J R-25J ZEROHM
A35TP1-TP3 A35U1 A35U2 A35U3	1251-0600 1820-0802 1820-0820 1820-0820 1820-0820	0 1 3 3	3 1 2	CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ IC GATE ECL NOR QUAD 2-INP IC FF ECL J-BAR K-BAR COM CLOCK DUAL IC FF ECL J-BAR K-BAR COM CLOCK DUAL	27264 04713 04713 04713	16-06-0034 SC63470P102 SC63470L135 SC63470L135
A36	03326-66536	0	1	FRACN DECODER/CALIBRATOR BOARD	28480	03326-66536
A36C1 A36C2 A36C3 A36C4-C12 A36C100	0180-0116 0180-0309 0180-0116 0160-4571 0160-4835	1 4 1 8 7	2 1 30 4	CAPACITOR-FXD 6.8UF+-10% 35VDC TA CAPACITOR-FXD 4.7UF+-20% 10VDC TA CAPACITOR-FXD 6.8UF+-10% 35VDC TA CAPACITOR-FXD 1.0F +80-20% 50VDC CER CAPACITOR-FXD .1UF +0-20% 50VDC CER	13606 13606 13606 04222 27167	150D685X9035B2-DYS 150D475X0010A2-DYS 150D685X9035B2-DYS MA205E1042AA CAC04X7R104K050A
A36C101 A36C102 A36C103 A36C104-C107 A36C108-C111	0160-0128 0160-4835 0160-0128 0160-4571 0160-5302	3 7 3 8 5	2	CAPACITOR-FXD 2.2UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 2.2UF +-20% 50VDC CER CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD 6.8PF +-10% 200VDC CER	13606 27167 13606 04222 04222	3C37Z5U225M050A CAC04X7R104K050A 3C37Z5U225M050A MA205E104ZAA MA106A6R8K200V
A36C112-C113 A36C114 A36C115 A36C116 A36C116 A36C117	0160-4441 0160-4571 0160-4835 0160-4835 0160-4835 0160-4571	1 8 7 7 8	2	CAPACITOR-FXD .47UF +-10% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +30-20% 50VDC CER	28480 04222 27167 27167 04222	C330C474K5R5CA MA205E104ZAA CAC04X7R104K050A CAC04X7R104K050A MA205E104ZAA
A36C200 A36C201 A36C202 A36C206-C210 A36C211	0160-4571 0160-4571 0160-4799 0160-4791 0160-4401	8 8 2 8 3	1	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 2.2PF +25PF 100VDC CER CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +-10% 100VDC POLYP	04222 04222 27167 04222 84411	MA205E104ZAA MA205E104ZAA CAC02C0G2R2C100A MA205E104ZAA HEW-446
A36C212-C219 A36C220 A36CR100 A36CR101 A36CR102	0160-4571 0160-4834 1902-0951 1901-0050 1901-0050	8 6 5 3 3	1 4 4	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .047UF +-10% 100VDC CER DIODE-ZNR 5.1V 5% DO-35 PD=.4W TC=+.035% DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35	04222 27167 04713 07263 07263	MA205E104ZAA CAC04X7R473K100A SZ30035-009 FDH 6308 FDH 6308
A36CR103 A36CR104-CR106 A36CR107 A36CR108 A36CR109	1902-0951 1901-0040 1902-0951 1901-0050 1901-0050	5 1 5 3 3	10	DIODE-ZNR 5.1V 5% DO-35 PD=.4W TC=+.035% DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 5.1V 5% DO-35 PD=.4W TC=+.035% DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35	04713 07263 04713 07263 07263	SZ30035-009 FDH1088 SZ30035-009 FDH 6308 FDH 6308
				introduction to this section for ordering information		

See introduction to this section for ordering information *Indicates factory selected value

PART NUMBER 9320-3991

Table 4-27. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A36CR110 A36CR111-CR115 A36CR201 A36CR201 A36CR202	1902-0951 1901-0040 1901-0040 1901-0040 1902-0680	5 1 1 7	1	DIODE-ZNR 5.1V 5% DO-35 PD=.4W TC=+.035% DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 1N827 6.2V 5% DO-7 PD=.4W	04713 07263 07263 07263 07263 04713	SZ30035-009 FDH1088 FDH1088 FDH1088 SZ14377 RL
A36F1 A36F2 A36J1 A36J2-J4 A36K1-K2	2110-0301 2110-0301 1251-6254 1251-6254 0490-1362	1 1 2 8	2 4 2	FUSE .125A 125V .281X.093 FUSE .125A 125V .281X.093 CONNECTOR-SGL CONT RTANG-F CONNECTOR-SGL CONT RTANG-F RELAY-REED 1C 500MA 25VDC 12VDC-COIL 2VA	75915 75915 91833 91833 95348	275.125 275.125 901 901 F811131-5 W/MR5290SW/1K OHM CL
A36K3-K5 A36L1 A36L2 A36L3 A36MP1	0490-1405 9100-1618 9100-1791 9100-1618 03326-04136	0 1 1 6	3 2 1 1	RELAY 2C 12VDC-COIL 2A 250VAC INDUCTOR RF-CH-MLD 5.6UH 10% CORE-FERRITE CHOKE-WIDEBAND; IMP:>360 INDUCTOR RF-CH-MLD 5.6UH 10% CVR, FRAC-N DECOD/CAL	28480 06560 02114 06560 28480	DS2E-S-DC12V-H69 15-4435-1K VK200-19/4B 15-4435-1K 03326-04136
A36MP2-MP3 A36MP4-MP6 A36P1 A36Q200 A36R1-R3	0624-0333 2360-0113 1251-8410 1854-0071 0683-1025	6 2 6 7 9	2 3 1 7	SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI CONN-POST TYPE 48-CONT RTANG-DPSLDR TRANSISTOR NPN SI PD=3000MW FT=200MHZ RESISTOR 1K 5% .25W CF TC=0-400	01536 01536 28480 13606 77902	0624-0333 2360-0113 1251-8410 CT-1200 R-25J
A 36 R 100 A 36 R 101 A 36 R 102 A 36 R 103 A 36 R 104	0757-0401 0698-4453 0683-0275 0683-5115 0698-3258	0 4 9 5	4 2 2 2 2	RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 402 1% .125W F TC=0+-100 RESISTOR 2.7 5% .25W CF TC=0-400 RESISTOR 510 5% .25W CF TC=0-400 RESISTOR 5.36K 1% .125W F TC=0+-100	19701 91637 77902 77902 19701	5033R CMF-55-1, T-1 R-25J F-25J 5033R
A36R105 A36R106 A36R107 A36R108 A36R108 A36R109	0757-0401 0757-0401 0698-4453 0683-0275 0683-5115	0 0 4 9 6		RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 402 1% .125W F TC=0+-100 RESISTOR 2.7 5% .25W CF TC=0-400 RESISTOR 510 5% .25W CF TC=0-400	19701 19701 91637 77902 77902	5033R 5033R CMF-55-1, T-1 R-25J R-25J
A36R110 A36R111 A36R115 A36R116 A36R117	0698-3258 0757-0401 0683-1025 0757-0442 0757-0442	5 0 9 9 9	6	RESISTOR 5.36K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	19701 19701 77902 19701 19701	5033R 5033R R-25J 5033R 5033R
A36R118 A36R119 A36R120 A36R121 A36R122	0757-0280 0698-6396 0683-1025 0757-0442 0757-0443	3 8 9 9 0	222	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 20M 5% .25W CC TC=-900/+1200 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 11K 1% .125W F TC=0+-100	19701 01121 77902 19701 19701	5033R CB2065 R-25J 5033R 5033R
A36R123 A36R124 A36R125 A36R126 A36R127	0757-0442 0757-0442 0698-6396 0683-1025 0757-0442	9 9 8 9 9		RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 20M 5% .25W CC TC=-900/+1200 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 10K 1% .125W F TC=0+-100	19701 19701 01121 77902 19701	5033R 5033R CB2065 R-25J 5033R
A 36 R128 A 36 R129 A 36 R1 30 A 36 R1 31 A 36 R200	0757-0443 0757-0280 0683-3055 0683-3055 0698-8319	0 39 99	2	RESISTOR 11K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 3M 5% .25W CF TC=0-900 RESISTOR 3M 5% .25W CF TC=0-900 RESISTOR 10K 1% .1W F TC=0+-10	19701 19701 77902 77902 19701	5033R 5033R R-25J R-25J 5023Z
A 36 R201 A 36 R202 A 36 R203 A 36 R204 A 36 R204 A 36 R205	2100-3123 0698-8319 0698-3245 0698-8319 2100-3123	0 9 0 9	3	RESISTOR-TRMR 500 10% C SIDE-ADJ 17-TRN RESISTOR 10K 1% .1W F TC=0+-10 RESISTOR 20.5K 1% .125W F TC=0+-100 RESISTOR 10K 1% .1W F TC=0+-10 RESISTOR-TRMR 500 10% C SIDE-ADJ 17-TRN	73138 19701 19701 19701 73138	89PR500 5023Z 5033R 5023Z 89PR500
A 36 R206 A 36 R207 A 36 R2 10 A 36 R2 11 A 36 R2 12	0683-2755 0698-8319 0757-0277 0698-4430 0683-1025	4 9 8 7 9	1 1 1	RESISTOR 2.7M 5% .25W CF TC=0-900 RESISTOR 10K 1% .1W F TC=0+-10 RESISTOR 49.9 1% .125W F TC=0+-100 RESISTOR 1.91K 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0-400	77902 19701 19701 91637 77902	R-25J 5023Z 5033R CMF-55-1, I-1 R-25J
A 36 R2 1 3 A 36 R2 1 4 A 36 R2 1 5 A 36 R2 1 5 A 36 R2 1 6 A 36 R2 1 7	0698-4455 0757-1094 0683-1015 0698-8182 2100-3123	6 9 7 4 0	1 1 1	RESISTOR 536 1% .125W F TC=0+-100 RESISTOR 1.47K 1% .125W F TC=0+-100 RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 2.21K 1% .125W F TC=0+-25 RESISTOR-TRMR 500 10% C SIDE-ADJ 17-TRN	91637 19701 77902 19701 73138	CMF-55-1, T-1 5033R R-25J 5033R 89PR500
A36R218 A36R219-R222 A36TP0-TP12	0698-6801 0757-1012 1251-0600	0 1 0	1 4 26	RESISTOR 3.48K 1% .125W F TC=0+-25 RESISTOR 100 .25% .5W F TC=0+-100 CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ	19701 19701 27264	5033R 5053R 16-06-0034

Table 4-28. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A36TP100-TP105 A36TP200-TP207	1251-0600 1251-0600	00		CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ	27264 27264	16-06-0034 16-06-0034
A 36 U 1 A 36 U 2 A 36 U 3 A 36 U 4 A 36 U 5	1820-1196 1820-1216 1820-1196 1820-1196 1820-1212	87889	4 2 1	IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC DCDR TTL LS 3-TO-8-LINE 3-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS J-K NEG-EDGE-TRIG	01295 01295 01295 01295 01295 01295	SN53525 SN53522 SN53525 SN53525 SN53519N
A36U6 A36U7 A36U8 A36U9 A36U9 A36U10	1820-1199 1820-1201 1820-1208 1820-1144 1820-1203	1 6 3 6 8	1 2 1 1	IC INV TTL LS HEX 1-INP IC GATE TTL LS AND QUAD 2-INP IC GATE TTL LS OR QUAD 2-INP IC GATE TTL LS ONG QUAD 2-INP IC GATE TTL LS AND TPL 3-INP	01295 01295 01295 01295 01295 01295	SN53506 SN53508 SN53515 SN53243 SN53510
A36U11 A36U12 A36U13 A36U14 A36U15	1820-1112 1820-1216 1858-0047 1820-1196 1820-1730	8 3 5 8 6	1	IC FF TTL LS D-TYPE POS-EDGE-TRIG IC DCDR TTL LS 3-TO-8-LINE 3-INP TRANSISTOR ARRAY 16-PIN PLSTC DIP IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG COM	01295 01295 13606 01295 01295	SN53030 SN53522 ULN-2003A SN53525 SN58039
A36U16 A36U17 A36U18 A36U19 A36U100	1820-2024 1820-2024 1820-2024 1820-1201 1826-0638	 	3	IC DRVR TTL LS LINE DRVR OCTL IC DRVR TTL LS LINE DRVR OCTL IC DRVR TTL LS LINE DRVR OCTL IC GATE TTL LS AND QUAD 2-INP IC COMPARATOR HS 8-DIP-P PKG	01295 01295 01295 01295 27014	SN58948 SN58948 SN58948 SN53508 SL38578
A36U101 A36U102 A36U103 A36U200 A36U203	1826-0638 1820-0693 1826-0412 1826-0413 1826-0450	38 12 1	1 1 1	IC COMPARATOR HS 8-DIP-P PKG IC FF TTL S D-TYPE POS-EDGE-TRIG IC COMPARATOR PRCN DUAL 8-DIP-P PKG IC OP AMP LOW-BIAS-H-IMPD TO-99 PKG ANALOG SWITCH -PIN	27014 01295 27014 34371 17856	SL38578 SN24661 SL33675 HA2-2605-B1392-001 DG211CJ
A36U204 A36U205 A36U206 A36U207 A36U208	1826-1217 1826-0208 1826-1044 1826-0319 1826-0065	6 3 7 7 0	1 1 1 1	PEAK DETECTOR 14 -CERDIP IC OP AMP GP 8-DIP-P PKG D/A 12-1/2-BIT 24-DIP-C BPLR IC OP AMP LOW-BISS-H-IMPD TO-99 PKG IC COMPARATOR PRCN 8-DIP-P PKG	06665 27014 24355 27014 27014	PKD-01EY SL27613 AD41435 SL31560 SL14334
A36U209	1820-1978	4	1	IC RGTR TTL L 12-BIT	34335	AM25L04PC
A50	03326-66550	8	1	REFERENCE BOARD	28480	03326-66550
A50C1 A50C2 A50C3 A50C4 A50C5	0180-0309 0180-0309 0160-4571 0160-4571 0180-0116	4 4 8 8 1	6 39 2	CAPACITOR-FXD 4.7UF+-20% 10VDC TA CAPACITOR-FXD 4.7UF+-20% 10VDC TA CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 6.8UF+-10% 35VDC TA	13606 13606 04222 04222 13606	150D475X0010A2-DYS 150D475X0010A2-DYS MA205E104ZAA MA205E104ZAA 150D685X9035B2-DYS
A50C6 A50C7 A50C8 A50C9 A50C10	0180-0309 0180-0116 0180-0229 0180-0309 0160-4571	4 1 7 4 8	1	CAPACITOR-FXD 4.7UF+-20% 10VDC TA CAPACITOR-FXD 6.8UF+-10% 35VDC TA CAPACITOR-FXD 33UF+-10% 10VDC TA CAPACITOR-FXD 4.7UF+-20% 10VDC TA CAPACITOR-FXD .1UF +80-20% 50VDC CER	13606 13606 13606 13606 04222	150D475X0010A2-DYS 150D685X9035B2-DYS 150D336X9010B2-DYS 150D475X0010A2-DYS MA205E104ZAA
A50C11 A50C100 A50C101 A50C102 A50C103	0160-4571 0180-1746 0160-3877 0160-3877 0160-3877 0160-3847	85559	1 2 5	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 100PF +-20% 20VDC CER CAPACITOR-FXD 100PF +-20% 200VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	04222 13606 51642 51642 04222	MA205E104ZAA 150D156X9020B2-DYS 200-200-X7R-101M(.250LL) 200-200-X7R-101M(.250LL) MA105C103PAA
A50C104 A50C105 A50C106 A50C107 A50C108	0160-4571 0160-3847 0160-4571 0160-4571 0160-3847	8 9 8 8 9 9		CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	04222 04222 04222 04222 04222 04222	MA205E104ZAA MA105C103PAA MA205E104ZAA MA205E104ZAA MA205E104ZAA MA105C103PAA
A50C109 A50C110 A50C111 A50C112-C118 A50C120	0160-4803 0160-5413 0160-0127 0160-4571 0160-4571	00 N 00 00	1 1 4	CAPACITOR-FXD 68PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 160PF +-5% 100VDC CER CAPACITOR-FXD 10F +-20% 25VDC CER CAPACITOR-FXD 10F +80-20% 50VDC CER CAPACITOR-FXD .10F +80-20% 50VDC CER	27167 27167 13606 04222 04222	CAC02C0G680J100A CAC02C0G161J100A 2C37Z5U105M025A MA205E104ZAA MA205E104ZAA
A50C122 A50C200-C204 A50C205 A50C206 A50C206 A50C207	0160-4571 0160-4571 0160-4787 0160-4787 0160-4571 0160-4571	8 8 8 8 8 8 8	3	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 22FF +-5% 100VDC CER 0+-30 CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 04222 27167 04222 04222	MA205E104ZAA MA205E104ZAA CAC02C0G220J100A MA205E104ZAA MA205E104ZAA
	!					
				introduction to this section for ordering information		

See introduction to this section for ordering information *Indicates factory selected value

PART NUMBER 9320 3991

Table 4-29. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A50C208 A50C209 A50C210 A50C210 A50C298 A50C299	0160-4571 0160-4571 0180-0309 0160-3847 0160-4846	8 8 4 9 0	1	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 4.7UF+-20% 10VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 1500PF +-5% 100VDC CER	04222 04222 13606 04222 27167	MA205E104ZAA MA205E104ZAA 1500475X0010A2-DYS MA105C103PAA CAC04C0G152J100A
A50C300-C302 A50C400 A50C401 A50C402 A50C403	0160-4571 0160-4571 0160-4571 0160-4571 0160-4787 0160-4787	88888		CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 22FF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 22PF +-5% 100VDC CER 0+-30	04222 04222 04222 27167 27167	MA205E104ZAA MA205E104ZAA MA205E104ZAA CAC02C0G220J100A CAC02C0G220J100A
A50C404 A50C405 A50C406 A50C407 A50C408	0160-3847 0160-0127 0160-0127 0160-4532 0160-0127	9 2 2 1 2	2	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD 1000PF +-20% 50VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER	04222 13606 13606 27167 13606	MA105C103PAA 2C37Z5U105M025A 2C37Z5U105M025A CAC02X7R102M100A 2C37Z5U105M025A
A50C410 A50C411 A50C412 A50C413 A50C414	0160-5349 0160-4571 0180-0309 0160-4532 0160-4814	0 8 4 1 2	1	CAPACITOR-FXD 200PF +-5% 100VDC CER CAPACITOR-FXD .UF +80-20% 50VDC CER CAPACITOR-FXD 4.7UF+-20% 10VDC TA CAPACITOR-FXD 1000PF +-20% 50VDC CER CAPACITOR-FXD 150PF +-5% 100VDC CER	13606 04222 13606 27167 27167	292CC0G201J100B MA205E104ZAA 150D475X0010A2-DYS CAC02X7R102M100A CAC02C0G151J100A
A50C415-C420 A50C497 A50C498 A50C499 A50CR100	0160-4571 0160-4571 0160-4571 0160-4803 0122-0162	8 8 8 9 5	1	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 68FF +-5% 100VDC CER 0+-30 DIODE-VVC 29FF 10% BVR=30V	04222 04222 04222 27167 25403	MA205E104ZAA MA205E104ZAA MA205E104ZAA CAC02C0G680J100A BB809
A50CR102 A50CR103 A50CR200 A50CR400 A50CR403-CR406	1901-0040 1901-0040 1901-0040 1901-0040 1901-0035	1 1 1 9	12	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SCHOTTKY SM SIG	07263 07263 07263 07263 28480	FDH1088 FDH1088 FDH1088 FDH1088 1901-0535
A50CR407-CR414 A50J1 A50J2 A50J3 A50J4	1901-0040 1251-6254 1250-0544 1250-0544 1251-6254	1 2 9 2	2	DIODE-SWITCHING 30V 50MA 2NS DO-35 CONNECTOR-SGL CONT RTANG-F CONNECTOR-RF SM-SNP M SGL-HOLE-FR 50-OHM CONNECTOR-RF SM-SNP M SGL-HOLE-FR 50-OHM CONNECTOR-SGL CONT RTANG-F	07263 91833 98291 98291 91833	FDH1088 901 051-049-0000-220 051-049-0000-220 901
A50L1-L4 A50L5 A50L6 A50L100 A50L101	9100-3559 9100-1791 9100-3559 9100-1617 9140-0253	3 1 3 0 2	6 2 1 2	INDUCTOR RF-CH-MLD 5.1UH 5% .166DX.385LG CORE-FERRITE CHOKE-WIDEBAND;IMP:>360 INDUCTOR RF-CH-MLD 3.1UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 3.90H 10% INDUCTOR RF-CH-MLD 300NH 1% .166DX.385LG	24226 02114 24226 06560 24226	15M511J-1 VK200-19/4B 15M511J-1 15-4425-13K 15M300F-1
A50L200 A50L201 A50L202 A50MP1 A50MP2-MP3	9140-0253 9100-3559 9100-1791 03326-04150 0624-0333	2 3 1 4 6	1 2	INDUCTOR RF-CH-MLD 300NH 1% .166DX.385LG INDUCTOR RF-CH-MLD 5.1UH 5% .166DX.385LG CORE-FERRITE CHOKE-WIDEBAND; IMP:>360 CVR, REFERENCE SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL	24226 24226 02114 28480 01536	15M300F-1 15M511J-1 VK200-19/4B 03226-04150 0624-0333
A50MP4-MP9 A50P1 A50Q100-Q103 A50Q104 A50Q200	2360-0113 T-54687 1854-0215 1855-0081 1854-0215	2 9 1 1	6 1 5 2	SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI DIN CONN32 PIN MALE TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR NPN SI PD=350MW FT=300MHZ	01536 28480 04713 34677 04713	2360-0113 T-54687 SPS 3611 F1843 SPS 3611
A50Q400 A50Q401 A50R100 A50R101 A50R102	1855-0081 1854-0457 0757-0465 0757-0442 0757-0442	13699	1 5 9	TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR-DUAL NPN PD=400MW RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	34677 04713 19701 19701 19701	F1843 SD485 5033R 5033R 5033R
A50R103 A50R104 A50R105 A50R106 A50R107	0698-3150 0757-0401 0757-0401 0757-0422 0757-0422	60058	3 3 1 12	RESISTOR 2.37K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 909 1% .125W F TC=0+-100 RESISTOR 49.9 1% .125W F TC=0+-100	19701 19701 19701 19701 19701	5033R 5033R 5033R 5033R 5033R
A50R108 A50R109 A50R110 A50R111 A50R112	0757-0442 0757-0449 0698-3444 0698-3152 0757-0442	9 6 1 8 9	2 1 2	RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 3.48K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	19701 19701 19701 19701 19701	5033R 5033R 5033R 5033R 5033R
A50R113 A50R114 A50R115	0757-0416 0757-0442 2100-3094	7 9 4	17 1	RESISTOR 511 1≸ .125W F TC=0+-100 RESISTOR 10K 1≸ .125W F TC=0+-100 RESISTOR-TRMR 100K 10% C SIDE-ADJ 17-TRN	19701 19701 73138	5033R 5033R 89PR100K

Table 4-30. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A50R116	0757-0442	9		RESISTOR 10K 1% ,125W F TC=0+-100	19701	5033R
A50 R1 17 A50 R1 18 A50 R1 19 A50 R1 20 A50 R1 21 A50 R1 21 A50 R1 22	0698-3279 0757-0401 0698-0082 0698-3150 0698-4491 0698-4121	07603	3 1 1 1 1	RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 464 1% .125W F TC=0+-100 RESISTOR 2.37K 1% .125W F TC=0+-100 RESISTOR 30.9K 1% .125W F TC=0+-100 RESISTOR 11.3K 1% .125W F TC=0+-100	19701 19701 19701 19701 91637 19701	5033R 5033R 5033R 5033R CMF-55-1, T-1 5033R
A50R123 A50R124 A50R125 A50R126 A50R127-R132	0757-0465 0757-0442 0757-0416 0683-1025 0757-0316	6 9 7 9 6	18 7	RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0+-100 RESISTOR 42.2 1% .125W F TC=0++100	19701 19701 19701 77902 19701	5033R 5033R 5033R R-25J 5033R
A50R134 A50R135 A50R137 A50R138 A50R197	0757-0442 0757-0277 0757-0277 0757-0316 0757-0416	9 8 8 6 7		RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 49.9 1% .125W F TC=0+-100 RESISTOR 49.9 1% .125W F TC=0+-100 RESISTOR 42.2 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100	19701 19701 19701 19701 19701 19701	5033R 5033R 5033R 5033R 5033R
A50R198 A50R199 A50R200 A50R201 A50R202	0757-0316 0757-0316 0757-0416 0757-0316 0757-0316 0757-0277	6 6 7 6 8		RESISTOR 42.2 1% .125W F TC=0+-100 RESISTOR 42.2 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 42.2 1% .125W F TC=0+-100 RESISTOR 49.9 1% .125W F TC=0+-100	19701 19701 19701 19701 19701 19701	5033R 5033R 5033R 5033R 5033R 5033R
A50 R203 A50 R204 A50 R207 A50 R208 A50 R209	0757-0277 0683-1025 0757-0316 0757-0416 0757-0277	8 9 6 7 8	:	RESISTOR 49.9 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 42.2 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 49.9 1% .125W F TC=0+-100	19701 77902 19701 19701 19701	5033R R-25J 5033R 5033R 5033R
A50 R210 A50 R211 A50 R212 A50 R213 A50 R214	0757-0277 0683-1025 0683-1025 0683-1025 0683-1025 0757-0416	8 9 9 7		RESISTOR 49.9 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 511 1% .125W F TC=0+-100	19701 77902 77902 77902 19701	5033R R-25J R-25J R-25J 5033R
A50 R216 A50 R218 A50 R219 A50 R220 A50 R221	0683-1025 0757-0416 0757-0416 0683-1025 0757-0277	97798		RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 49.9 1% .125W F TC=0+-100	77902 19701 19701 77902 19701	R-25J 5033R 5033R R-25J 5033R
A50 R222 A50 R223 A50 R224 A50 R300 A50 R301	0757-0416 0757-0416 0757-0449 0757-0449 0757-0409 0757-0409	77688	2	RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR 274 1% .125W F TC=0+-100 RESISTOR 274 1% .125W F TC=0+-100	19701 19701 19701 19701 19701 19701	5033R 5033R 5033R 5033R 5033R
A50R302 A50R303 A50R400 A50R401 A50R402	0683-1025 0683-1025 0757-0280 0698-4437 0757-0465	99346	2	RESISTOR 1K 5≴ .25W CF TC=0-400 RESISTOR 1K 5≴ .25W CF TC=0-400 RESISTOR 1K 1≸ .125W F TC=0+-100 RESISTOR 2.94K 1≸ .125W F TC=0+-100 RESISTOR 100K 1≸ .125W F TC=0+-100	77902 77902 19701 91637 19701	R-25J R-25J 5033R CMF-55-1, T-1 5033R
A50R403 A50R404 A50R405 A50R406 A50R407	0757-0446 0757-0470 0683-1025 0757-0416 0757-0280	3 3 9 7 3	1	RESISTOR 15K 1% .125W F TC=0+-100 RESISTOR 162K 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0+-400 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	19701 19701 77902 19701 19701	5033R 5033R R - 25J 5033R 5033R
A50R408 A50R409 A50R410 A50R411 A50R412	0698-4437 0698-8827 0757-0465 0757-0442 0757-0416	4 4 6 9 7	1	RESISTOR 2.94K 1% .125W F TC=0+-100 RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100	91637 19701 19701 19701 19701 19701	CMF-55-1, T-1 5033R 5033R 5033R 5033R
A50R413 A50R414 A50R415 A50R416 A50R417	0698-4498 0757-0465 0757-0416 0683-1025 0683-1025	7 6 7 9	1	RESISTOR 53.6K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400	91637 19701 19701 77902 77902	CMF-55-1, T-1 5033R 5033R R-25J R-25J R-25J
A50R418 A50R419 A50R420 A50R421 A50R422	0683-1025 0683-1025 0757-0407 0757-0277 0698-3279	9 9 6 8 0	3	RESISTOR 1K 5% .25W CF TC≈0-400 RESISTOR 1K 5% .25W CF TC≈0-400 RESISTOR 200 1% .125W F TC≈0+-100 RESISTOR 49.9 1% .125W F TC≈0+-100 RESISTOR 4.99K 1% .125W F TC≈0+-100	77902 77902 19701 19701 19701	R - 25J R - 25J 5033R 5033R 5033R

Table 4-31. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A50R423 A50R424 A50R425 A50R426 A50R426 A50R427	0757-0407 0757-0407 0757-0277 0757-0277 0757-0277 0757-0419	6 6 8 8 0	1	RESISTOR 200 1% .125W F TC=0+-100 RESISTOR 200 1% .125W F TC=0+-100 RESISTOR 49.9 1% .125W F TC=0+-100 RESISTOR 49.9 1% .125W F TC=0+-100 RESISTOR 681 1% .125W F TC=0+-100	19701 19701 19701 19701 19701 19701	5033R 5033R 5033R 5033R 5033R
A50R428 A50R429 A50R430 A50R431 A50R432	0698-3279 0757-0401 0683-1025 0683-1025 0683-1025	00999		RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400	19701 19701 77902 77902 77902	5033R 5033R R-25J R-25J R-25J
A50R495 A50R496 A50R497 A50R498 A50R499	0698-3152 0698-3150 0757-0277 0683-1025 0698-3228	8 6 8 9 9	1	RESISTOR 3.48K 1% .125W F TC=0+-100 RESISTOR 2.37K 1% .125W F TC=0+-100 RESISTOR 49.9 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0+40 RESISTOR 14 5.425W F TC=0+-100	19701 19701 19701 77902 19701	5033R 5033R 5033R R-25J 5033R
A50T100 A50T300 A50TP1-TP7 A50U100 A50U101	08552-6044 08552-6044 1251-0600 1820-0817 1820-0810	1 0 8 1	2 7 3 4	TRANS 6 TURNS TRANS 6 TURNS CONNECTOR-SCL CONT PIN 1.14-MM-BSC-SZ SQ IC FF ECL D-M/S DUAL IC RCVR ECL LINE RCVR TPL 2-INP	28480 28480 27264 04713 04713	08552-6044 08552-6044 16-06-0034 SC63470P131 SC63470P116
A50U102 A50U200 A50U201 A50U202 A50U202 A50U203	1820-0810 1820-0810 1820-0817 1820-1383 1820-1383	1 1 5 5	2	IC RCVR ECL LINE RCVR TPL 2-INP IC RCVR ECL LINE RCVR TPL 2-INP IC FF ECL D-M/S DUAL IC CNTR ECL BCD POS-EDGE-TRIG IC CNTR ECL BCD POS-EDGE-TRIG	04713 04713 04713 04713 04713 04713	SC63470P116 SC63470P116 SC63470P131 SC63470L138 SC63470L138
A50U204 A50U300 A50U400 A50U401 A50U402	1826-0210 1820-0817 1826-0138 1826-0340 1820-0810	7 8 4 1	1 1 1	IC COMPARATOR HS 14-DIP-P PKG IC FF ECL D-M/S DUAL IC COMPARATOR GP QUAD 14-DIP-P PKG IC OP AMP LOW-BIAS-H-IMPD TO-99 PKG IC RCVR ECL LINE RCVR TPL 2-INP	27014 04713 27014 27014 04713	SL27610 SC63470P131 SL24958 SL617760 SC63470P116
A50¥100	0410-0680	3	1	CRYSTAL-QUARTZ 40.000 MHZ	33096	0410-0680
A61	03326-66561	1	1	CONTROLLER BOARD	28480	03326-66561
A61BT1 A61C101 A61C102 A61C120 A61C201	1420-0278 0160-4835 0160-4835 0160-4835 0160-0127 0160-4835	7727	1 5 2	BATTERY 2.9V .72A-HR LI/S-DIOX W-FLEX CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER	28480 27167 27167 13606 27167	B9511 CAC04X7R104K050A CAC04X7R104K050A 2C37Z5U105M025A CAC04X7R104K050A
A61C202-C223 A61C224 A61C230 A61C231 A61C401	0160-3847 0160-4835 0160-4835 0160-3847 0160-0127	97792	23	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER	04222 27167 27167 04222 13606	MA105C103PAA CAC04X7R104K050A CAC04X7R104K050A MA105C103PAA 2C37Z5U105M025A
A61C402 A61C403 A61C504 A61C610-C621 A61C623-C630	0160-0300 0160-4801 0180-0062 0160-4571 0160-4571	37688	1 1 1 30	CAPACITOR-FXD 2700PF +-10% 200VDC POLYE CAPACITOR-FXD 100PF +-5% 100VDC CER CAPACITOR-FXD 300UF-75-10% 6VDC AL CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	13606 27167 13606 04222 04222	192P27292 CAC02C0G101J100A 30D307G006DD2 MA205E104ZAA MA205E104ZAA
A61C632-C641 A61CR101 A61CR102 A61CR103 A61CR301	0160-4571 1901-0040 1901-0040 1902-3080 1901-0535	8 1 7 9	3 1 2	CAPACITOR-FXD .1UF +80-20% 50VDC CER DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 4.53V 2% DO-35 PD=.4W DIODE-SCHOTTKY SM SIG	04222 07263 07263 04713 28480	MA205E104ZAA FPH1088 FDH1088 SZ30016-084 1901-0535
. A61CR302 A61CR401 A61CR402 A61CR405 A61J104	1902-0946 1990-0485 1901-0040 1901-0535 1251-5648	8 5 1 9 6	1	DIODE-ZNR 3.3V 5% DO-35 PD=.4W TC=039% LED-LAMP LUM-INT=2MCD IF=30MA-MAX BVR=5V DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SCHOTTKY SM SIG CONN-POST TYPE .100-PIN-SPCG 16-CONT	04713 28480 07263 28480 76381	SZ30035-004 1990-0485 FDH1088 1901-0535 3408-1202
A61J201 A61J303 A61MP2-MP7 A61MP8 A61MP9	1251-5652 1251-3835 0624-0333 5000-9043 5040-6843	N 9 6 6 N	1 1 5 1	CONN-POST TYPE .100-PIN-SPCG 40-CONT CONN-POST TYPE .100-PIN-SPCG 9-CONT SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL PIN EXTR EXTR-PC BD	76381 27264 01536 28480 28480	3432-1202 22-05-2091 0624-0333 5000-9043 5040-6843
A61MP10-MP12 A61P1 A61Q301	0403-0285 1251-8410 1853-0036	962	3 1 2	BUMPER FOOT-ADH MTG 12.7-MM-WD CONN-POST TYPE 48-CONT RTANG-DPSLDR TRANSISTOR PNP SI PD=310MW FT=250MHZ	76381 28480 04713	SJ-5018 GRAY 1251-8410 SPS-3612

Table 4-32. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A61Q302 A61Q401	1854-0215 1853-0036	1 2	2	TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ	04713 04713	SPS 3611 SPS-3612
A61Q402 A61Q501 A61R101 A61R102 A61R103	1854-0692 1854-0215 0683-1025 0683-1055 0683-1055	8 1 9 5 5	1 15 2	TRANSISTOR NPN SI PD=15W FT=50MHZ TRANSISTOR NPN SI PD=350MW FT=300MHZ RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 1M 5% .25W CF TC=0-800 RESISTOR 1M 5% .25W CF TC=0-800	04713 04713 77902 77902 77902 77902	SJE1634K SPS 3611 R-25J R-25J R-25J
A61R110 A61R111 A61R113 A61R114 A61R115	0683-4725 0683-4725 0683-1025 0683-4725 0683-1025	22020	12	RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400	77902 77902 77902 77902 77902 77902	R-25J R-25J R-25J R-25J R-25J R-25J
A61R116 A61R122 A61R123 A61R130 A61R201	0683-1025 0683-1025 0683-4725 0683-1025 0757-0283	99296	5	RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0+100	77902 77902 77902 77902 77902 19701	R-25J R-25J R-25J R-25J F-25J 5033R
A61R202 A61R203-R210 A61R211 A61R212 A61R213	0757-0283 0757-0407 0683-1025 0757-0283 0757-0283	6 6 9 6 6	23	RESISTOR 2K 1% .125W F TC=0+-100 RESISTOR 200 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 2K 1% .125W F TC=0+-100 RESISTOR 2K 1% .125W F TC=0+-100	19701 19701 77902 19701 19701	5033R 5033R R-25J 5033R 5033R
A61R214 A61R215 A61R216 A61R217 A61R218	0757-0407 0757-0407 8150-3375 0683-4725 0683-1025	6 6 5 2 9	2	RESISTOR 200 1% .125W F TC=0+-100 RESISTOR 200 1% .125W F TC=0+-100 RESISTOR-ZERO OHMS 22 AWG LEAD DIA RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400	19701 19701 75042 77902 77902	5033R 5033R ZEROHM R-25J R-25J
A61R219-R229 A61R230 A61R231-R233 A61R234 A61R235	0757-0407 0683-1025 0683-4725 0757-0415 0757-0415	69266	2	RESISTOR 200 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR 475 1% .125W F TC=0+-100 RESISTOR 475 1% .125W F TC=0+-100	19701 77902 77902 19701 19701	5033R R-25J R-25J 5033R 5033R
A61R236 A61R237 A61R238 A61R239 A61R251	0683-1025 0683-1025 0757-0407 0757-0407 0683-4715	9 9 6 0	1	RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 200 1% .125W F TC=0+-100 RESISTOR 200 1% .125W F TC=0+-100 RESISTOR 470 5% .25W CF TC=0-400	77902 77902 19701 19701 77902	R-25J R-25J 5033R 5033R R-25J
A61R301 A61R302 A61R304 A61R306 A61R309	0683-2235 0683-1005 0683-8205 0683-1525 0683-1525 0683-1035	5 5 1 4 1	1 1 1 1	RESISTOR 22K 5% .25W CF TC=0-400 RESISTOR 10 5% .25W CF TC=0-400 RESISTOR 82 5% .25W CF TC=0-400 RESISTOR 1.5K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400	77902 77902 77902 77902 77902 77902	R-25J R-25J R-25J R-25J R-25J R-25J
A 6 1 R 4 0 1 A 6 1 R 4 0 4 A 6 1 R 4 1 0 A 6 1 R 4 1 2 A 6 1 R 4 1 5	0683-1025 8150-3375 0698-8059 0698-6360 0757-0453	9 5 4 6 2	1 1 1	RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR-ZERO OHMS 22 AWG LEAD DIA RESISTOR 4.32K .1% .125W F TC=0+-25 RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 30.1K 1% .125W F TC=0+-100	77902 75042 19701 19701 19701	R-25J ZEROHM 5033R 5033R 5033R
A61R416 A61R417 A61R420 A61R421 A61R422	0683-4725 0683-4725 0683-1025 0683-4725 0683-4725 0683-6215	2 2 9 2 9	1	RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR 620 5% .25W CF TC=0-400	77902 77902 77902 77902 77902 77902	R-25J R-25J R-25J R-25J R-25J R-25J
A61R423 A61R425 A61R426 A61R501 A61R502	0683-4725 0683-2225 0683-9115 0757-0283 0683-1025	2 3 4 6 9	1	RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR 2.2K 5% .25W CF TC=0-400 RESISTOR 910 5% .25W CF TC=0-400 RESISTOR 2K 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0-400	77902 77902 77902 19701 77902	R-25J R-25J R-25J 5033R R-25J
A618503 A6180101 A6180401 A6181 A617201-T206	0683-1025 1810-0269 1810-0269 3101-2063 1810-0751	9 3 3 8 8	2 1 6	RESISTOR 1K 5% .25W CF TC=0-400 NETWORK-RES 9-SIP 10.0K OHM X 8 NETWORK-RES 9-SIP 10.0K OHM X 8 SWITCH-RKR DIP-RKR-ASSY 4-1A .05A 30VDC NETWORK-TRANSFORMER	77902 13606 13606 81073 28480	R-25J 216CJ104 216CJ104 76Y22074S 1810-0751
A61TP1-TP11 A61TP13 A61TP17 A61TP21 A61TP22	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600 1251-0600	0 0 0 0 0	26	CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ	27264 27264 27264 27264 27264 27264	16-06-0034 16-06-0034 16-06-0034 16-06-0034 16-06-0034

PART NUMBER 9320-3991

Table 4-33. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A61TP24-TP30 A61TP32-TP35 A61U101 A61U102 A61U103	1251-0600 1251-0600 1820-1146 1820-1367 1820-2624	0 0 8 5 9	1	CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ IC BFR CMOS NON-INV HEX IC GATE TTL S AND QUAD 2-INP IC-MPU; CLK FREQ=2 MHZ, ENHANCED 6800	27264 27264 3L585 01295 04713	16-06-0034 16-06-0034 CD4050BE SN85092N MC68809P
A 6 1 U 1 0 4 A 6 1 U 1 0 5 A 6 1 U 1 0 6 A 6 1 U 1 0 7 A 6 1 U 1 0 8	1820-2024 1820-2024 1820-2075 1820-1975 1820-1987	3 3 4 1 5	10 3 1 1	IC DRVR TTL LS LINE DRVR OCTL IC DRVR TTL LS LINE DRVR OCTL IC TRANSCEIVER TTL LS BUS OCTL IC SHF-RGTR TTL LS NEG-EDGE-TRIG PRL-IN IC SHF-RGTR TTL LS COM CLEAR STOR 8-BIT	01295 01295 01295 01295 34335	SN58948 SN58948 SN59111N SN58817N AM74LS299N
A61U109 A61U110 A61U111 A61U112-U115 A61U112-U115 A61U117	1820-1443 1820-1206 1820-0683 1820-1240 1826-0138	8 1 6 3 8	1 2 1 4 1	IC CNTR TTL LS BIN ASYNCHRO IC GATE TTL LS NOR TPL 3-INP IC INV TTL S HEX 1-INP IC DCDR TTL S 3-TO-8-LINE 3-INP IC COMPARATOR GP QUAD 14-DIP-P PKG	01295 01295 01295 01295 27014	SN57204 SN53513 SN24651 SN47883 SL24958
A61U118 A61U119 A61U120 A61U122 A61U124	1820-1144 1820-1203 1820-1197 1820-1212 1820-1212	6 8 9 9 2	1 1 2 1 1	IC GATE TTL LS NOR QUAD 2-INP IC GATE TTL LS AND TPL 3-INP IC GATE TTL LS NAND QUAD 2-INP IC FF TTL LS J-K NEG-EDGE-TRIG IC GATE TTL S NOR QUAD 2-INP	01295 01295 01295 01295 01295 01295	SN53243 SN53510 SN53504 SN53519N SN84050
A61U125 A61U201-U203 A61U204-U207 A61U208 A61U208 A61U209	1820-1196 1820-2024 1820-1440 1820-2024 1820-2024 1820-2024	& ~ 5 ~ ~ ~	2 7	IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC DRVR TTL LS LINE DRVR OCTL IC LCH TTL LS QUAD IC DRVR TTL LS LINE DRVR OCTL IC DRVR TTL LS LINE DRVR OCTL	01295 01295 01295 01295 01295 01295	SN53525 SN58948 SN57201 SN58948 SN58948 SN58948
A61U211 A61U212-U214 A61U215 A61U216 A61U217	1820-2024 1820-1440 1820-2548 1820-3431 1820-3513	35687	1	IC DRVR TTL LS LINE DRVR OCTL IC LCH TTL LS QUAD IC-GENERAL PURPOSE INTERFACE BUS ADAPTER IC TRANSCEIVER TTL S INSTR-BUS IEEE-488 IC TRANSCEIVER TTL S INSTR-BUS IEEE-488	01295 01295 01295 27014 27014	SN58948 SN57201 MP9203NL DS74160AN DS75160AN
A61U218 A61U219 A61U220 A61U221 A61U221 A61U301	1820-1997 1820-1997 1820-1196 1990-0545 1820-1145	7 7 8 7 7	3 1 1	IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC FF TTL LS D-TYPE POS-EDGE-TRIG COM OPTO-ISOLATOR LED-PDIO/XSTR IF=40MA-MAX IC BFR CMOS INV HEX 1-INP	27014 27014 01295 28480 3L585	GDEA105 GDEA105 SN53525 1990-0545 CD4049UBE
A61U302 A61U303 A61U304 A61U305 A61U305	1818-1784 1818-1845 1820-2075 03326-60301 03326-60302	59456	1 1 1	IC CMOS 16384 (16K) STAT RAM 250-NS 3-S IC NMOS 16384 (16K) STAT RAM 100-NS 3-S IC TRANSCEIVER TTL LS BUS OCTL PROGRAMMED PROM PROGRAMMED PROM	28480 28480 01295 28480 28480	1818-1784 1818-1845 SN59111N 03326-60301 03326-60302
A610401 A610402 A610403 A610404 A610405	1820-3415 1820-1112 1820-1211 1820-2024 1820-2024	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1	IC-PROGRAMMABLE TIMER MODULE,2MHZ,6800 IC FF TTL LS D-TYPE POS-EDGE-TRIG IC GATE TTL LS EXCL-OR QUAD 2-INP IC DRVR TTL LS LINE DRVR OCTL IC DRVR TTL LS LINE DRVR OCTL	04713 01295 01295 01295 01295	MC68840P SN53030 SN53518 SN58948 SN58948
A61U412 A61U413 A61U415-U417 A61U418 A61U418 A61U419	1820-1997 1820-1197 1820-1194 1826-0838 1826-0522	7 96 54	3 1 1	IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC GATE TTL LS NAND QUAD 2-INP IC CMTR TTL LS BIN UP/DOWN SYNCHRO D/A 10-BIT 15-PLASTIC CMOS IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-P	27014 01295 01295 24355 01295	GDEA105 SN53504 SN53527 AD11/435 SN99856N
A61U420 A61U502 A61U503 A61W101 A61W101A	1820-1206 1820-2075 1820-1917 1251-5990 1258-0141	1 4 1 8	1 2 4	IC GATE TTL LS NOR TPL 3-INP IC TRANSCEIVER TTL LS BUS OCTL IC BFR TTL LS LINE DRVR OCTL CONN-POST TYPE .100-PIN-SPCG 3-CONT JMPR-REM .025P	01295 01295 01295 00779 22526	SN53513 SN59111N SN58746N 87348-3 65474-004
A61W105 A61W105A A61W304 A61W304A A61W304A	1251-5750 1258-0141 1251-5750 1258-0141 1251-5990	1 8 1 8 1	2	CONN-POST TYPE .100-PIN-SPCG 2-CONT JMPR-REM .025P CONN-POST TYPE .100-PIN-SPCG 2-CONT JMPR-REM .025P CONN-POST TYPE .100-PIN-SPCG 3-CONT	00779 22526 00779 22526 00779	640098-2 65474-004 640098-2 65474-004 87348-3
A61W401A	1258-0141	8		JMPR-REM .025P	22526	65474-004
A62	03326-66562	2	1	KEYBOARD	28480	03326-66562
A62C2 A62C4-C9 A62C11	0160-3847 0160-3847 0160-4571	9 9 8	18 4	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 04222 04222	MA105C103PAA MA105C103PAA MA205E104ZAA
				introduction to this socian for ordering informatio	L	

Table 4-34. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A62C12 A62C101-C107	0160-4571 0160-3847	8 9		CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	04222 04222	MA205E104ZAA MA105C103PAA
A62C108 A62C109 A62C111 A62C113-C115 A62C116-C117	0160-4801 0180-0374 0160-4835 0160-3847 0160-4571	7 3 7 9	1 1 1	CAPACITOR-FXD 100PF +-5% 100VDC CER CAPACITOR-FXD 10UF+-10% 20VDC TA CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	27167 13606 27167 04222 04222	CAC02C0G101J100A 150D106X9020B2-DYS CAC04X7R104K050A MA105C103PAA MA205E104ZAA
A62C200-C202 A62C203 A62CR1 A62CR2-CR28 A62CR29	0160-4300 0160-3847 1990-0486 1990-0831 1990-0485	1 9655	3 40 1	CAPACITOR-FXD .047UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +100-0% SOVDC CER LED-LAMP LUM-INT=2MCD IF=25MA-MAX BVR=5V LED-LAMP LUM-INT=800UCD IF=20MA-MAX LED-LAMP LUM-INT=2MCD IF=30MA-MAX BVR=5V	28480 04222 28480 28480 28480	562CZC101AL473ZA26 MA105C103PAA 1990-0486 1990-0831 1990-0485
A62CR30-CR48 A62CR49-CR56 A62CR101 A62CR102 A62CR103	1990-0831 1901-0040 1901-0029 1901-0029 1901-0050	5 1 6 3	9 4 2	LED-LAMP LUM-INT=800UCD IF=20MA-MAX DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-PWR RECT 600V 750MA DO-29 DIODE-PWR RECT 600V 750MA DO-29 DIODE-SWITCHING 80V 200MA 2NS DO-35	28480 07263 04713 04713 07263	1990-0831 FDH1088 SR1358-10B SR1358-10B FDH 6308
A62CR104 A62CR105 A62CR107 A62CR108 A62CR109	1901-0029 1901-0029 1901-0050 1901-0040 1902-0940	6 6 3 1 2	1	DIODE-PWR RECT 600V 750MA DO-29 DIODE-PWR RECT 600V 750MA DO-29 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 1N5339B 5.6V 5% PD=5W IR=1UA	04713 04713 07263 07263 04713	SR1358-10B SR1358-10B FDH 6308 FDH1088 SZP40149
A62CR200 A62DS201 A62J1 A62J2 A62J3-J13	1990-0759 1990-1039 1251-7666 1251-4813 1200-0474	67259	1 1 1 1 1	LED-LIGHT BAR MODULE LUM-INT=3MCD HLMP-2670 CONN-POST TYPE .100-PIN-SPCG 16-CONT CONN-POST TYPE .100-PIN-SPCG 5-CONT SOCKET-IC 14-CONT DIP-SLDR	28480 28480 76381 27264 28480	1990-0759 1990-1039 3408-1002 22-05-2051 C931410
A62J14 A62J15 A62J16 A62J101 A62J102	1200-0473 1200-0473 1200-0583 1250-0643 1251-6254	8 8 1 9 2	2 1 1 1	SOCKET-IC 16-CONT DIP DIP-SLDR SOCKET-IC 16-CONT DIP DIP-SLDR SOCKET-IC 24-CONT DIP DIP-SLDR CONNECTOR-RF BNC FEM PC 50-OHM CONNECTOR-SGL CONT RTANG-F	28480 28480 28480 24931 91833	C931602 C931602 C93-24-02 28JR175-2 901
A62K101 A62L101-L103 A62MP1-MP43 A62Q1-Q17 A62Q101	0490-1346 9140-0395 05328-40003 1853-0016 1854-0215	8 3 8 1	1 3 43 17 1	RELAY-REED 1A 500MA 200VDC 5VDC-COIL INDUCTOR RF-CH-MLD 560NH 5% .166DX.385LG STAND-L.E.D TRANSISTOR PNP SI TO-92 PD=300MW TRANSISTOR NPN SI PD=350MW FT=300MHZ	12617 06560 28480 04713 04713	HE321A5131 4425-3J 05328-40003 SPS3320 SPS 3611
A62R1-R3 A62R4-R19 A62R20-R35 A62R36-R51 A62R52	1810-0269 0683-2205 0684-1021 0683-1015 0683-1025	3 9 7 7 9	3 16 16 16 3	NETWORK-RES 9-SIP 10.0K OHM X 8 RESISTOR 22 5% .25W CF TC=0-400 RESISTOR 1K 10% .25W CF TC=0-400 RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400	13606 77902 77902 77902 77902 77902	216CJ104 R-25J R-25J R-25J R-25J R-25J
A62R53 A62R54 A62R55 A62R56 A62R56 A62R57	0683-1025 0683-1815 0683-1025 0683-1045 0683-1815	9 5 9 3 5	2	RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 180 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 100K 5% .25W CF TC=0-400 RESISTOR 180 5% .25W CF TC=0-400	77902 77902 77902 77902 77902 77902	R - 25J R - 25J R - 25J R - 25J R - 25J R - 25J
A62R58 A62R59 A62R101 A62R103 A62R104	0683-0335 0683-0335 0757-0317 0698-4493 0683-4705	2 2 7 2 8	2 1 1 1	RESISTOR 3.3 5% .25W CF TC=0-400 RESISTOR 3.3 5% .25W CF TC=0-400 RESISTOR 1.33K 1% .125W F TC=0+-100 RESISTOR 34K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400	77902 77902 19701 91637 77902	R-25J R-25J 5033R CMF-55-1, T-1 R-25J
A62R105 A62R106 A62R107 A62R108 A62R109	0757-0442 0757-0442 0683-7545 0698-8827 0698-8827	9 9 0 4 4	2 1 2	RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 750K 5% .25W CF TC=0+000 RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 1M 1% .125W F TC=0+-100	19701 19701 77902 19701 19701	5033R 5033R R - 25J 5033R 5033R
A62R110 A62R111 A62R112 A62R113 A62R114	0757-0465 0698-4436 0698-4533 0757-0422 0757-0465	63156	3 1 1	RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 2.8K 1% .125W F TC=0+-100 RESISTOR 294K 1% .125W F TC=0+-100 RESISTOR 939 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100	19701 91637 91637 19701 19701	5033R CMF-55-1, T-1 CMF-55-1, T-1 5033R 5033R
A62R115 A62R116 A62S1-S45 A62S4 A62TP1-TP10	0757-0400 0757-0465 5060-9436 3101-2748 1251-0600	9 6 7 6 0	1 45 1 10	RESISTOR 90.9 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 PB-SWITCH SWITCH-PB DPDT ALTNG .1A CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ	19701 19701 28480 28480 27264	5033R 5033R 5060-9436 3101-2748 16-06-0034

Table 4-35. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mír Part Number
A62U1~U5 A62U6 A62U7 A62U8-U10 A62U8-U10	1820-1662 1820-0938 1820-2031 1858-0047 1990-0592	34255	5 1 1 3 11	IC SHF-RGTR CMOS SERIAL-IN PRL-OUT 8-BIT IC FF CMOS J-K M/S POS-EDGE-TRIG DUAL IC SHF-RGTR CMOS ASYNCHRO PRL-IN TRANSISTOR ARRAY 16-PIN PLSTC DIP DISPLAY-NUM-SEG 1-CHAR .43-H	3L585 3L585 04713 13606 28480	CD4094BE CD4027BE SC45122PK ULN-2003A 1990-0592
A62U22 A62U101 A62U102 A62U103 A62U104	1990-0634 1826-0210 1820-1199 1826-0138 1826-0715	6 7 1 8 7	1 1 1 1	DISPLAY-AN-SEG 4-CHAR .15-H RED IC COMPARATOR HS 14-DIP-P PKG IC INV TTL LS HEX 1-INP IC COMPARATOR GP QUAD 14-DIP-P PKG IC OP AMP LOW-NOISE 8-DIP-P PKG	28480 27014 01295 27014 18324	1990-0634 SL27610 SN53506 SL24958 CC3802
A62V R200	0837-0313	3	1	TNR 15G 560 KM	28480	0837-0313
A63	03326-66563	3	1	HP-IB SUPPORT BOARD	28480	03326-66563
A63C1 A63C2-C5 A63C6 A63C7 A63CR1-CR4	0160-4300 0160-4822 0160-3847 0160-3847 1901-0029	1 2 9 9 6	1 4 1 1 6	CAPACITOR-FXD .047UF +80-20% 100VDC CER CAPACITOR-FXD 1000PF +-5% 100VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER DIODE-PWR RECT 600V 750MA D0-29	28480 27167 04222 04222 04713	562CZC101AL473ZA26 CAC03C0G102J100A MA105C103PAA MA105C103PAA SR1358-10B
A63CR6 A63CR7-CR8 A63CR11 A63CR12 A63J1	1902-3345 1901-0029 1902-0940 1902-0632 03326-61603	7 6 2 9 2	1 1 1	DIODE-ZNR 51.1V 5% DO-35 PD=.4W DIODE-PWR RECT 600V 750MA DO-29 DIODE-ZNR 1N5339B 5.6V 5% PD=5W IR=1UA DIODE-ZNR 1N5354B 17V 5% PD=5W TC=+75% 40 PIN CABLE	04713 04713 04713 04713 28480	SZ30016-1386 SR1358-10B SZP40149 SZP40123 03326-61603
A63J3-J6 A63MP639 A63R1 A63R2-R4 A63R5	1250-1687 0380-0678 8150-3375 0837-0275 0837-0223	34564	4 2 1 3 1	CONNECTOR-RF BNC FEM PC 50-OHM STANDOFF-RVT-ON .25-IN-LG 6-32-THD RESISTOR-ZERC OHMS 22 ANG LEAD DIA THERMISTOR DISC 50-OHM TC=+2.35%/C-DEG THERMISTOR DISC 10-OHM	24931 06540 75042 28480 28480	28 JR175-7 9533B-B-0632-14 ZEROHM RL3006-50-110-25-PT0 RL4008-10-110-40-PTI
A 6 3 U 2 A 6 3 V R 1	1252-0137 0837-0313	0 3	1 1	CONNECTOR 24P TNR 15G 560 KM	9D949 28480	57-20240-23(438)(398) 0837-0313
A70	03326-66570	2	1	POWER SUPPLY BOARD	28480	03326-66570
A70C100 A70C101 A70C200 A70C201 A70C202	0180-0309 0180-0098 0180-0098 0160-3847 0160-4835	4 8 9 7	1 3 5 7	CAPACITOR-FXD 4.7UF+-20% 10VDC TA CAPACITOR-FXD 100UF+-20% 20VDC TA CAPACITOR-FXD 100UF+-20% 20VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER	13606 13606 13606 04222 27167	150 D475X0010A2-DYS 150 D107X0020S2-DYS 150 D107X0020S2-DYS MA105C103PAA CAC04X7 R104K050A
A70C300 A70C301 A70C302 A70C303 A70C400	0180-0159 0160-3847 0160-4835 0160-4835 0160-0170	2 9 7 7 5	1	CAPACITOR-FXD 220UF+-20% 10VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD .2UF +80-20% 50VDC CER	13606 04222 27167 27167 13606	150D227X0010S2-DYS MA105C103PAA CAC04X7R104K050A CAC04X7R104K050A 2C37Z5U224Z050A
A70C401 A70C603 A70C604 A70C606 A70C607	0160-0127 0160-0170 0180-0100 0160-0170 0180-0100	25353	2 2	CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD .22UF +80-20% 50VDC CER CAPACITOR-FXD 4.7UF+-10% 35VDC TA CAPACITOR-FXD .22UF +80-20% 50VDC CER CAPACITOR-FXD 4.7UF+-10% 35VDC TA	13606 13606 13606 13606 13606 13606	2C37Z5U105M025A 2C37Z5U224Z050A 150D475X9035B2-DYS 2C37Z5U224Z050A 150D475X9035B2-DYS
A70C700 A70C701 A70C702 A70C703 A70C704	0180-2908 0160-4835 0180-2908 0180-2154 0180-2779	3 7 3 1 6	2 1 2	CAPACITOR-FXD 6300UF+-20% 28VDC AL CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 6300UF+-20% 28VDC AL CAPACITOR-FXD 900UF+75-10% 15VDC AL CAPACITOR-FXD 470UF+75-10% 50VDC AL	13606 27167 13606 13606 13606	622D632M028AA2A CAC04X7R104K050A 622D632M028AA2A 39D198G015GL2-DSB 30D477G050FK2
A70C705 A70C706 A70C707 A70C708 A70C709	0180-2779 0180-2655 0180-2655 0160-4835 0160-4835	6 7 7 7 7	2	CAPACITOR-FXD 470UF+75-10% 50VDC AL CAPACITOR-FXD 9000UF+75-10% 16VDC AL CAPACITOR-FXD 9000UF+75-10% 16VDC AL CAPACITOR-FXD .10F +-10% 50VDC CER CAPACITOR-FXD .1UF +-10% 50VDC CER	13606 00853 00853 27167 27167	30D477G050FK2 300JT103U016B 300JT103U016B CAC04X7R104K050A CAC04X7R104K050A
A70C710 A70C805 A70C810-C812 A70C900 A70C901	0160-4835 0180-0098 0160-3847 0160-0170 0160-0127	7 8 9 5 2		CAPACITOR-FXD .1UF +-10% 50VDC CER CAPACITOR-FXD 100UF+-20% 20VDC TA CAPACITOR-FXD .01UF+100-0% 50VDC CER CAPACITOR-FXD .22UF +80-20% 50VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER	27167 13606 04222 13606 13606	CAC04X7R104K050A 150D107X0020S2-DYS MA105C103PAA 2C37Z5U24Z050A 2C37Z5U105M025A
A70CR100 A70CR101 A70CR102	1901-0040 1901-0040 1990-0486	1 1 6	11 5	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 LED-LAMP LUM-INT=2MCD IF=25MA-MAX BVR=5V	07263 07263 28480	FDH1088 FDH1088 1990-0486

Table 4-36. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A70CR103 A70CR104	1902-0632 1901-0040	9 1	2	DIODE-ZNR 1N5354B 17V 5% PD=5W TC=+75% DIODE-SWITCHING 30V 50MA 2NS DO-35	04713 07263	SZP40123 FDH1088
A70CR105 A70CR106 A70CR107 A70CR108 A70CR108 A70CR109	1901-0040 1902-0777 1990-0485 1901-0662 1901-0040	1 3 5 3 1	1 4 7	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 1N825 6.2V 5% DO-7 PD=.4W LED-LAMP LUM-INT=2MCD IF=30MA-MAX BVR=5V DIODE-PWR RECT 100V 6A DIODE-SWITCHING 30V 50MA 2NS DO-35	07263 04713 28480 04713 07263	FDH1088 SZ14376RL 1990-0485 SR2302K FDH1088
A70CR200 A70CR201 A70CR202 A70CR202 A70CR203 A70CR204	1901-0040 1901-0040 1990-0486 1902-0632 1901-0040	1 1 6 9		DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 LED-LAMP LUM-INT=2MCD IF=25MA-MAX BVR=5V DIODE-LANR 1N5354B 17V 5% PD=5W TC=+75% DIODE-SWITCHING 30V 50MA 2NS DO-35	07263 07263 28480 04713 07263	FDH1088 FDH1088 1990-0486 SZP40123 FDH1088
A70CR205 A70CR206 A70CR300 A70CR301 A70CR302	1990-0485 1901-0662 1901-0040 1901-0040 1901-0040 1990-0486	5 3 1 6		LED-LAMP LUM-INT=2MCD IF=30MA-MAX BVR=5V DIODE-PWR RECT 100V 6A DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 LED-LAMP LUM-INT=2MCD IF=25MA-MAX BVR=5V	28480 04713 07263 07263 28480	1990-0485 SR2302K FDH1088 FDH1088 1990-0486
A70CR303 A70CR304 A70CR305 A70CR306 A70CR306 A70CR400	1902-0940 1901-0040 1990-0485 1901-0662 1990-0485	21 535	1	DIODE-ZNR 1N5339B 5.6V 5% PD=5W IR=1UA DIODE-SWITCHING 30V 50MA 2NS DO-35 LED-LAMP LUM-INT=2MCD IF=30MA-MAX BVR=5V DIODE-PWR RECT 100V 6A LED-LAMP LUM-INT=2MCD IF=30MA-MAX BVR=5V	04713 07263 28480 04713 28480	S2P40149 FDH1088 1990-0485 SR2302K 1990-0485
A70CR700-CR703 A70CR704-CR711 A70CR712 A70CR800 A70CR806	1901-0662 1901-0029 1906-0231 1884-0231 1990-0486	362 46	8	DIODE-PWR RECT 100V 6A DIODE-PWR RECT 600V 750MA DO-29 DIODE-CT-RECT 200V 15A THYRISTOR-SCR TO-220AB VRRM=100 LED-LAMP LUM-INT=2MCD IF=25MA-MAX BVR=5V	04713 04713 18546 3L585 28480	SR2302K SR1358-10B R772 72048 1990-0486
A70CR807 A70F501 A70F502 A70F700 A70J101	1990-0486 2110-0297 2110-0297 2110-0423 1252-0270	64482	2 1 1	LED-LAMP LUM-INT=2MCD IF=25MA-MAX BVR=5V FUSE .5A 125V NTD .281X.093 FUSE .5A 125V NTD .281X.093 FUSE 1.5A 125V NTD .281X.093 FUSE 1.5A 125V NTD .281X.093 CONNECTOR-POST TYPE, 17 PIN	28480 75915 75915 75915 27264	1990-0486 275.500 275.500 27501.5 09-74-1171
A70J105 A70J105A A70MP1 A70MP2-MP3 A70MP4-MP7	1251-4670 1258-0141 03326-21101 0624-0333 0340-0580	2 8 1 6 3	1 1 2 4	CONN-POST TYPE .100-PIN-SPCG 3-CONT JMPR-REM .025P HEAT SINK SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL INSULATOR-XSTR THRM-CNDCT	22526 22526 28480 01536 55285	65500-103 65474-004 03326-21101 0624-0333 7403-09FR-02
A70MP8-MP12 A70MP13-MP15 A70MP16 A70MP17 A70MP18	0380-0562 0403-0285 0515-0158 0515-0213 0515-0407	5 92 0 4	5 3 5 10 2	SPACER-RND .25-IN-LG .14-IN-ID .25-IN-OD BUMPER FOOT-ADH MTG 12.7-MM-WD SCREW-MACH M3 X 0.5 20MM-LG SCREW-MACH M3 X 0.5 14MM-LG PAN-HD SCREW-MACH M3 X 0.5 10MM-LG PAN-HD	06540 76381 83486 16941 16941	9224-N140 SJ-5018 GRAY 0515-0158 0515-0213 0515-0407
A70MP19 A70MP20 A70MP21 A70MP22 A70MP23	0515-0104 0535-0004 1480-0116 1480-0116 2190-0644	8 9 8 8 3	4 13 2 21	SCREW-MACH M3 X 0.5 8MM-LG PAN-HD NUT-HEX DBL-CHAM M3 X 0.5 2.4MM-THK PIN-GRV .062-IN-DIA .25-IN-LG STL PIN-GRV .062-IN-DIA .25-IN-LG STL WASHER-LK EXT T-B 3.0 MM 3.15-MM-ID	28480 28480 28480 28480 28480 28480	0515-0104 0535-0004 1480-0116 1480-0116 2190-0644
A70MP24 A70MP25 A70MP26 A70MP27 A70MP28	2680-0128 4040-0755 4040-0755 8150-4289 8150-4289 8150-4289	7 2 2 2 2 2 2	4 2 2	SCREW-MACH 10-32 .25-IN-LG PAN-HD-POZI EXTR-PC BD VIO POLYC .062-IN-BD-THKNS EXTR-PC BD VIO POLYC .062-IN-BD-THKNS JMPR 22GA BLK 175MM 8x8 JMPR 22GA BLK 175MM 8x8	01536 28480 28480 28480 28480 28480	2680-0128 4040-0755 4040-0755 8150-4289 8150-4289
A70MP29 A70MP100 A70P1 A70Q100 A70Q100	0890-0768 1205-0477 1251-8410 1854-0618 1854-0094	4 2 6 8 4	0 1 1 2 1	TUBING-HS .187-D/.093-RCVD .02-WALL HEAT SINK SGL TO-3-CS CONN-POST TYPE 48-CONT RTANG-DPSLDR TRANSISTOR NPN SI DARL TO-3 PD=150W TRANSISTOR NPN SI PD=200MW FT=350MHZ	06090 13103 28480 04713 04713	RNF-100-3/16-BLU 6060B-2-SM1 1251-8410 SJ3237 SPS 234
A70Q200 A70Q300 A70Q401 A70Q800 A70Q810	1853-0387 1854-0618 1853-0479 1853-0036 0683-1005	6 8 7 2 5	1 1 6	TRANSISTOR PNP SI DARL TO-3 PD=150W TRANSISTOR NPN SI DARL TO-3 PD=150W TRANSISTOR PNP DARL TO-220AB PD=50W TRANSISTOR PNP SI PD=3100MW FT=250MHZ RESISTOR 10 5% .25W CF TC=0-400	04713 04713 03508 04713 77902	SJ6891K SJ3237 X45E217 SPS-36612 R-25J
A70R100 A70R101 A70R102 A70R103 A70R104	0683-4325 0683-4725 0683-4725 0757-0401 0811-3290	8 2 2 0 7	2 11 3 2	RESISTOR 4.3K 5% .25W CF TC=0-400 RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR .1 5% 2W PW TC=0+-800	77902 77902 77902 19701 75042	R-25J R-25J R-25J 5033R BWH

See introduction to this section for ordering information *Indicates factory selected value

PART NUMBER 9320-3991

Table 4-37. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A70 R105 A70 R106 A70 R107 A70 R108 A70 R109	0757-0459 0757-0439 0683-2205 0683-4725 0683-3325	84926	2 2 1 1	RESISTOR 56.2K 1% .125W F TC=0+-100 RESISTOR 6.81K 1% .125W F TC=0+-100 RESISTOR 25% .25W CF TC=0-400 RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR 3.3K 5% .25W CF TC=0-400	19701 19701 77902 77902 77902 77902	5033R 5033R R-25J R-25J R-25J R-25J
A70R110 A70R111 A70R112 A70R113 A70R114	0683-9115 0683-5135 0683-1525 0699-0593 2100-3109	4 0 4 7 2	1 1 2 1 1	RESISTOR 910 5% .25W CF TC=0-400 RESISTOR 51K 5% .25W CF TC=0-400 RESISTOR 1.5K 5% .25W CF TC=0-400 RESISTOR 13.665K .1% .125W F TC=0+-25 RESISTOR-TRMR 2K 10% C SIDE-ADJ 17-TRN	77902 77902 77902 19701 73138	R-25J R-25J R-25J 5033R 89PR2K
A70R115 A70R116 A70R117 A70R118 A70R200-R202	0698-6360 0683-1005 0683-5115 0683-4735 0683-4325	65648	3 1 1	RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 10 5% .25W CF TC=0-400 RESISTOR 510 5% .25W CF TC=0-400 RESISTOR 47K 5% .25W CF TC=0-400 RESISTOR 4.3K 5% .25W CF TC=0-400	19701 77902 77902 77902 77902 77902	5033R R-25J R-25J R-25J R-25J R-25J
A70 R203 A70 R204 A70 R205 A70 R206 A70 R207	0757-0401 0811-3290 0757-0459 0757-0439 0683-1525	0 7 8 4 4		RESISTOR 100 1% .125W F TC=0+-100 RESISTOR .1 5% 2W PW TC=0+-800 RESISTOR 56.2K 1% .125W F TC=0+-100 RESISTOR 6.81K 1% .125W F TC=0+-100 RESISTOR 1.5K 5% .25W CF TC=0-400	19701 75042 19701 19701 77902	5033R BWH 5033R 5033R R-25J
A70R208 A70R209 A70R210 A70R211 A70R212	0683-4725 0683-1005 0698-6360 0698-6360 0683-1005	25665		RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR 10 5% .25W CF TC=0-400 RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 10K .1% .125W F TC=0+-25 RESISTOR 10 5% .25W CF TC=0-400	77902 77902 19701 19701 77902	R-25J R-25J 5033R 5033R R-25J
A70R300 A70R301 A70R302 A70R303 A70R304	0683-2225 0683-4725 0683-4725 0757-0401 63312-80001	32 N O 4	1 1 1	RESISTOR 2.2K 5% .25W CF TC=0-400 RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR 100 1% .125W F TC=0+-100 R:F .005	77902 77902 77902 19701 28480	R-25J R-25J R-25J 5033R 63312-80001
A70R305 A70R306 A70R307 A70R308 A70R308 A70R309	0757-0465 0698-4308 0683-6215 0683-1005 0683-4725	6 8 9 5 N	1 1 3	RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 16.9K 1% .125W F TC=0+-100 RESISTOR 60 5% .25W CF TC=0-400 RESISTOR 10 5% .25W CF TC=0-400 RESISTOR 4.7K 5% .25W CF TC=0-400	19701 19701 77902 77902 77902	5033R 5033R R-25J R-25J R-25J R-25J
A70R310 A70R311 A70R321 A70R400 A70R401	0698-6378 0698-4472 0683-1005 0683-6215 0683-6215	6 7 5 9 9	1	RESISTOR 14.9K .1% .125W F TC=0+-50 RESISTOR 7.68K 1% .125W F TC=0+-100 RESISTOR 10.5% .25W CF TC=0-400 RESISTOR 620.5% .25W CF TC=0-400 RESISTOR 620.5% .25W CF TC=0-400	91637 91637 77902 77902 77902	CMF-55-1, T-2 CMF-55-1, T-1 R-25J R-25J R-25J
A70R402 A70R403 A70R611 A70R612 A70R615	0683-1025 0683-1035 0757-0428 0757-0403 0698-4439	9 1 2 6	1 2 1 1	RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 1.62K 1% .125W F TC=0+-100 RESISTOR 121 1% .125W F TC=0+-100 RESISTOR 3.24K 1% .125W F TC=0+-100	77902 77902 19701 19701 91637	R-25J R-25J 5033R 5033R CMF-55-1, T-1
A 7 0 R 6 1 6 A 7 0 R 7 0 0 A 7 0 R 7 0 1 A 7 0 R 7 0 2 A 7 0 R 7 0 3	0698-3442 0686-2025 0686-2025 0683-4725 0683-4725	9 7 2 2	1 2	RESISTOR 237 1% .125W F TC=0+-100 RESISTOR 2K 5% .5W CC TC=0+647 RESISTOR 2K 5% .5W CC TC=0+647 RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR 4.7K 5% .25W CF TC=0-400	19701 01121 01121 77902 77902	5033R EB2025 EB2025 R-25J R-25J
A70R704 A70R705 A70R800 A70R801 A70R802	0683-4725 0683-4715 0757-0442 0757-0442 0698-4436	2 0 9 3	1 7 1	RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR 470 5% .25W CF TC=0-400 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 2.8K 1% .125W F TC=0+-100	77902 77902 19701 19701 91637	R-25J R-25J 5033R 5033R CMF-55-1, T-1
A70R803 A70R804 A70R805 - R807 A70R808 A70R809	0757-0427 0698-4485 0757-0442 0757-0280 0757-0442	02939	1	RESISTOR 1.5K 1% .125W F TC=0+-100 RESISTOR 23.2K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	19701 91637 19701 19701 19701	5033R CME-55-1, T-1 5033R 5033R 5033R
A70 R8 10 A70 R8 11 A70 R8 13 A70 R8 14 A70 SK 1~SK 5	0683-1045 0757-0442 0683-4315 0683-1035 1200-1158	39 61 8	1 1 5	RESISTOR 100K 5% .25W CF TC=0-400 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 430 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400 8118 PF 303 POWER SOCKET	77902 19701 77902 77902 13103	R-25J 5033R R-25J R-25J 8118PF303
A70TC1 A70TP100 A70TP102	3103-0020 1251-0600 1251-0600	7 0 0	1 16	SWITCH-THRM FXD +100C 8A OPN-ON-RISE CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ	14604 27264 27264	3450-21-315 16-06-0034 16-06-0034

Table 4-38. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A70TP105	1251-0600	0		CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ	27264	16-06-0034
A70TP200 A70TP205 A70TP300 A70TP305 A70TP400-TP401 A70TP402	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600 1251-0600	0 000000		CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ	27264 27264 27264 27264 27264 27264 27264	16-06-0034 16-06-0034 16-06-0034 16-06-0034 16-06-0034 16-06-0034
A70TP500-TP501 A70TP600-TP601 A70TP700 A70TP900 A70U100	1251-0600 1251-0600 1251-0600 1251-0600 1826-0243	0 0 0 0 6	3	CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ IC OP AMP GP DUAL TO-99 PKG	27264 27264 27264 27264 27264 27014	16-06-0034 16-06-0034 16-06-0034 16-06-0034 SL29583
A70U200 A70U300 A70U400 A70U401 A70U601	1826-0243 1826-0243 1820-0430 1990-0545 1826-0527	6 6 1 8 9	2 1 1	IC OP AMP GP DUAL TO-99 PKG IC OP AMP GP DUAL TO-99 PKG IC V RGLTR-FXD-POS 4.8/5.2V TO-3 PKG OPTO-ISOLATOR LED-PDIO/XSTR IF=40MA-MAX IC V RGLTR-ADJ-NEG 1.2/37V TO-220 PKG	27014 27014 27014 28480 27014	SL29583 SL29583 SL10236 1990-0545 SL35761
A70U602 A70U801 A70U802 A70U900	1826-0393 1826-0138 1826-0138 1820-0430	7 8 1	1 2	IC V RGLTR-ADJ-POS 1.2/37V TO-220 PKG IC COMPARATOR GP QUAD 14-DIP-P PKG IC COMPARATOR GP QUAD 14-DIP-P PKG IC V RGLTR-FXD-POS 4.8/5.2V TO-3 PKG	27014 27014 27014 27014 27014	SL33706 SL24958 SL24958 SL10236
A72	03326-66572	4	1	FRONT ESD BOARD	28480	03326-66572
A72C1-C2 A72VR1-VR2	0160-4300 0837-0313	1 3	2	CAPACITOR-FXD .047UF +80-20% 100VDC CER TNR 15G 560 KM	28480 28480	562CZC101AL473ZA26 0837-0313
A75	03326-66575	7	1	REAR ESD BOARD	28480	03326-66575
A75C1-C5 A75VR1-VR3	0160-4300 0837-0313	1 3	5 3	CAPACITOR-FXD .047UF +80-20% 100VDC CER TNR 15G 560 KM	28480 28480	562CZC101AL473ZA26 0837-0313
A 80	03326-66580			SEE OPTION 001 PARTS LIST.		
A99	03326-66599	5	1	MOTHERBOARD	28480	03326-66599
A99C1-C11 A99C30-C34 A99C40-C45 A99C103 A99C105	0160-3847 0160-3847 0160-3847 0160-3847 0160-3847 0160-3847	9 9 9 9 9	26 26 26	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	04222 04222 04222 04222 04222 04222	MA105C103PAA MA105C103PAA MA105C103PAA MA105C103PAA MA105C103PAA
A99C113 A99C115 A99J1-J5 A99J80 A99J202	0160-3847 0160-3847 1251-6254 1251-6429 1251-6429	9 9 0 0 0 0 0 0 0 0 0	5 2	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CONNECTOR-SGL CONT RTANG-F CONN-POST TYPE .100-PIN-SPCG 3-CONT CONN-POST TYPE .100-PIN-SPCG 3-CONT	04222 04222 91833 00779 00779	MA105C103PAA MA105C103PAA 901 640456-3 640456-3
A99L30 A99L31 A99L32-L34 A99L40 A99L41	9100-3345 9100-3345 9100-1791 9100-3345 9100-3345	5 5 1 5 5	6 6	INDUCTOR RF-CH-MLD 2UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 2UH 5% .166DX.385LG CORE-FERRITE CHOKE-WIDEBAND; IMP:>360 INDUCTOR RF-CH-MLD 2UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 2UH 5% .166DX.385LG	06560 06560 02114 06560 06560	15A2ROJ 15A2ROJ VK200-19/4B 15A2ROJ 15A2ROJ
A99L42-L44 A99L105 A99L115 A99MP10-MP11 A99MP201	9100-1791 9100-3345 9100-3345 0403-0285 0400-0062	1 5 5 9 4	2 1	CORE-FERRITE CHOKE-WIDEBAND;IMP:>360 INDUCTOR RF-CH-MLD 2UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 2UH 5% .166DX.385LG BUMPER FOOT-ADH MTG 12.7-MM-WD GROMMET-RND .5-IN-ID .625-IN-GRV-OD	02114 06560 06560 76381 51633	VK200-19/4B 15A2R0J 15A2R0J SJ-5018 GRAY 8069
A99T45 A99XA1 A99XA2 A99XA3 A99XA3	08552-6044 1252-0247 1252-0238 1252-0248 1252-0248 1252-0247	1 3 2 4 3	1 12 11 7	TRANS 6 TURNS DIN CONN16 PIN FEMALE DIN CONN48 PIN FEMALE DIN CONN32 PIN FEMALE DIN CONN16 PIN FEMALE	28480 06383 06383 06383 06383	08552-6044 100-316-433 100-348-433 100-322-433 100-316-433
A99XA5 A99XA6 A99XA11 A99XA12 A99XA13	1252-0247 1252-0247 1252-0247 1252-0238 1252-0238 1252-0248	3 3 3 2 4		DIN CONN16 PIN FEMALE DIN CONN16 PIN FEMALE DIN CONN16 PIN FEMALE DIN CONN48 PIN FEMALE DIN CONN32 PIN FEMALE	06383 06383 06383 06383 06383 06383	100-316-433 100-316-433 100-316-433 100-38-433 100-332-433
A99XA14 A99XA15	1252-0247 1252-0247	3 3		DIN CONN16 PIN FEMALE DIN CONN16 PIN FEMALE	06383 06383	100-316-433 100-316-433

Table 4-39. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A99XA16 A99XA21 A99XA22	1252-0247 1252-0238 1252-0238	N N N		DIN CONN16 PIN FEMALE DIN CONN48 PIN FEMALE DIN CONN48 PIN FEMALE	06383 06383 06383	100-316-433 100-348-433 100-348-433
A99XA23 A99XA24 A99XA31 A99XA32 A99XA33	1252-0248 1252-0248 1252-0247 1252-0248 1252-0238	4 4 3 4 2		DIN CONN32 PIN FEMALE DIN CONN32 PIN FEMALE DIN CONN16 PIN FEMALE DIN CONN32 PIN FEMALE DIN CONN48 PIN FEMALE	06383 06383 06383 06383 06383	100-332-433 100-332-433 100-316-433 100-332-433 100-348-433
A99XA34 A99XA35 A99XA36 A99XA41 A99XA42	1252-0238 1252-0247 1252-0238 1252-0247 1252-0248	2 ก 2 ก 2		DIN CONN48 PIN FEMALE DIN CONN16 PIN FEMALE DIN CONN48 PIN FEMALE DIN CONN16 PIN FEMALE DIN CONN32 PIN FEMALE	06383 06383 06383 06383 06383	100-348-433 100-316-433 100-348-433 100-346-433 100-336-433
A99XA43 A99XA44 A99XA45 A99XA50 A99XA50 A99XA61	1252-0238 1252-0238 1252-0247 1252-0248 1252-0248 1252-0238	22342		DIN CONN48 PIN FEMALE DIN CONN48 PIN FEMALE DIN CONN16 PIN FEMALE DIN CONN32 PIN FEMALE DIN CONN48 PIN FEMALE	06383 06383 06383 06383 06383 06383	100-348-433 100-348-433 100-316-433 100-332-433 100-348-433
A99XA70	1252-0238	2		DIN CONN48 PIN FEMALE	06383	100-348-433
				TOP VIEW MECHANICAL PARTS		
MP124 MP125 MP126 MP127 MP128	03326-01208 03326-21202 2190-0879 0515-0853 0535-0004	73649	1 2 2 2 2	CLAMP,CAP CAP BOOT WASHER-FL NM NO. 4 .128-IN-ID .245-IN-OD SCREW-MACH M3 X 0.5 8MM-LG PAN-HD NUT-HEX DBL-CHAM M3 X 0.5 2.4MM-THK	28480 28480 28480 13764 28480	03326-01208 03326-21202 5610-55-16 50M030050N008 0535-0004
MP130 MP131 MP132 MP135 MP136-MP138	03326-01215 03326-01216 7121-4780 0515-0104 0515-0212	6 7 6 8 9	1 1 115 7	CTLR TIE DOWN PWR SUP TIE DN VOLTAGE CAUTION LBL SCREW-MACH M3 X 0.5 8MM-LG PAN-HD SCREW-MACH M3.5 X 0.6 6MM-LG PAN-HD	28480 28480 28480 28480 28480 16941	03326-01215 03326-01216 7121-4780 0515-0104 0515-0212
MP139 MP140 MP141 MP142 MP143	0515-0642 0515-0218 03326-62001 03326-62002 03326-01201	95670	1 6 1 3 1	SCREW-MACH M3.5 X 0.6 8MM-LG PAN-HD SCREW-MACH M3.5 X 0.6 6MM-LG REAR NEST FORWARD NEST BRACE, FRONT	16941 16941 28480 28480 28480	0515-0642 0515-0218 03326-62001 03326-62002 03326-01201
MP144 MP145 MP146 MP147 MP148	03326-01202 03326-24103 0515-0570 0340-0114 0515-0224	19293	1 4 12 16 23	BRACE, REAR PLATE, INSULATOR SCREW-MACH M3 X 0.5 8MM-LG 90-DEG-FLH-HD INSULATOR-FLC-BSHG NYLON SCREW-MACH M3.5 X 0.6 12MM-LG PAN-HD	28480 28480 28480 23050 16941	03326-01202 03326-24103 0515-0570 0340-0114 0515-0224
MP149 MP150 MP151-MP153 MP154-MP155 MP160	03326-01206 0515-0244 1400-1195 2190-0005 03326-34302	5 7 7 1	2 4 109 1	CTLR SUPPORT SCREW-MACH M3 X 0.5 4MM-LG PAN-HD CLAMP-CABLE .38-DIA 1-WD NYL WASHER-LK EXT T NO. 4 .116-IN-ID LABLE, CBL ROUTING	28480 28480 06383 28480 28480	03326-01206 0515-0244 ACC38-A 2190-0005 03326-34302
				BOTTOM VIEW MECHANICAL PARTS		
MP203 MP205 MP206 MP207 MP208	0515-0239 0515-0212 0515-0218 1400-1195 2190-0005	09570	96	SCREW-METRIC SPECIALTY M3 X0.5; 11.0 MM SCREW-MACH M3.5 X 0.6 6MM-LG PAN-HD SCREW-MACH M3.5 X 0.6 6MM-LG CLAMP-CABLE .38-DIA 1-WD NYL MASHER-LK EXT T NO. 4 .116-IN-ID	01536 16941 16941 06383 28480	0515-0239 0515-0212 0515-0218 ACC38-A 2190-0005
MP209	1400-0908 03326-01217	8 8	1 7	CLAMP-CABLE .188-DIA .75-WD PVC BRACKET, GROUND	06915 28480	KKC-3 03326-01217
MP301 MP302 MP303-MP304	03326-21201 0515-0414 1400-0611	2 3 0	2 4 3	SIDE VIEW MECHANICAL PARTS PWR SUP BD GUIDE SCREW-MACH M4 X 0.7 10MM-LG PAN-HD CLAMP-FL-CA 1-WD	28480 16941 76381	03326-21201 0515-0414 3484-1000
						· · · · · · · · · · · · · · · · · · ·

Table 4-40. Replaceable Parts

Ref Des	ference signation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
					FRAME MECHANICAL PARTS		
MP401 MP402 MP403 MP404 MP404	2 3 4	5021-4712 5020-8806 5020-8837 5040-7201 5040-7202	0 96 8 9	1 1 4 4 1	BEZEL,FRONT FRAME REAR FRAME CORNER STRUT FOOT TRIM TOP	28480 28480 28480 28480 28480 28480	5021-4712 5020-8806 5020-8837 5040-7201 5040-7202
MP406 MP407 MP408 MP409 MP409 MP410	3	5040-7219 5040-7220 5060-9804 5060-9835 5060-9847	8 1 3 0 4	2 2 1 1	STRAP HDL CAP-FR STRAP HDL CAP-R STRAP HDL 18IN TOP COVER BOTTOM COVER	28480 28480 28480 28480 28480 28480	5040-7219 5040-7220 5060-9804 5060-9835 5060-9847
MP411 MP412 MP413 MP414		5060-9942 2510-0192 2680-0172 5001-0440	0 6 1 1	2 16 4 2	SIDE CVR-STDPERF SCREW-MACH 8-32 .25-IN-LG 100 DEG SCREW-MACH 10-32 .375-IN-LG 100 DEG TRIM SIDE	28480 28480 28480 28480 28480	5060-9942 2510-0192 2680-0172 5001-0440
					FRONT PANEL MECHANICAL PARTS		
MP501 MP502 MP503 MP505 MP506		03326-00101 03326-04301 03326-29301 0535-0006 0515-0407	7 9 1 4	1 1 1 8 11	SUBPANEL FRONT FRT DRESS PNL DISPLAY WINDOW NUT-HEX DBL-CHAM M4 X 0.7 3.2MM-THK SCREW-MACH M3 X 0.5 10MM-LG PAN-HD	28480 22670 28480 28480 16941	03326-00101 03326-04301 03326-29301 0535-0006 0515-0407
MP507 MP510 MP511 MP512 MP513		2190-0646 2190-0054 2950-0035 2950-0154 3050-0313	59828	8 2 1 2 1	WASHER-LK EXT T-B 4.0 MM 4.15-MM-ID WASHER-LK INTL T 1/2 IN .505-IN-ID NUT-HEX-DBL-CHAM 15/32-32-THD NUT-HEX-DBL-CHAM 1/2-28-THD .078-IN-THK WASHER-FL NM 1/2 IN .5-IN-ID .75-IN-OD	28480 28480 28480 28480 28480 28480	2190-0646 2190-0054 2950-0035 2950-0154 3050-0313
MP514 MP520 MP521 MP522 MP523		5040-7624 5061-8008 2190-0016 3050-0067 2950-0043	99398	5 1 5 1	WASHER-SHOULDER CABLE ASSY,RPG WASHER-LK INTL T 3/8 IN .377-IN-ID WASHER-FL MTLC 5/16 IN .375-IN-ID NUT-HEX-DBL-CHAM 3/8-32-THD .094-IN-THK	28480 28480 28480 73734 28480	5040-7624 5061-8008 2190-0016 31-550 2950-0043
	2 - MP543 1 - MP547	3050-0071 03326-01220 5041-0212 5041-0310 5041-0720	53984	2 2 4 1	WASHER-FL MTLC NO. 8 .169-IN-ID TERM-SOLDR LUG-MOD K/CAP-"BLANK" KEY BLANK KEY INSTR PRESET	73734 28480 28480 28480 28480 28480	3050-0071 03326-01220 5041-0212 5041-0310 5041-0720
MP549 MP550 MP551 MP552 MP553		5041-0944 5041-1870 5041-2745 5041-2910 5041-2911	4 7 8 9	1 1 1 1	KEY CAP PWR KEYCAP-RECALL K/CAP-SHIFT K-CAP - K-CAP .	28480 28480 28480 28480 28480 28480	5041-0944 5041-1870 5041-2745 5041-2910 5041-2911
MP554 MP555 MP556 MP557 MP558		5041-2913 5041-2914 5041-2915 5041-2916 5041-2917	1 2 3 4 5	1 1 1 1	KEY-CAP 1 KEY-CAP 2 KEY-CAP 3 KEY-CAP 4 KEY-CAP 5	28480 28480 28480 28480 28480 28480	5041-2913 5041-2914 5041-2915 5041-2916 5041-2917
MP559 MP560 MP561 MP562 MP563		5041-2918 5041-2919 5041-2920 5041-2921 5041-2922	6 7 0 1 2	1 1 1 1	KEY-CAP 6 KEY-CAP 7 KEY-CAP 8 KEY-CAP 9 KEY-CAP 0	28480 28480 28480 28480 28480 28480	5041-2918 5041-2919 5041-2920 5041-2921 5041-2921 5041-2922
MP564 MP565 MP566 MP567 MP568		5041-4546 5041-2967 5041-2976 5041-2977 5041-2978	0 56 78	1 1 1 1	K/CAP – CHAN K/CAP-"ARROW" K/CAP – AMPTD K/CAP – FREQ K/CAP – PHASE	28480 28480 28480 28480 28480 28480	5041-4546 5041-2967 5041-2976 5041-2977 5041-2977 5041-2978
MP569 MP570 MP571 MP572 MP573)	5041-2979 5041-2967 5041-2974 5041-2969 5041-2970	9 5 4 7 0	1 2 1 1	K/CAP - TIME K/CAP-"ARROW" K-CAP SINGLE K/CAP-BACK SP K/CAP-CONT	28480 28480 28480 28480 28480 28480	5041-2979 5041-2967 5041-2974 5041-2979 5041-2969 5041-2970
MP574 MP575 MP576 MP577 MP578		5041-2971 5041-2972 5041-2973 5041-2980 5041-2981	1 2 m 2 m 2 m	1 1 1 1	K/CAP-LOCAL K/CAP-MANUAL K/CAP-MODE K/CAP-START FREQ K/CAP-STOP FREQ	28480 28480 28480 28480 28480 28480	5041-2971 5041-2972 5041-2973 5041-2980 5041-2981
					<u> </u>		

See introduction to this section for ordering information *Indicates factory selected value

PART NUMBER 9320 3991

PART NUMBER 9320-3991

Table 4-41. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
MP579 MP580 MP581 MP582 MP583	5041-2982 5041-2983 5041-2984 5041-2984 5041-2985 5041-2986	4 56 7 8	1 1 1 1 1	K/CAP-ON/OFF K/CAP-SELECT K/CAP-CH A K/CAP-CH B K/CAP-CH OFFSET	28480 28480 28480 28480 28480 28480	5041-2982 5041-2983 5041-2984 5041-2985 5041-2986
MP584 MP585 MP587 MP588 MP588 MP589	5041-2987 5041-4536 0370-3033 03326-01203 3050-0032	98025	1 1 1 2	K/CAP-MKR FREQ K/CAP-SAVE KNOB-BASE 1-1/2 JGK .25-IN-ID WINDOW BRACE FOR DISPLAY FLAT WASHER	28480 28480 28480 28480 28480 28480	5041-2987 5041-4536 0370-3033 03326-01203 3050-0032
				REAR PANEL MECHANICAL PARTS		
K612 MP202 MP601 MP602 MP603	0490-1222 03326-24106 03326-00102 03326-01214 0360-0005	90859	1 1 1 1	RELAY 1C 6VDC-COIL 2A 115VAC HP-IB CBL SHLD REAR PANEL CAP BRACE TERMINAL-SLDR LUG PL-MTG FOR-#8-SCR	28480 28480 28480 28480 79963	0490-1222 03326-24106 03326-00102 03326-01214 9169
MP604 MP610 MP611 MP613 MP614-MP615	7120-4835 9135-0243 0515-0426 0515-0897 2190-0004	09769	1 1 2 2 9	LABEL-INFORMATION .75-IN-WD 2-IN-LG PPR LINE POWER MODULE SCREW-MACH M3 X 0.5 10MM-LG SCREW-MACH M3 X 0.5 8MM-LG PAN-HD WASHER-LK INTL T NO. 4 .115-IN-ID	35860 28480 16941 28480 28480	7120-4835 9135-0243 0515-0426 0515-0897 2190-0004
MP616-MP617 MP626 MP627 MP628 MP631	0535-0004 03326-04151 7120-3534 0515-0104 7100-1115	9 5 4 8 1	9 1 1 2 1	NUT-HEX DBL-CHAM M3 X 0.5 2.4MM-THK LINE POWER MODULE SAFETY SHIELD LABEL-WARNING .6-IN-WD 1.4-IN-LG VINYL SCREW-MACH M3 X 0.5 8MM-LG PAN-HD TRANSFORMER COVER	28480 28480 22670 28480 9F971	0535-0004 03326-04151 7120-3534 0515-0104 C400
MP632 MP633 MP634 MP635 MP636	1251-5709 1400-0493 2190-0073 2510-0138 2580-0004	0 6 2 0 6	1 4 6 4 4	KEYING PLUG-AMP MTS CONN CABLE TIE .062-1.25-DIA .14-WD NYL WASHER-LK HLCL NO. 8 .168-IN-ID SCREW-MACH 8-32 3-IN-LG PAN-HD-POZI NUT-HEX-DBL-CHAM 8-32-THD .125-IN-THK	00779 59730 28480 01536 73734	640629-1 TYB-24M-8 2190-0073 2510-0138 2580-0004
MP637 MP638 MP640 MP642 MP643-MP644	3050-0027 3050-0681 1250-1558 3050-0313 5040-7624	1 37 8 9	4 9 4 16	WASHER-FL MTLC NO. 10 .203-IN-ID WASHER-FL NM NO. 8 .172-IN-ID .375-IN-OD ADAPTER-COAX STR F-BNC F-RCA-PHONO WASHER-FL NM 1/2 IN .5-IN-ID .75-IN-OD WASHER-SHOULDER	78471 72653 24931 28480 28480	3050-0027 6514 29JJ126-3 3050-0313 5040-7624
MP645 MP646 MP647 MP648 MP649	0380-0643 0380-1556 2190-0073 2950-0035 6960-0041	392 81	2 1 4 1	STANDOFF-HEX .255-IN-LG 6-32-THD SPACER-RND .286-IN-LG .17-IN-ID WASHER-LK HLCL NO. 8 .168-IN-ID NUT-HEX-DBL-CHAM 15/32-32-THD PLUG-HOLE FL-HD FOR .5-D-HOLE NYL	14480 28480 28480 28480 28480 28480	0380-0643 0380-1556 2190-0073 2950-0035 6960-0041
MP650 MP652 MP653 MP654 MP660	6960-0095 0515-0407 0535-0004 3050-0066 3160-0394	54988	2 2 13 1	PLUG-HOLE DOME-HD FOR .562-D-HOLE NYL SCREW-MACH M3 X 0.5 10MM-LG PAN-HD NUT-HEX DBL-CHAM M3 X 0.5 2.4MM-THK WASHER-FL MTLC NO. 6 .147-IN-ID FAN-TBAX 106-CFM 115V 50/60-HZ	28480 16941 28480 73734 28480	6960-0095 0515-0407 0535-0004 1451 W2S-107-AA15-13
MP661 MP662 MP663 MP664-MP666 MP667	T-54962 0535-0013 1400-1100 3050-0635 3150-0218	3 0 4 7 4	4 4 1 7 1	M3.5X0.6 20mm MACH SCR NUT-THUMB M3.5 X 0.6 5MM-THK 8.6MM-WD MOUNT-CA TIE .375-WD NYL WASHER-FL MTLC NO. 6 .143-IN-ID FILTER-AIR 32 STD MESH MET SCREEN	28480 14480 06383 73734 28480	T-54962 0535-0013 TM286 3050-0635 3150-0218
MP668-MP669 MP670-MP673 MP674 MP675 MP676	3160-0092 3050-0635 0515-0260 2190-0007 0535-0007	3 7 2 2	2 4 4 4	FINGER GUARD WASHER-FL MTLC NO. 6 .143-IN-ID SCREW-MACH M3.5 X 0.6 16MM-LG PAN-HD WASHER-LK INTL T NO. 6 .141-IN-ID NUT-HEX DBL-CHAM M3.5 X 0.6 2.8MM-THK	28875 73734 16941 28480 28480	055012 3050-0635 0515-0260 2190-0007 0535-0007
T630 W619 W619 W620 W621	9100-4399 03326-61605 1251-6556 8150-4270 8150-4279	1 4 7 1 0	1 1 1 3	TRANSFORMER RELAY JUMPER CABLE CONN-POST TYPE .100-PIN-SPCG 3-CONT JMPR 22GA BLK 50MM 8x8 JMPR 22GA BLK 100MM 8x8	28480 28480 00779 28480 28480	9100-4399 03326-61605 640440-3 8150-4270 8150-4279
W622 W623 W624 W625	8150-4279 8150-4279 8150-4289 8150-4289 8150-4556 03326-34304	0 0 2 6 3	1 1 1	JMPR 22GA BLK 100MM 8x8 JMPR 22GA BLK 100MM 8x8 JMPR 22GA BLK 175MM 8x8 JMPR 18GA GRNYEL 100MM 8x8 LABEL, FUSE	28480 28480 28480 28480 28480 28480	8150-4279 8150-4279 8150-4289 8150-4556 03326-34304

Table 4-42. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
				CABLES		
W101 W102 W105 W106 W107	03326-61619 03326-61620 03326-61608 03326-61609 03326-61609 03326-61610	0 3 7 8 1	1 1 1 1	SMB/BNC CH A CBL ASSY VIOLET SMB/BNC CH B CBL ASSY VIOLET CBL, A INT CAL CBL, B INT CAL CBL, B COMBINE	28480 28480 28480 28480 28480 28480	03326-61619 03326-61620 03326-61608 03326-61609 03326-61610
W108 W109 W110 W111 W111	03326-61611 03326-61612 03326-61613 03326-61613 03326-61614 03326-61615	2 3 4 5 6	1 1 1 1	CBL, A LO 2 CBL, B LO 2 CBL, A EXT O CAL CBL, B EXT O CAL CBL, SYNC	28480 28480 28480 28480 28480 28480	03326-61611 03326-61612 03326-61613 03326-61614 03326-61614
W113 W114 W115 W116 W117	03326-61616 03326-61617 03585-61603 03585-61603 8120-2587	78556	1 1 2 4	CBL, 1,2,5,10 MHZ IN CBL, 10 MHZ OUT CABLE ASSY ORNG CABLE ASSY ORNG CABLE ASSY-COAX 50-0HM 1.5KV 8.5-IN-LG	28480 28480 28480 28480 82389	03326-61616 03326-61617 03585-61603 03585-61603 4C5255A
W118 W119 W120 W121 W122	03585-61604 03585-61604 03585-61604 03585-61604 8120-2844	6 6 6 6 6 8	4	CABLE ASSY YEL CABLE ASSY YEL CABLE ASSY YEL CABLE ASSY YEL CABLE-COAXIAL RG174/U; L 4.0 IN	28480 28480 28480 28480 82389	03585-61604 03585-61604 03585-61604 03585-61604 EX-9203
W123 W124 W133	8120-2844 8120-2844 03326-61602	8 8 1	1	CABLE-COAXIAL RG174/U; L 4.0 IN CABLE-COAXIAL RG174/U; L 4.0 IN 16 PIN CABLE	82389 82389 28480	EX-9203 EX-9203 03326-61602
	1				1	
			r 1			
						1

Table 4-43. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
				OPTION 001 HIGH STABILITY FREQUENCY REFERENCE FIELD INSTALLABLE KIT HP PART NUMBER 03326-88801		
A80	03326-66580	4	1	OVEN REFERENCE BOARD	28480	03326-66580
A80C100 A80C101 A80C102 A80C103-C104 A80C105	0180-2205 0160-4571 0160-4834 0160-4846 0160-4834	3 8 6 0 6	1 1 2 2	CAPACITOR-FXD .33UF+-10% 35VDC TA CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .047UF +-10% 100VDC CER CAPACITOR-FXD 1500PF +-5% 100VDC CER CAPACITOR-FXD .047UF +-10% 100VDC CER	13606 04222 27167 27167 27167 27167	150 D334X9035A2-DYS MA205E104ZAA CAC04X7 R473X100A CAC04C05152J100A CAC04C05152J100A CAC04X7 R473K100A
A80C106 A80C107-C108 A80CR100 A80J100 A80J101	0180-0374 0160-3847 1902-0958 1251-6254 1251-5750	3922 21	1 2 1 1	CAPACITOR-FXD 10UF+-10% 20VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER DIODE-ZNR 10V 5% DO-35 PD=.4W TC=+.075% CONNECTOR-SGL CONT RTANG-F CONN-POST TYPE .100-PIN-SPCG 2-CONT	13606 04222 04713 91833 00779	150D106X9020B2-DYS MA105C103PAA SZ30035-016 901 640098-2
A80L100 A80MP100 A80MP101 A80MP170 A80MP872	9100-2486 0340-0564 1205-0298 03326-01209 0515-0886	3 3 5 8 3 5 8 3 5 8 3 8 3 8 3 8 3 8 3 8	1 1 1 2	INDUCTOR RF-CH-MLD 330NH 5% .166DX.385LG INSULATOR-XSTR THRM-CNDCT HEAT SINK PLSTC-PWR-CS BRACE,0VEN SCREW-MACH M3 X-0.5 6MM-LG PAN-HD	24226 55285 13103 28480 28480	15M330J 7403-09FR-51 6030D 03326-01209 0515-0886
A80MP873 A80MP874 A80MP875 A80MP876 A80MP877	0515-0104 0535-0004 0590-1445 2200-0103 3050-0440	89022 2022	1 1 2 3 1	SCREW-MACH M3 X 0.5 8MM-LG PAN-HD NUT-HEX DBL-CHAM M3 X 0.5 2.4MM-THK THD INSR-NUT SCREW-MACH 4-40 .25-IN-LG PAN-HD-POZI WASHER-SHLDR NO. 4 .115-IN-ID .2-IN-OD	28480 28480 46384 77250 28480	0515-0104 0535-0004 KF2-M3-ET 2200-0103 5607-45
A80MP883 A80Q100 A80R100 A80R101 A80R101 A80R102	3050-0716 1853-0020 0757-0442 2100-3252 0683-2225	5 4 9 6 3	3 1 1 1 1	WASHER-FL MTLC NO. 5 .128-IN-ID TRANSISTOR PNP SI PD=300MW FT=150MHZ RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR-TRME SK 10% C TOP-ADJ 1-TRN RESISTOR 2.2K 5% .25W CF TC=0-400	70318 04713 19701 73138 77902	NAS620-C5 SPS 3609 5033R 72PR5K-107B R-25J
A80R103 A80R104 A80R105 A80R106 A80R107	0683-4705 0687-6811 0683-4705 0698-7221 0698-0085	8 9 8 0 0	2 1 1	RESISTOR 47 5≸ .25W CF TC=0-400 RESISTOR 680 10≸ .5W CC TC=0+529 RESISTOR 47 5≸ .25W CF TC=0-400 RESISTOR 237 1≸ .05W F TC=0+-100 RESISTOR 2.61K 1≸ .125W F TC=0+-100	77902 01121 77902 24546 19701	R-25J EB6811 R-25J C-3, T-0 5033R
A80T100 A80TP0-TP2 A80U100 A80U101 A80W871	08552-6044 1251-0600 1826-0393 0960-0465 03326-61604	1 0 7 3	1 3 1 1	TRANS 6 TURNS CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ IC V RGLTR-ADJ-POS 1.2/37V TO-220 PKG OSC HIGH STABY OVEN JMPR CBL	28480 27264 27014 12020 28480	08552-6044 16-06-0034 SL33706 OSC 73-52 03326-61604
MP878 MP880 MP881 MP882 W879	1250-1499 1400-0493 7120-8377 8120-2587 1250-1558	5 6 3 6 7	1 1 1 1	ADAPTER-COAX RTANG M-BNC F-BNC CABLE TIE .062-1.25-DIA .14-WD NYL OPTION 001 DECAL CABLE ASY-COAX 50-OHM 1.5KV 8.5-IN-LG ADAPTER-COAX STR F-BNC F-RCA-PHONO	98291 59730 91345 82389 24931	1250-1499 TYB-24M-8 7120-8377 4C5255A 29JJ126-3
	0515-0886 03326-90020	3 8	4	SCREW-MACH M3 X 0.5 6MM-LG PAN-HD INSTALLATION NOTE	28480 28480	0515-0886 03326-90020
				OPTION 002 HIGH VOLTAGE OUTPUT FIELD INSTALLABLE KIT HP PART NUMBER 03326-88802		
A1	03326-66501	9	2	HV AMPLIFIER BOARDS	28480	03326-66501
A1C101 A1C102-C103 A1C104 A1C105 A1C106	0160-0128 0160-4571 0180-0291 0160-3847 0180-0291	38393 93	1 10 6 11	CAPACITOR-FXD 2.2UF +-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 01UF+-10% 35VDC CER CAPACITOR-FXD 1UF+-10% 35VDC TA	13606 04222 13606 04222 13606	3C37Z5U225M050A M205E104ZAA 150D105X9035A2-DYS MA105C103PAA 150D105X9035A2-DYS
A1C107 A1C108 A1C109 A1C110 A1C110 A1C112	0160-3847 0160-4834 0160-4793 0160-4793 0160-4571 0160-4571	96688	1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .047UF +-10% 100VDC CER CAPACITOR-FXD 6.8PF +-5FF 100VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 27167 27167 04222 04222	MA105C103PAA CAC04X7R473K100A CAC02C0G6RBD100A MA205E104ZAA MA205E104ZAA
A1C113 A1C114	0160-3847 0160-4571	9 8		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 04222	MA105C103PAA MA205E104ZAA
					l	

Table 4-44. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1C116 A1C117 A1C118	0180-0291 0160-3847 0160-4793	396	1	CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 6.8PF +5PF 100VDC CER	13606 04222 27167	150D105X9035A2-DYS MA105C103PAA CAC02C0G6R8D100A
A1C119 A1C120 A1C121 A1C123 A1C124	0160-74571 0160-3847 0160-4571 0180-0291 0160-4571	89838		CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 04222 04222 13606 04222	MA205E104ZAA MA105C103PAA MA205E104ZAA 150D105X9035A2-DYS MA205E104ZAA
A1C125 A1C126 A1C127 A1C128 A1C129	0160-5267 0160-5409 0160-5267 0160-5409 0160-4571	1 31 38	2 2	CAPACITOR-FXD 4700PF +-5% 50VDC CER CAPACITOR-FXD 3000PF +-5% 50VDC CER CAPACITOR-FXD 4700PF +-5% 50VDC CER CAPACITOR-FXD 3000PF +-5% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	27 167 27 167 27 167 27 167 04222	CACO4COG472J050A CACO4COG302J050A CACO4COG472J050A CACO4COG302J050A MA205E104ZAA
A1C130-C131 A1C132-C133 A1C134-C137 A1C138-C139 A1C140	0160-3847 0180-0100 0160-3847 0180-0291 0160-4571	9 3 9 3 9 3 8		CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 4.7UF+-10% 35VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 13606 04222 13606 04222	MA105C103PAA 150D475X9035B2-DYS MA105C103PAA 150D105X9035A2-DYS MA205E104ZAA
A1C141-C142 A1C143-C144 A1C145 A1C146-C147 A1C146-C147 A1C148	0160-4808 0180-0374 0160-4801 0180-0100 0160-4801	4 3 7 3 7	2 2 4	CAPACITOR-FXD 470PF +-5% 100VDC CER CAPACITOR-FXD 100F+-10% 20VDC TA CAPACITOR-FXD 100PF +-5% 100VDC CER CAPACITOR-FXD 4.7UF+-10% 35VDC TA CAPACITOR-FXD 100PF +-5% 100VDC CER	27 167 13606 27 167 13606 27 167	CAC02C0G471J100A 150D106X9020B2-DYS CAC02C0G101J100A 150D475X9035B2-DYS CAC02C0G101J100A
A1C149 A1CR101-CR102 A1CR103-CR106 A1CR111 A1CR114-CR115	0121-0451 1902-0958 1901-0040 1901-0040 1902-0557	3 2 1 7	1 2 5 2	CAPACITOR-V TRMR-AIR 1.7-11PF 175V DIODE-ZNR 10V 5% DO-35 PD=.4W TC=+.075% DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 24V 5% PD=1W IR=5UA	74970 04713 07263 07263 04713	187-0106-028 SZ30035-016 FDH1088 SZ40145-022
A1CR116-CR117 A1K101 A1L101-L102 A1L103 A1L104-L105	1902-0176 0490-1405 9100-3560 9140-0639 9100-3560	6 0 6 8 6	2 1 4 1	DIODE-ZNR 47V 5% PD=1W IR=5UA RELAY 2C 12VDC-COIL 2A 250VAC INDUCTOR RF-CH-MLD 5.6UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 100UH 10% .172DX.5LG INDUCTOR RF-CH-MLD 5.6UH 5% .166DX.385LG	04713 28480 24226 91637 24226	SZ40145-029 DS2E-S-DC12V-H69 15M561J IMS-5-01 15M561J
A1L106 A1L107 A1L108 A1L109 A1L109 A1L110	9100-3551 9140-0398 9140-0118 9140-0398 9140-0118	5 6 8 6 8	1 2 1 1	INDUCTOR RF-CH-MLD 1UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 12UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 500UH 5% .20X.45LG INDUCTOR RF-CH-MLD 12UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 500UH 5% .2DX.45LG	24226 06560 04072 06560 04072	15M101J 4445-3J 9220-14 4445-3J 9220-14
A1MP1 A1MP2-MP3 A1MP4-MP5 A1MP6-MP9 A1MP10	03326-04101 0624-0333 2360-0113 2200-0770 0515-0104	56298	1 2 2 4 2	CVR, HV AMP SCREW-TPG 4-20 .25-IN-LG PAN-HD-POZI STL SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI SCREW-MACH 4-40 .188-IN-LG 100 DEG SCREW-MACH M3 X 0.5 8MM-LG PAN-HD	28480 01536 01536 77250 28480	03326-04101 0624-0333 2360-0113 2200-0770 0515-0104
A1MP11 A1MP101 A1MP102 A1MP103 A1MP103A	0535-0004 1205-0235 1205-0235 1205-0095 1200-0185	9 0 0 9	2 4 2 6	NUT-HEX DBL-CHAM M3 X 0.5 2.4MM-THK HEAT SINK SGL TO-18-CS HEAT SINK SGL TO-18-CS HEAT SINK SGL TO-5/TO-39-CS INSULATOR-XSTR NYLON	28480 13103 13103 13103 13103 13103	0535-0004 2224-B 2224-B 2225B 7717-86N RED
A1MP104 A1MP104A A1MP105 A1MP106 A1MP107	1205-0095 1200-0185 1205-0235 1205-0235 1205-0235 1205-0250	0 9 0 0 9	4	HEAT SINK SGL TO-5/TO-39-CS INSULATOR-XSTR NYLON HEAT SINK SGL TO-18-CS HEAT SINK SGL TO-18-CS THERMAL LINK SGL TO-5/TO-39-CS	13103 13103 13103 13103 13103 05820	2225B 7717-86N RED 2224-B 2224-B 2264 TH 5E
A 1 MP 107 A A 1 MP 108 A 1 MP 108 A A 1 MP 109 A 1 MP 109 A	1200-0185 1205-0250 1200-0185 1205-0250 1200-0185	99999		INSULATOR-XSTR NYLON THERMAL LINK SGL TO-5/TO-39-CS INSULATOR-XSTR NYLON THERMAL LINK SGL TO-5/TO-39-CS INSULATOR-XSTR NYLON	13103 05820 13103 05820 13103	7717-86N RED 2604 TH 5E 7717-86N RED 2604 TH 5E 7717-86N RED
A1MP110 A1MP110A A1MP146A-MP146B A1MP153A-MP153B A1P1	1205-0250 1200-0185 4330-0952 4330-0952 1252-0266	99666	ц 1	THERMAL LINK SGL TO-5/TO-39-CS INSULATOR-XSTR NYLON INSULATOR-BEAD CERAMIC INSULATOR-BEAD CERAMIC DIN CONN16 PIN MALE	05820 13103 25706 25706 06383	2604 TH 5E 7717-86N RED 10-215A 10-215A 10-316-033
A1Q101 A1Q102 A1Q103 A1Q104 A1Q105	1854-0795 1853-0448 1854-0263 1853-0037 1854-0474	2 0 9 3 4	1 1 3	TRANSISTOR NPN SI TO-92 PD=625MW TRANSISTOR PNP SI TO-92 PD=625MW TRANSISTOR NPN 2N3019 SI TO-39 PD=800MW TRANSISTOR PNP SI TO-39 PD=1W FT=100MHZ TRANSISTOR NPN SI PD=310MW FT=100MHZ	04713 04713 04713 04713 04713 04713	SP S8028 SP S7848 ST 1 481 SS 2109 SP S1 172

Table 4-45. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1Q106 A1Q107 A1Q108 A1Q109 A1Q109 A1Q110	1853-0264 1854-0263 1853-0037 1854-0263 1853-0037	89393 393	1 3	TRANSISTOR PNP SI PD=310MW FT=100MHZ TRANSISTOR NPN 2M3019 SI T0-39 PD=800MW TRANSISTOR PNP SI T0-39 PD=1W FT=100MHZ TRANSISTOR NPN 2M3019 SI T0-39 PD=800MW TRANSISTOR PNP SI T0-39 PD=1W FT=100MHZ	04713 04713 04713 04713 04713 04713	SP 56793 ST1481 SS 2109 ST1481 SS 2109
A1R101 A1R102 A1R103 A1R104 A1R104 A1R105	0698-4613 0698-6598 0757-0465 0757-0429 0757-0449	9 N O N O	1 1 4 2 6	RESISTOR 953 1% .25W F TC=0+-100 RESISTOR 499 .1% .25W F TC=0+-50 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 1.82K 1% .125W F TC=0+-100 RESISTOR 20K 1% .125W F TC=0+-100	91637 19701 19701 19701 19701 19701	CMF-60-1, T-1 5043R 5033R 5033R 5033R
A1R106 A1R107 A1R108 A1R109 A1R109 A1R110	0698-7332 0683-4705 0757-0449 0757-0280 0757-0422	48635	2 8 1 1	RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 909 1% .125W F TC=0+-100	19701 77902 19701 19701 19701	5033R R-25J 5033R 5033R 5033R
A1R111 A1R112 A1R113 A1R114 A1R114 A1R115	0698-3442 0698-4475 0757-0277 0698-3342 0757-0449	9 0 8 8 6	1 1 1	RESISTOR 237 1% .125W F TC=0+-100 RESISTOR 9.76K 1% .125W F TC=0+-100 RESISTOR 49.9 1% .125W F TC=0+-100 RESISTOR 2K .25% .5W F TC=0+-100 RESISTOR 2K .4% .125W F TC=0+-100	19701 91637 19701 19701 19701	5033R CMF-55-1, T-1 5033R 5053R 5033R
A1R116 A1R117 A1R118 A1R119 A1R120	0698-7332 0757-0449 0757-0429 0757-0465 0683-4705	≠ 6 N 6 8		RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR 1.82K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400	19701 19701 19701 19701 77902	5033R 5033R 5033R 5033R R-25J
A1R121 A1R122-R125 A1R126 A1R127 A1R128	0757-0400 0757-0403 0757-0400 0757-0465 0757-0199	92963	4 2 2	RESISTOR 90.9 1% .125W F TC=0+-100 RESISTOR 121 1% .125W F TC=0+-100 RESISTOR 90.9 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 21.5K 1% .125W F TC=0+-100	19701 19701 19701 19701 19701 19701	50 33 R 50 33 R 50 33 R 50 33 R 50 33 R 50 33 R
A1R129 A1R130 A1R131 A1R132 A1R132 A1R133	0683-4705 0757-0442 0757-0449 0683-4705 0757-0294	89689	3	RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 17.8 1% .125W F TC=0+-100	77902 19701 19701 77902 19701	R-25J 5033R 5033R R-25J 5033R
A1R134 A1R135 A1R136 A1R136 A1R137 A1R138	0757-0199 0683-4705 0757-0442 0698-3572 0757-0472	38965	2	RESISTOR 21.5K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 60.4K 1% .125W F TC=0+-100 RESISTOR 200K 1% .125W F TC=0+-100	19701 77902 19701 19701 19701	5033R R-25J 5033R 5033R 5033R
A1R139 A1R140 A1R141 A1R141 A1R142 A1R143	0757-0449 0683-4705 0683-4705 0757-0407 0683-4705	6 8 8 6 8 6 8	1	RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 200 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400	19701 77902 77902 19701 77902	5033R R-25J R-25J 5033R R-25J
A1R144 A1R145 A1R146 A1R146 A1R147 A1R148	0698-3572 0757-0472 0686-4705 0757-0735 0757-0338	654 M2	2 1 2	RESISTOR 60.4K 1% .125W F TC=0+-100 RESISTOR 200K 1% .125W F TC=0+-100 RESISTOR 47 5% .5W CC TC=0+412 RESISTOR 1.3K 1% .25W F TC=0+-100 RESISTOR 1K 1% .25W F TC=0+-100	19701 19701 01121 19701 19701	5033R 5033R EB4705 5043R 5043R
A1R149 A1R150 A1R151 A1R152 A1R153	0757-0384 0757-0346 0757-0384 0757-0735 0686-4705	8 2 8 3 4	ц 1 1	RESISTOR 20 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 20 1% .125W F TC=0+-100 RESISTOR 1.3K 1% .25W F TC=0+-100 RESISTOR 1.3K 1% .25W F TC=0+-100 RESISTOR 47 5% .5W CC TC=0+412	19701 91637 19701 19701 01121	5033R CMF-55-1, T-1 5033R 5043R EB4705
A1R154 A1R155 A1R156 A1R156 A1R157 A1R158	0757-0338 0757-0465 0698-4492 0757-0283 0757-0442	2 6 1 6 9	2 1	RESISTOR 1K 1% .25W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 32.4K 1% .125W F TC=0+-100 RESISTOR 2K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	19701 19701 91637 19701 19701	5043R 5033R CMF-55-1, T-1 5033R 5033R
A1R159 A1R160 A1R161 A1R162 A1R163	0698-4492 0698-3158 0698-4308 0698-4482 0683-1815	1 4 9 5	1 1 2 1	RESISTOR 32.4K 1% .125W F TC=0+-100 RESISTOR 23.7K 1% .125W F TC=0+-100 RESISTOR 16.9K 1% .125W F TC=0+-100 RESISTOR 17.4K 1% .125W F TC=0+-100 RESISTOR 180 5% .25W CF TC=0-400	91637 19701 19701 91637 77902	CMF-55-1, T-1 5033R 5033R CMF-55-1, T-1 R-25J
A1R164 A1R165 A1R166-R167	0698-4482 0683-1015 0757-0384	9 7 8	1	RESISTOR 17.4K 1% .125W F TC=0+-100 RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 20 1% .125W F TC=0+-100	91637 77902 19701	CMF-55-1, T-1 R-25J 5033R

Table 4-46. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1R168-R169	0757-0405	4	2	RESISTOR 162 1% .125W F TC=0+-100	19701	5033R
A 1 TP 1 - TP 1 4 A 1 U 1 0 1 A 1 U 1 0 2 A 1 U 1 0 3 - U 1 0 4 A 1 U 1 0 5	1251-0600 1826-0139 1826-0715 1826-0493 1826-0138	0 9 7 8 8	14 1 2 1	CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ IC OP AMP GP DUAL 8-DIP-P PKG IC OP AMP LOW-NOISE 8-DIP-P PKG IC OP AMP LOW-BIAS-H-IMPD 8-DIP-P PKG IC COMPARATOR GP QUAD 14-DIP-P PKG	27264 04713 18324 27014 27014	16-06-0034 SC25137P1 C03802 SL35068 SL24958
A1U106 A1U107 MP11 MP12	1826-0147 1826-0221 03326-34303 0515-0104 7120-8376 03326-90020	9 02 8 8 8	1 1 5 1	IC V RGLTR-FXD-POS 11.5/12.5V TO-220 PKG IC V RGLTR-FXD-NEG 11.5/12.5V TO-220 PKG HV CH A & B LABLES FOR THE FRONT PANEL SCREW-MACH M3 X 0.5 8MM-LG PAN-HD OPTION 002 DECAL INSTALLATION NOTE	04713 04713 22670 28480 91345 28480	SC25174P SC25266PK 03326-34303 0515-0104 9211-0046 03326-90020
				OPTION 003 REAR PANEL OUTPUTS FIELD INSTALLABLE KIT HP PART NUMBER 03326-88803		
MP960 MP961 MP962 MP963-MP966	03326-01220 6960-0095 7120-8375 5040-7624 03326-90020	3 5 9 8	2 2 1 4 1	TERM-SOLDR LUG-MOD PLUG-HOLE DOME-HD FOR .562-D-HOLE NYL OPTION 003 DECAL WASHER-SHOULDER INSTALLATION NOTE	28480 28480 91345 28480 28480	03326-01220 6960-0095 7120-8375 5040-7624 03326-90020
				HP 3326A SERVICE ACCESSORY KIT HP PART NUMBER 03326-84401		
	03326-66591 03326-61618 03585-61616 03585-61601 8120-4492	7 9 0 3 6	2 1 1 4	PC BOARD EXTENDERS PHONO PLUG TO BNC ADAPTER CABLE SMB TO BNC ADAPTER CABLE SMB TO SMB CABLE 12 IN. PRECISION LENGTH PHONO CABLE	28480 28480 28480 28480 82389	03326-66591 03326-61618 03326-61616 03585-61601 8120-4492
	1250-1961 1250-0669 03326-90001	6 9 5	4 2 1	PHONO JACK TO PHONO JACK ADAPTER SMB TO SMB ADAPTER SERVICE KIT OPERATING NOTE	82389 98291 28480	349A 51-072-0000 03326-90001
				LOW PASS FILTER COMPONENTS		
	0698-8827 0160-4571	4 8	1	R-F 1M .01 1/8W CAPACITOR-FXD .1UF +80-20% 50VDC CER	19701 04222	5033R MA205E104ZAA
	0140-0220	4	1	1 KOHM/50 OHM MATCHING PAD AND LOAD CAPACITOR-FXD 200PF +-1% 300VDC MICA	09023	0140-0220
	0698-3341 0698-6060	7 3	2 1	RESISTOR 1.91K 1% .5W F TC=0+-100 RESISTOR 52.68 .1% .5W F TC=0+-50	28480 28480	0698-3341 0698-6060
				1 KOHM LOAD VOLTAGE DIVIDER COMPONENTS		
	0698-6060 0698-8226 0698-8167	3 7 5	2	RESISTOR 52.68 .1% .5W F TC=0+-50 RESISTOR 2K .1% .5W F TC=0+-50 RESISTOR 18K .1% .125W F TC=0+-25	28480 28480 28480	0698-6060 0698-8226 0698-8167
	0160-2223	3	1	15 KHZ EQUIVALENT NOISE FILTER COMPONENTS CAPACITOR-FXD 1600PF +-5% 300VDC MICA	00853	0160-2223
	0757-0442	9		RESISTOR 10K 1% .125W F TC=0+-100	19701	5033R
	ļ					

PART NUMBER 9320 3991

4-3 ORDERING INFORMATION

Ordering Listed Parts

To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number (with the check digit (CD)), indicate the quantity required, and address the order to the nearest Hewlett-Packard office (see sales and support offices listing at the back of this manual). The check digit will ensure accurate and timely processing of your order.

Ordering Non-listed Parts

To order a part that is NOT listed in the replaceable parts table, include the instrument model number, instrument serial number, description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office (see sales and support offices listing at the back of this manual).

Direct Mail Order System

Within the U.S.A., Hewlett-Packard can supply parts through a direct mail order system. Advantages of using this system are:

- Direct ordering and shipment from the HP Parts Center in Mountain View, California.
- No maximum or minimum on any mail order. There is a minimum order for parts ordered through a local HP sales and service office when the orders require billing and invoicing.
- Transportation charges are prepaid. A small handling charge is added to each order.
- No invoicing. A check or money order must accompany each order.

Mail order forms and specific ordering information are available through your local Hewlett-Packard sales and service office. Addresses and phone numbers are located at the back of this manual.

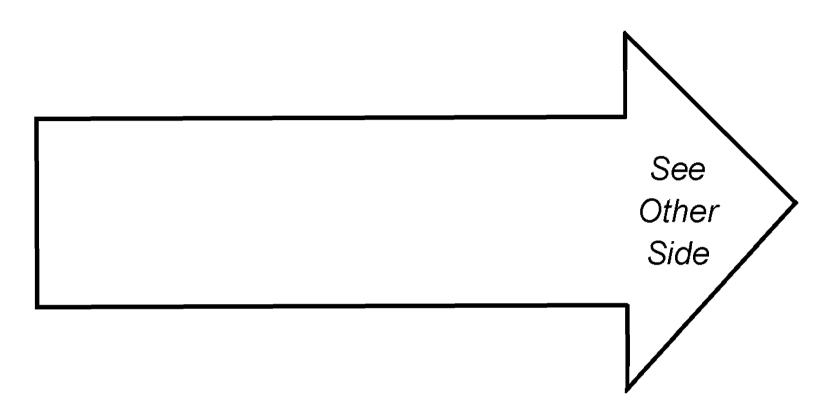
Special Handling

The HP 3326A contains many static sensitive components. Use the appropriate precautions when removing, handling and installing all parts to avoid unnecessary damage.

SECTION V BACKDATING

SECTION V BACKDATING

Sub-Section	Title	Page
5-1	Introduction	. 5-1
5-2	Manual Changes Supplement	. 5-1


SECTION V BACKDATING

5-1 INTRODUCTION

The revision of this manual applies directly to all instruments. Earlier versions of this instrument, however, differ in design and appearance from those currently being produced. The information in this section documents the earlier instrument configurations and associated servicing procedures. Also included is information on recommended modifications for improvements to earlier instruments.

5-2 MANUAL CHANGES SUPPLEMENT

As Hewlett-Packard continues to improve the performance of the HP 3326A, corrections and modifications to the manual may be required. Required changes are documented by a yellow Manual Changes supplement and/or revised pages. To keep the manual upto-date, periodically request the most recent supplement, available from the nearest Hewlett-Packard office (see sales and support offices listing at the back of this manual).

SECTION VI SERVICE — FAULT ISOLATION

SECTION VI SERVICE

Fault Isolation to the Board Level

Sub-Section	Title Pag	e
6-1	Introduction	1
6-2	Safety Considerations	2
6-3	Getting Started	3
6-4	Identical Boards	3
6-5	Waveform Comparison	8
6-6	Hidden Front Panel Commands6-	8
6-7	Overall Theory of Operation	9
6-8	Self Test Error Codes	1
6-9	User Self Tests	8
6-10	Continuously Monitored Parameters	8
6-11	Service Self Tests	9
6-12	Instrument Turn-on Hierarchy6-4	3
6-13	Fault Isolation Tests6-4	3

SECTION VI SERVICE

FAULT ISOLATION TO THE BOARD LEVEL

6-1 INTRODUCTION

Each board in the HP 3326A serves a single electrical function and is referred to as a functional block. Component groups within each functional block are referred to as functional sub-blocks. The fault isolation procedures help isolate a defective functional block. The sample waveforms, sample voltages, and troubleshooting procedures provided in the board level repair sub-sections help isolate a defective functional sub-block.

Read sub-section 6-3, "Getting Started," before beginning any troubleshooting. It provides you with a fault isolation flow chart (Figure 6-1) and troubleshooting techniques for turnon failures (Figure 6-2). After the instrument is running, start the service self tests (subsection 6-8) and find a group of suspect boards. Perform the fault isolation tests (sub-section 6-13) to isolate the defective board within that group. See Table 6-1.

PURPOSE Figure 6-1 outlines the recommended way to find
Figure 6-1 outlines the recommended way to find
a defective board. Figure 6-2 shows the trouble shooting technique to use when there is a turn on failure and the service self tests can not run
Table 6-9 correlates service self test failures to the boards in the HP 3326A. Use it to find a group of suspect boards.
Figure 6-10 shows the interaction of the boards in the HP 3326A, following the main signal flow through the instrument. This hierarchical flow starts with the power supply, since it must func- tion before any other boards can be tested.
Table 6-14 provides a step-by-step procedure to test the printed circuit boards to verify they are working properly. Use it to isolate a defective board from the group of suspect boards found using the service self tests.

The other sub-sections provide additional reference material. They are not explicitly written into the fault isolation flow chart (Figure 6-1). **Table 6-1. Section Organization**

Tabs are provided at the beginning of the "Self Test Error Codes" and "Instrument Turn-on Hierarchy" sub-sections for your convenience. (Note that the "Fault Isolation Tests" sub-section is located immediately after the "Instrument Turnon Hierarchy" sub-section.)

Table 6-1. Section Organization Cont.

MECHAN	NICAL ADVANTAGES
SUB-SECTION 6-4 Identical Boards	PURPOSE Table 6-3 lists the boards that are used in both the A and B channels. These boards may be in- terchanged between channels for trouble- shooting. This is particularly useful for isolating subtle performance problems.
6-5 Waveform Comparison	Put identical circuit boards from the two chan- nels on extenders and compare their waveforms to isolate defective components quickly.
ADDITIONA	L REFERENCE MATERIAL
SUB-SECTION	PURPOSE
6-6 Hidden Front Panel Commands	Describes the hidden commands available in the HP 3326A. Use these commands commands are given in internal software corrections temporar- ily or to view the positive and negative peaks of a reference signal.
6-7 Overall Theory of Operation	Provides a system view of the HP 3326A. Des- cribes each of the modes and features of the in- strument. Describes the function of each board following the main signal flow through the instru- ment. Use to learn the system interactions.
6-11 Service Self Tests	Describes the internal service self tests in detail. Use to clarify results of the self tests.

6-2 SAFETY CONSIDERATIONS

The fault isolation procedures require access to the interior of the HP 3326A while power is supplied to the instrument. Exercise extreme care when performing these procedures.

Maintenance described herein is performed with power supplied to the instrument and protective covers removed. Such maintenance should be performed by trained service personnel who are aware of the hazards involved (for example, fire and electrical shock). Primary power is supplied to the instrument whenever the line cord is attached, independent of the power switch position. Where maintenance can be performed without power applied, remove the power cord.

6-3 GETTING STARTED

Fault isolation to the board has been broken into several pieces (Figure 6-1). First, try to run the service self tests. If they can run, use Table 6-9, Service Self Tests Error Codes, to determine the suspect boards, based on the failure codes that appear on the display during the self tests. After you find them, use the fault isolation tests (Table 6-14) to isolate the defective board within the group.

When the self tests cannot run, one of the circuits that controls the tests must be defective. Figure 6-2 shows the steps involved in fixing that type of failure. After the failure is fixed, run the self tests.

Supply Name	Output Location	Return Location	Nominal Voltage	Voltage Tolerancet	Ripple Tolerance
+15V	TP105	GND (TP700) or card nests	+15.000 V	±0.010 V	50 µVrms
-15V	TP205	GND (TP700) or card nests	-15.000 V	±0.020 V	50 µ∨rms
+ 5V	TP305	GND (TP700) or card nests	+5.100 V	±0.060 V	75 µ∨rms
+ 5VFP	ТР900	GNDFP (use card nests)	+ 5.00 V	±0.25 V	

Table 6-2. Power Supply Signals for Service Self Tests

t The voltage levels and ripple tolerances are given for fully loaded supplies. All PC boards must be in the instrument. Removing individual boards will change the load on the supplies and change the supply levels.

6-4 IDENTICAL BOARDS

The HP 3326A has many boards that are identical in channel A and channel B (Table 6-3). Figure 6-3 shows the locations of these boards. The **identical boards** may be **interchanged** to aid in troubleshooting. This is particularly useful in solving subtle specification errors. For example, when the channel A mixer (A5) appears to be the cause of channel A flatness problems, exchange it with the channel B mixer (A15), and see if the problem is transferred to channel B. If so, the original channel A mixer is truly defective. You can put the two boards on extenders and compare waveforms to help find the defective component. However, if the problem remains in channel A, the defective board must be somewhere else in the channel A chain.

DO NOT insert or remove the circuit boards from the HP 3326A with power applied to the instrument. Power surges to circuit boards may cause unknown instrument states and/or damage the circuitry.

Before interchanging boards, be sure that the correct voltages are being supplied to the board. When a board failure is caused by incorrect voltages powering the board, interchanging boards will only result in a failure of the second board.

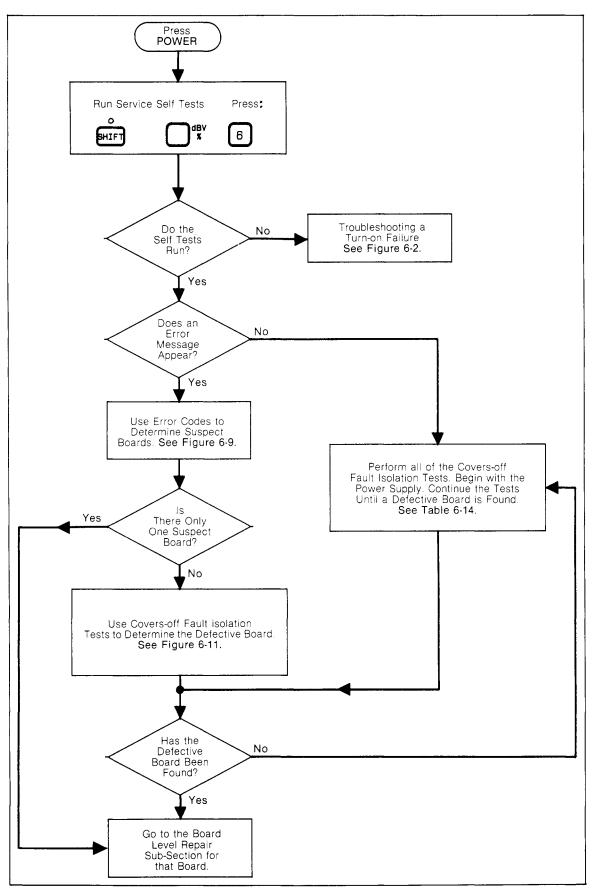


Figure 6-1. Fault Isolation Flow Chart

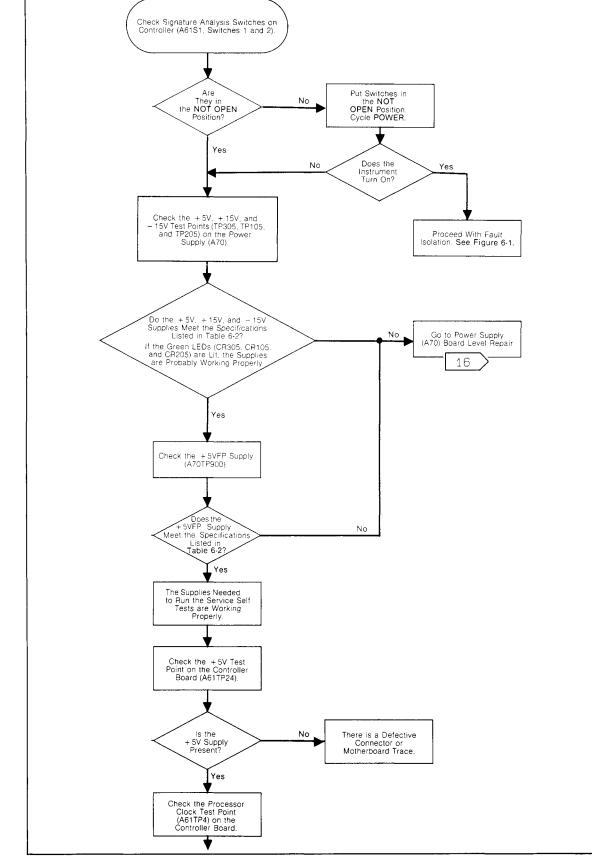


Figure 6-2. Troubleshooting a Turn-on Failure

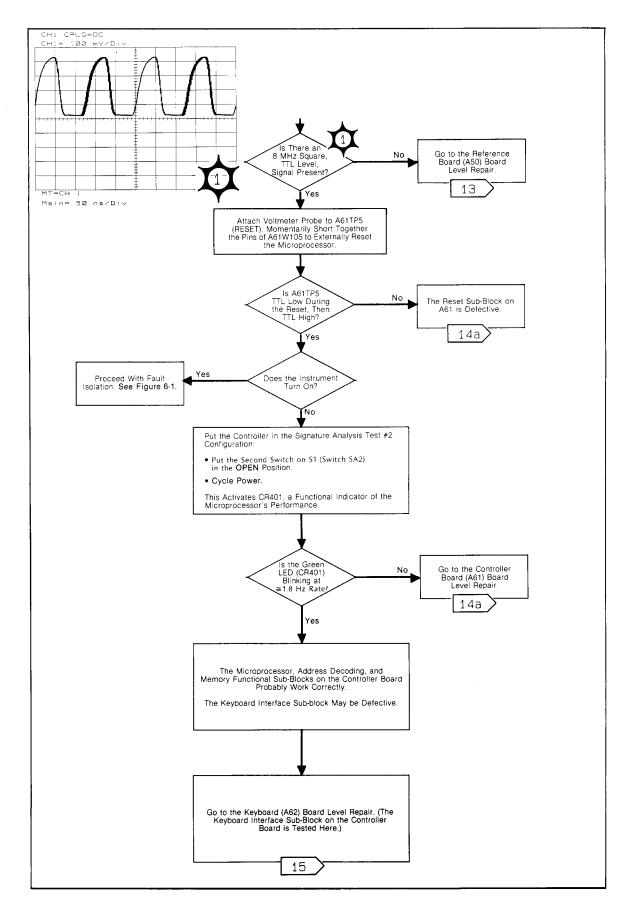


Figure 6-2. Troubleshooting a Turn-on Failure (continued)

NOTE

Identical boards may be interchanged to aid in troubleshooting, but the boards must be returned to their original locations to avoid recalibration of the instrument. See "Adjustments," Section III.

Table 6-3. Identical Boards

	Reference		
Board Name	Channel A	Channel B	HP Part Number
HV Amp	A1	A11	03326-66501
Attenuator†	A2†		03326-66502†
		A12†	03326-66512†
Output Amp	A3	A13	03326-66503
Preamp	A4	A14	03326-66504
Mixer	A5	A15	03326-66505
Modulator	A6	A16	03326-66506
VCO	A31	A41	03326-66531
VCO Control	A32	A42	03326-66532
Phase Detector	A33	A43	03326-66533
FracN Digital	A34	A44	03326-66534
VCO÷2	A35	A45	03326-66535

† The channel A attenuator (A2) and the channel B attenuator (A12) can be interchanged for troubleshooting purposes. Due to slightly different circuitry on the two boards, however, internal phase modulation, internal amplitude modulation, and the combined operation feature do not work. All other features and modes are fully functional. See the schematics for details. When the attenuator boards are not in their correct card nest slots, an error message is displayed during the self tests.

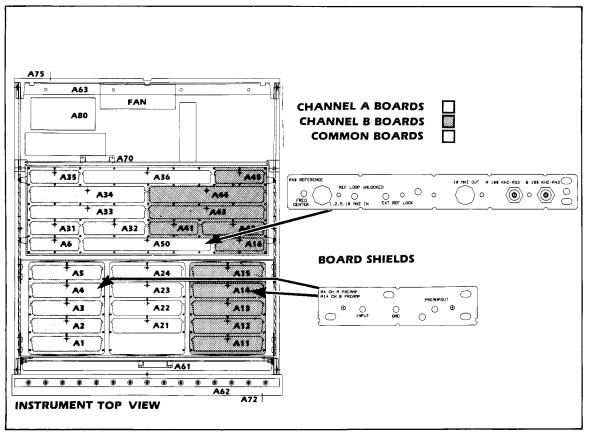


Figure 6-3. Locations of identical Boards

6-5 WAVEFORM COMPARISON

Two printed circuit board extenders are provided in the service accessory kit (03326-84401) to aid in **two-channel waveform comparison.** For example, when a failure has been isolated to a board that has an identical board in the other channel, the two boards may be placed on extenders and the waveforms compared. This method greatly reduces the time it takes to find a defective component.

6-6 HIDDEN FRONT PANEL COMMANDS

This section summarizes the hidden front panel commands available for troubleshooting (Table 6-4). These commands are used to access the service self tests, and to clear calibration correction constants in the fault isolation tests. They are also referenced in the adjustment procedures and board level repair sub-sections, where specific examples of their uses are given.

Table 6-4. Hidden Commands

Command Name	Front Panel Access	To Restore Normal Operation	HP-IB Mnemonic
Reset Calibration Constants	HIFT BUD	Press MANUAL calibration or AUTO calibration or cycle POWER	XD
Range Check Off	BHIFT BUY 1	PRESET or cycle power	ХС
Error Check Off	HIFT BUC2	PRESET or cycle power	XE
Modulator Phase Correction Off	HIFT dBV 3	PRESET or press AUTO calibration	ХРН
Display Negative Peak Voltage	HIFT dBV 4	Press any key	XNP
Display Positive Peak Voltage	HIFT dBV 5	Press any key	ХРР
Service Self Tests †	HIFT BURG	Press SHIFT key	XTST

† See "Service Self Tests," sub-section 6-11, for details.

Reset Calibration Constants

This command resets the internal calibration correction constants to their nominal (perfect system) value and reprograms the hardware amplitude and dc offset. Accordingly, the uncorrected amplitude output of the instrument is present on the output connectors. In normal operation, the calibration constants would take the uncorrected level and adjust it to within the instrument specifications.

Range Check Off

This command disables range checking for parameter entry. This allows entries outside of the normal operation limits to be programmed.

Error Check Off

This command disables error reporting in the instrument. None of the continuously monitored hardware faults or user progamming errors are reported. Service self test errors are still displayed.

Modulator Phase Correction Off

This command turns off the modulator phase correction that was determined during automatic calibration. See the overall theory of operation (sub-section 6-7) for details.

Display Negative Peak Voltage

This command configures the instrument to continuously sample and display the negative peaks of the user-supplied reference signal at connector J2 (A INT CAL) on the calibrator board (A36). It is used to adjust the amplitude/offset calibration path.

Display Positive Peak Voltage

This command configures the instrument to continuously sample and display the positive peaks of the user-supplied reference signal at connector J2 (A INT CAL) on the calibrator board (A36). It is used to adjust the amplitude/offset calibration path.

6-7 OVERALL THEORY OF OPERATION

The following is an overview of the HP 3326A which shows the interaction of the instrument's boards and functional blocks. Since many of the functional blocks interact heavily, the more information known about the interaction, the easier troubleshooting becomes. By interpreting self test data and knowing the instrument operation, many problems can be isolated to the defective board quite readily. Table 6-9, Servce Self Tests Error Codes, interprets much of the data for you, and presents the results in a convenient form. This minimizes the amount of system knowledge you need to isolate a defective board.

NOTE

This sub-section provides a theory of operation to the functional block level. The board level repair sub-sections give a description of each board's functional sub-blocks.

A detailed instrument block diagram is located at the end of the schematics. A signal glossary is provided in Appendix A.

Instrument Overview

The HP 3326A is an HP-IB programmable, precision two-channel synthesizer covering the range dc to 13 MHz. The variety of features found in the HP 3326A is made possible by having two independently controlled sources in one instrument, with four different system configurations. These system configurations are referred to as modes: two-channel, two-phase, two-tone and pulse.

Most of the boards operate the same in all modes — only the frequency limits change. An example of this is the entire output chain, from the modulator to the attenuator. This is a very important point to understand. The **four modes** are made possible by **signal switching** and changing **channel B's 20 MHz frequency reference.** The 20 MHz reference signal comes from the reference board (A50) in the two-channel mode, and from the channel B fractional-N local oscillator in all other modes. This is done since the fractional-N local oscillator can provide the variable frequency and variable phase signals required for the two-phase, two-tone, and pulse modes.

The key to the signal switching is the RF switch (A24). The board receives three signals, and routes two of them to the channel B mixer. The two which are routed depend on the programmed mode — the RF switch must route the correct 20 MHz reference signal (B CARRIER) to channel B for the modes to operate. This is explained in great detail in the following board level discussion. It is good to know the basics of the mode switching before you start learning about the modes of the HP 3326A. It makes them easier to understand.

Following is a description of the theory behind the modes and features of the instrument, with a step-by-step description of the board level block diagram.

Instrument Modes

In the **two-channel** mode, the HP 3326A operates as two separate synthesizers that share a common 20 MHz frequency reference and controller. Each channel has its own fractional-N local oscillator which can be tuned from 20 to 33 MHz. The output signal of each fractional-N local oscillator (A LO1, B LO2) mixes with a fixed 20 MHz reference signal (A 20MHz, B 20MHz) to obtain the desired 0 to 13 MHz output frequency. Each mixer output (A MIX OUT, B MIX OUT) is sent through low pass filters to reject the high frequency images, then amplified. Step attenuators (A2, A12) are used to provide an 80 dB dynamic range. See Figure 6-4.

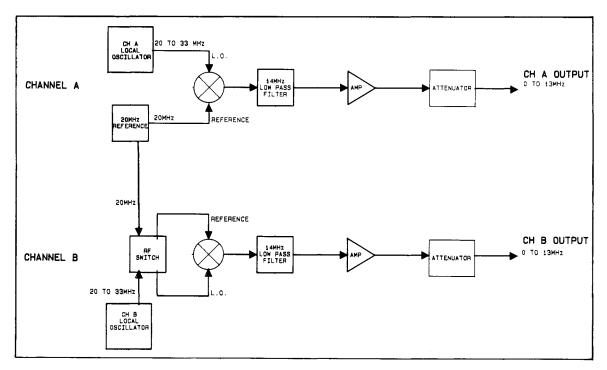


Figure 6-4. Two-Channel Mode Simplified Block Diagram

In the **two-phase** mode, channel A is configured exactly like the two-channel mode. The channel A local oscillator signal (A LO1) is mixed with the 20 MHz signal (A 20MHz) from the reference board (A50), and sent down the output chain. Channel B is configured differently to supply the HP 3326A's phase offset capabilities. The channel B fractional-N local oscillator supplies the 20 MHz reference signal to channel B. It acts as a 20 MHz reference whose phase can be precisely changed relative to the fixed 20 MHz reference signal (A 20MHz) used by channel A. The channel A local oscillator signal is used as the local oscillator signal for channel B. The variable phase reference signal (B LO2) is mixed with the 20 to 33 MHz signal from the channel A local oscillator (A LO2), and sent down the channel B output chain. The RF switch board (A24) performs the signal switching that changes the reference and local oscillator inputs to the channel B mixer board (A15). The system configuration results in two output signals with the same frequency and a discrete **phase offset.** As channel A changes in frequency, channel B tracks the change, and the relative phase offset between the two channels remains constant. See Figure 6-5.

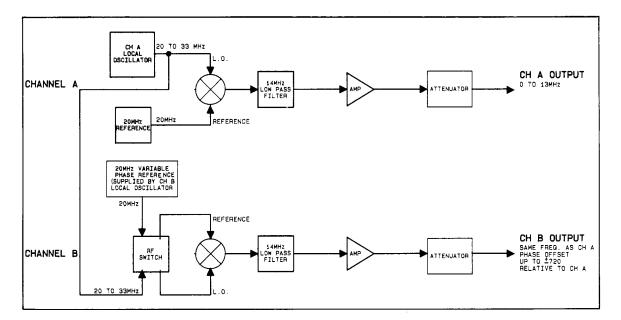


Figure 6-5. Two-Phase Mode Simplified Block Diagram

The **two-tone** mode differs from the two-phase mode only in the action of the channel B fractional-N local oscillator. The oscillator is still used as a reference for the B channel, but it provides a discrete **frequency offset** instead of a phase offset. The channel B oscillator is set to 20 MHz plus an offset of up to 100 kHz. As in the two-phase mode, the channel A local oscillator signal is used as the local oscillator signal for channel B. This 20 to 33 MHz signal (A LO2) is mixed with the variable frequency reference signal (B LO2) from the channel B local oscillator. This system configuration results in output signals which are offset in frequency up to 100 kHz. As channel A changes in frequency, channel B tracks the change, and maintains the precise frequency offset. See Figure 6-6.

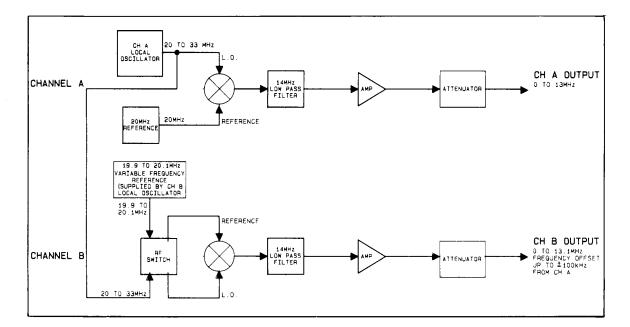


Figure 6-6. Two-Tone Mode Simplified Block Diagram

In the **pulse** mode, the local oscillators and references behave exactly like the two-phase mode. In the output chain, however, the sine wave signals from the two channels are routed through a circuit (A23) which squares the signals and yields two complementary pulse waveforms. The duty cycles of these waveforms are determined by the phase difference between the two channels; the channel A signal controls the rising edge of the pulse and the channel B signal controls the falling edge. See Figure 6-7.

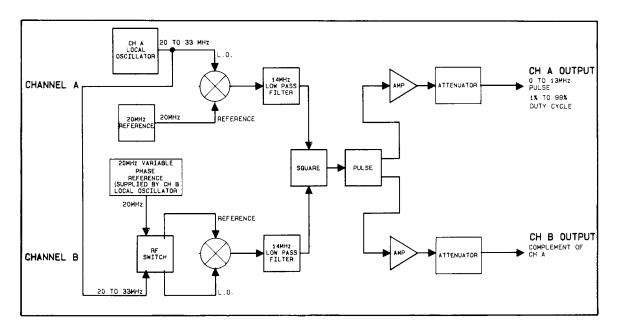


Figure 6-7. Pulse Mode Simplified Block Diagram

Instrument Features

The HP 3326A has many features that can be used in the different modes, including sweeping, modulating, changing the wave shape, and altering the calibration method. The following is a broad description of these capabilities.

There are four signal **functions** available in the HP 3326A: square wave, sine wave, dc only, and off. Any of these functions can be selected on one channel, regardless of the other channel's setting. A sine wave is generated by the mixer board (A5, A15). When the square function is programmed, this sine wave signal is switched through the square wave circuit on A23. The edges of the square wave coincide with the zero-crossings of the sine wave. A pure dc offset signal is generated by suppressing the ac component of the main signal. A relay on the attenuator board turns off the output when the off function is programmed. A nominal 50 ohm source impedance is seen for all functions except off, which looks like an open circuit at the output connector. (When the high voltage option is in place, this impedance is changed to less than two ohms.)

Amplitude is controlled from $+ 23.98 \text{ dBm} (50 \Omega)$ to - 56.02 dBm by a series of attenuators and a DAC control. 10 dB, 20 dB, and 40 dB step attenuators perform the rough amplitude control. A 10 dB attenuator is located before the output amplifier (A3, A13), and 10 dB, 20 dB, and 40 dB attenuators are located after the output amplifier (A2, A12). (The levels at which the attenuators are activated are included in a table near the A2/A12 schematic.) The modulator board (A6, A16) provides the 0 to 10 dB fine tuning of the amplitude.

A user-specified **dc offset** can be added to each channel's ac signal. The maximum levels of dc offset are determined by the level of the ac signal; the combination of the two levels cannot exceed the ± 5 Vpk limits of the output amplifiers. The output attenuators (A2 and A12) attenuate both the ac and dc signals. In normal operation, the offset signals (A AMPDCO and B AMPDCO) are injected into the output amplifiers before the attenuators. When the high voltage option is activated, the dc offset signals (A HVDCO and B HVDCO) are injected at the high voltage amplifiers (after the attenuators). Since the dc signals are not attenuated before they reach the high voltage amplifiers, a large dc offset can be obtained (even when the ac signal level has been highly attenuated).

The **sweep** capabilities of the HP 3326A are controlled by the fractional-N oscillators. Arbitrary start and stop frequencies and sweep times can be specified. If desired, the phase continuous sweeps can start from an external trigger.

The HP 3326A provides both internal and external **amplitude modulation** (AM) and **phase modulation** (PM). When internal AM is enabled, the B channel output is disabled. The B channel output signal (INT MOD) is switched internally to become the level control for the channel A 20 MHz reference signal. This allows internal amplitude modulation of channel B on channel A. For internal PM of channel A, the channel B output signal (INT MOD) is switched into the phase control circuit of the channel A fractional-N local oscillator.

Inputs for channel A and channel B external AM and PM signals are available on the rear panel of the HP 3326A. Either channel may be modulated independently.

The outputs of channel A and channel B are combined at the channel A output connector when **combined operation** is programmed. The output signal from the channel B attenuator (B COMBINE) runs to the channel A attenuator's broadband resistive combiner. The maximum output amplitude limit for each channel is reduced by 6.02 dB when combined operation is activated.

The HP 3326A has the capability of calibrating internally or externally. During **calibration**, the channel A and channel B signals are switched off. The main signal is switched to the internal calibration circuit (A36) immediately before it reaches the output connector. The measurements taken by A36 are interpreted by the controller, which adjusts the amplitude level control or the fractional-N phase control. The rear panel contains external phase calibration inputs (A-EXT ϕ CAL IN and B-EXT ϕ CAL IN). This allows for remote sensing of the phase calibration, letting the user eliminate the effects of phase shift that are generated from the system's cable configuration.

The MARKER OUT, Z-BLANK OUT, and X-DRIVE OUT rear panel output signals are generated by the controller (A61) and HP-IB support board (A63). MARKER OUT can be used to initiate a measurement when a certain frequency has been reached or to indicate where a certain frequency is located in a given sweep. Z-BLANK OUT can be used to control an X-Y plotter pen or to blank an oscilloscope signal retrace. X-DRIVE OUT can be used to control the X-axis position of an X-Y plotter.

Board Level Theory

Consult the **overall block diagram** at the end of the schematics and the signal glossary in Appendix A while reading the following board level system theory of operation. They make the explanation clearer. The theory provides you with information about the interactions of the boards in the HP 3326A. The order that the boards are described follows the main signal flow through the instrument (see Figure 6-10). First, the power supply (A70) is described, then the frequency reference board (A50), the controller (A61), and so on. Finally the output amplifier (A3, A13) and attenuator (A2, A12) are described. Detailed theories of each board are given next to the individual schematics in the board level repair sub-sections (6-20 to 6-38).

The linear **power supply** (A70) provides five main outputs: +15V, -15V, and three +5V signals. The +15V supply is the reference for these supplies. The main +5 volt supply is highly regulated (+5V). The main +5 volt supply for the keyboard (+5VFP) to keep the display noise signals from the main +5V supply is provided. The third +5V supply powers the HP-IB interface circuitry (+5V HPIB). This supply has a separate ground (CGND). A raw voltage (+15V RAW) from the power supply is used to power the oven reference board (A80).

Two separate grounds are maintained throughout the instrument. The instrument chassis is connected to the protective earth terminal through the line power cord. This signal is referred to as chassis ground, or CGND. The HP-IB connector, the instrument chassis, and four rear panel connectors (20-33MHz B-L.O. OUT, 10MHz OUT, 10MHz OVEN OUT OP-TION 001 and 1,2,5,10MHz REF IN) are connected to chassis ground. The rest of the instrument uses GND, an isolated ground for the printed circuit boards. The two are connected through varistors and capacitors on several boards in the instrument. No more than 42 Vpk potential can appear between them.

The **reference** board (A50) generates all the frequency references and clocks for the instrument. These include:

- Two 20 MHz reference signals (A 20MHz and B 20MHz) which feed the channel A modulator (A6) and the RF switch (A24), and eventually feed the reference ports of the mixers (A5, A15) through the modulators (A6, A16).
- Two 100 kHz clocks (A 100kHz and B 100kHz) which provide the time base for the fractional-N circuitry of the two local oscillators.
- Two 8 MHz clocks (8MHz PROC CLK, 8MHz FRACN CLK) for the controller board (A61) and fractional-N local oscillators.
- A 10 MHz reference output (10MHz OUT) available on the rear panel.

The reference locks to an external signal provided through the rear panel input connector (1,2,5,10MHz REF IN) when the signal frequency is 1, 2, 5 or 10 MHz.

All the functions of the instrument are controlled by the microprocessor on the **controller** board (A61). The controller accepts commands in the form of a keyboard entry or via the Hewlett-Packard Interface Bus (HP-IB), and controls several of the printed circuit boards via the instrument bus (IBUS0-7). This instrument bus is disabled whenever instructions are not actively being written to the hardware. This keeps the processor clock frequency from coupling to sensitive circuits.

The Hewlett-Packard Interface Bus is a bus structure that links the HP 3326A to desktop computers, minicomputers, and other HP-IB controlled instruments to form automated measurement systems. HP-IB is Hewlett-Packard's implementation of the IEEE Standard 488-1978, ANSII Standard MC 1.1, and IEC Recommendation 625-1.

The **keyboard** (A62) includes the switches and indicators that the operator sees while viewing the front panel of the instrument. The controller (A61) feeds the keyboard information in a bit-serial manner.

The identical channel A and channel B fractional-N **local oscillators** (LOs) are comprised of five separate printed circuit boards (A31-A35, A41-A45), with a common decoder circuit (P/O A36). The fractional-N oscillators provide the instrument frequency and the ability to sweep frequencies across a known band. The local oscillators also control the phase and frequency offsets provided in the different modes. These modes are made possible by changing the reference and local oscillator signals for channel B.

In the two-channel mode, each LO is fed into the LO port of a separate mixer. The reference port of each mixer is driven by the same 20 MHz source (A50). Since each LO can independently vary its frequency, the mixer outputs can have different frequencies. However, in the two-phase mode, the channel A LO drives the LO inputs of both mixers. The channel B LO is set to 20 MHz, and drives the reference port of the channel B mixer. (The 20 MHz channel A reference signal is still provided by A50.) Thus, the output frequencies of the two mixers are equal. The phase relationship of the two channels is controlled by changing the phase of the channel B LO. The two-tone and pulse modes of the HP 3326A are variations of the two-phase mode. They use the same LO and reference inputs to the channel B mixer.

The **RF switch** (A24) performs the signal switching necessary to accomplish mode switching. It is the key to understanding the block diagram of the HP 3326A. The outputs of A24, LOBSW and B CARRIER, drive the LO and reference port of the channel B mixer, respectively. The switch has three inputs, B 20MHz (from the reference board (A50)), A LO2 (from the channel A LO), and B LO2 (from the channel B LO). In the two-channel mode, B 20MHz is routed to the reference port of the channel B mixer, and B LO2 is routed to the LO port. In the two-phase mode, B LO2 is routed to the reference port, and A LO2 is routed to the LO port (Figure 6-8, Table 6-5).

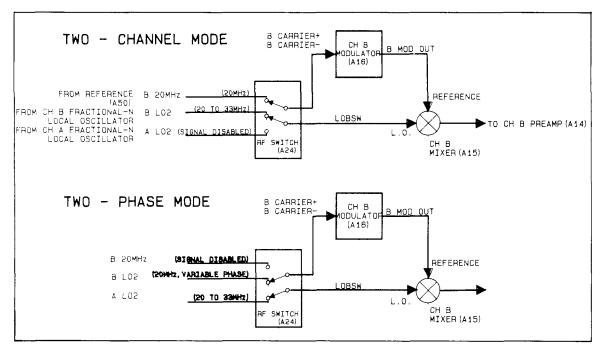


Figure 6-8. RF Switch Configurations

Modes	Main Signals									
modes	B 20MHz	B LO2	B CARRIER	B MOD OUT	A 1O2	LOBSW				
Two-Channel	20 MHz	20-33 MHz	20 MHz	20 MHz	Х	20-33 MHz				
Two-Phase	x	20 MHz, Variable Phase	20 MHz, Variable Phase	20 MHz, Variable Phase	20-33 MHz	20-33 MHz				
Two-Tone	х	19.9-20.1 MHz	19.9-20.1 MHz	19.9-20.1 MHz	20-33 MHz	20-33 MHz				
Pulse	Х	20 MHz, Variable	20 MHz, Variable	20 MHz, Variable	20-33 MHz	20-33 MHz				

Table 6-5. Frequency Ranges of Main Signals in Different Modes

X = signal inhibited

The **level/AM** board (A22) produces a dc voltage proportional to its digital to analog converter (DAC) setting. It provides a signal (A SINLEV, B SINLEV) which drives the modulator (A6, A16) when the sine function is programmed. When the square or pulse functions are programmed, the signals (A SQLEV and B SQLEV) drive the square board (A23).

When a modulation signal is present (either provided internally from channel B or externally from the rear panel inputs), the level outputs of A22 are proportional to the DAC setting and the level of the modulating signal.

Programmable switches on A22 let the controller (A61) specify amplitude modulation. Other switches on A22 direct the output signal of each level control to the sine wave modulator or the square wave circuit, depending on the chosen function.

The channel A and channel B **modulator** boards (A6 and A16) control the level of the instrument's output signals by adjusting the level of each channel's reference signal from 0 to 10 dB. The channel A modulator (A6) receives a 20 MHz input (A 20MHz) from the reference board (A50) and a level control signal (A SINLEV) from the level/AM board (A22). The resulting level-controlled reference is sent through a bandpass filter to eliminate 20 MHz harmonics and noise outside a \pm 100 kHz bandwidth around 20 MHz. The output signal (A MOD OUT) is sent to the reference port of the channel A mixer (A5).

The channel B modulator's reference input (B CARRIER + and B CARRIER -) comes from the RF switch circuit (A24). The level control signal (B SINLEV) comes from the level/AM board (A22). The channel A and channel B modulators operate in exactly the same manner.

A double-balanced, active **mixer** board (A5, A15) mixes the 20 to 33 MHz local oscillator output (A LO1, LOBSW) with the 20 MHz reference signal (A MOD OUT, B MOD OUT) in a heterodyne fashion. A low pass filter filters out the high sideband (40 to 53 MHz) and the residual 20 MHz reference signals, yielding signals between 0 and 13 MHz only. The low pass filter is divided between the mixer board and the preamplifier board (A4, A14) to minimize the effect of interference along the interconnect path.

After the local oscillator and reference signals are mixed and filtered, they are amplified by a fixed gain amplifier (gain = 10) on the **preamplifier** board (A4, A14). The main signal then travels to the output amplifier (A3, A13) when a sine wave is programmed.

When a pulse or a square wave is programmed, the controller routes the preamplifier output through the square wave circuit on A23 before routing it to the output amplifier. The **square** board (A23) has two functions: square wave generation and pulse generation. When the square wave function is selected, the main signal is directed through the square wave (limiter) circuit and a square wave is produced. The edges of the square wave match the zero-crossings of the sine wave output of the preamplifier. The amplitude is controlled by the level control circuitry on the level/AM board (A22). When the pulse mode is programmed, the channel A output of the square wave circuit is a pulse wave whose pulse width reflects the phase difference between the channel A and channel B preamplifier (A4 and A14) outputs. The channel B output of the square circuit is the complement of the channel A waveform, but with separate amplitude control.

The **offset** control board (A21) generates a separate dc offset for each channel, as determined by its digital-to-analog converters (DACs). The DACs are adjusted for instrument offset errors. Under normal operation, the offset signal (A AMPDCO, B AMPDCO) is injected into the output amplifier (A3, A13) summing node. When the high voltage option is enabled, the offset signal (A HVDCO, B HVDCO) is injected into the high voltage amplifier (A1, A11) summing node. A relay on the offset board directs the signal. Both channels have identical offset operation. The maximum available dc offset depends on the selected ac amplitude, as shown in Table 6-6. When the high voltage option is activated, \pm 20 V dc offset may be programmed, independent of the ac amplitude (dc + ac peak must be less than 20 V).

AC Amplitude	Maximum AC + DC	Maximum DC Offset
1.0 to 10.0 Vpp 0.1 to 1.0 Vpp	± 5.0 V ± 0.5 V	\pm 4.5 V \pm 0.45 V
10 to 100 mVpp	± 50 mV	\pm 45 mV
1 to 10 mVpp	\pm 5 mV	± 4.5 mV

Table 6-6	. DC	Offset	as	а	Function	of	AC	Amplitude
-----------	------	--------	----	---	----------	----	----	-----------

The **output amplifier** board (A3, A13) boosts the main RF signal (A PREAMPOUT, B PREAMPOUT) to its maximum level (± 5 Vpk into 50Ω , ± 10 Vpk open circuit). It also provides the first 10 dB of signal attenuation with the 10 dB pad and driver sub-block at the input of the board. The attenuator boards (A2 and A12) perform the rest of the attenuation on the amplifier's output signal (A AMPOUT, B AMPOUT). The programmed amplitude determines which pads are activated. (See level control table near the A2/A12 schematic for the amplitude ranges.)

The **synchronous output** (sync) circuit on the keyboard (A62) monitors the output signal (A AMPOUT) from the channel A output amplifier (A3) and generates a square wave with edges coincident with the zero-crossings of sine wave A AMPOUT. The dc offset signal (A AMPDCO) from the offset board (A21) compensates for any amplitude offset that may be present on A AMPOUT. The output (SYNC A) is available on the front panel.

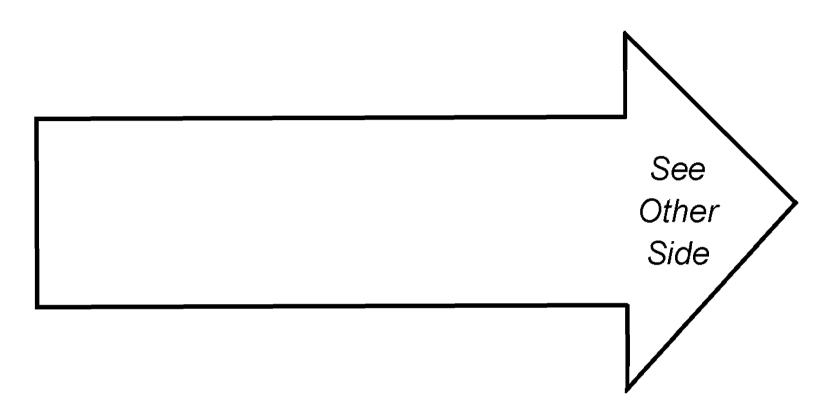
Before leaving the output amplifier boards to go to the attenuator boards, the output signals (A AMPOUT and B AMPOUT) are indirectly monitored by current overload detection circuits. An overload signal from these circuits is sent to the attenuators, then to the offset board (A21), which alerts the processor by pulling the ANALOG FAULT line. See the signal glossary for detailed signal definitions.

The **step attenuator** (A2, A12) allows the amplitude of the output signal to be attenuated in 10 dB steps to a maximum of 60 dB, maintaining a 50Ω output impedance. The main RF signal is monitored by several voltage overload detection circuits and an overload cut-out relay on the attenuator board. When the high voltage option is in place and activated, a relay directs the main signal to the high voltage amplifier (A1, A11) and back again.

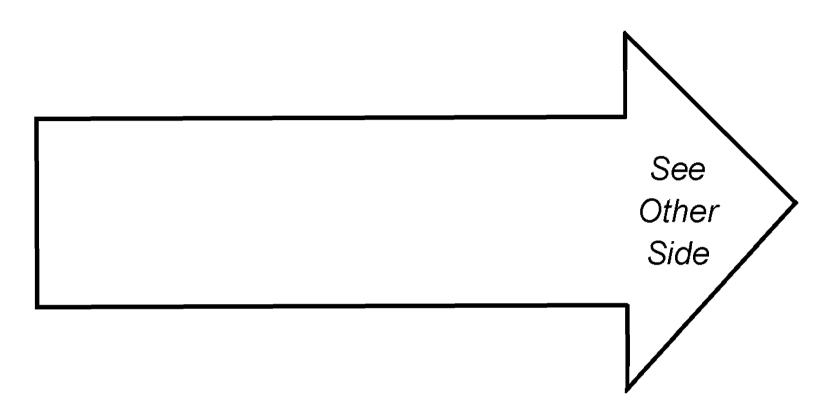
When combined operation is activated, the channel A and channel B signals are summed on the channel A attenuator board. The combined signal is provided on the channel A output connector and the channel B output (CH B) is terminated with 50 Ω to ground. This summing network on channel A and the internal modulation relay on channel B are the only differences between the two attenuators.

When internal calibration is required, the main signal (A INT CAL, B INT CAL) is sent to the **calibrator** (P/O A36) through a relay at the output of the attenuator board (after all attenuation and high voltage amplification has taken place). The calibrator performs amplitude, dc offset, and phase calibration. Part of the phase calibration circuitry also determines the modulator board's (A6, A16) phase shift as a function of amplitude.

During internal amplitude calibration and dc offset calibration (which are performed simultaneously), the calibrator precisely measures the signal's positive and negative peaks. As the measurements are being taken, the controller (A61) adjusts the parameter being tested to correct for any error. Sine waves, square waves, and pure dc offsets are all measured and calibrated. Any sine wave or square wave amplitude error is corrected by adjusting the DAC on the level/AM board (A22). Any dc offset error is corrected by adjusting the DAC on the offset board (A21). The calibrator continues to measure the signal and the instrument continues to adjust itself until the signal is within specification, or until it determines that the signal cannot be calibrated.


For **internal phase calibration** of the sine and square functions, the two main signals (A INTCAL, B INTCAL) are input to the phase calibration circuit on A36. The channel A main signal's phase is fixed, while the channel B signal's phase is incremented, until a relative phase offset of 180° is reached. The inputs are switched and the procedure is repeated. Averaging the results eliminates system errors and gives a precise phase measurement. The controller corrects any error by adjusting the fractional-N local oscillators.

External phase calibration and **multiphase calibration** are available through the rear panel inputs A-EXT ϕ CAL IN and B-EXT ϕ CAL IN/MULTI ϕ REF IN. The instrument calibrates itself in the same manner as in internal calibration. For phase calibration, it is expected that the inputs are the channel A and channel B signals measured at the point of interest — that is, at the end of the cables or after being modified by a device under test. For multiphase calibration, the channel A rear panel calibration input is expected to be a signal from another source. This source must be reference-locked with the HP 3326A. The channel B input is expected to be the HP 3326A channel A output. The phase of channel A is adjusted to align with the phase of the external source.


The phase calibration circuitry, in conjunction with the 10 dB attenuator pads on the output amplifier boards, is used for measuring the phase shift that occurs in the modulators (A6 and A16). The modulator under test is set to full scale, and the 10 dB pad is activated. A single pass of the phase calibration procedure is performed. The modulator's level is then reduced by 10 dB, and the 10 dB pad is deactivated. Another pass of phase calibration is performed. The difference between the two phase measurements is the modulator's phase shift, which is corrected by adjusting the local oscillator circuit.

The **oven reference** board (A80) provides an oven-stabilized crystal reference for the instrument (Option 001). The reference output runs directly to the rear panel (10MHz OVEN OUT, OPTION 001). To use the reference, 10MHz OVEN OUT, OPTION 001 must be externally connected to the external reference input, 1,2,5,10MHz REF IN. Both of these outer conductors are tied to chassis ground (CGND). See the signal glossary for a complete description.

The **high voltage amplifier** board (A1, A11) provides four times the normal 50 Ω terminated signal level (two times the normal open circuit level). The board is switched on after the main signal has been attenuated, and before the instrument is calibrated. When the high voltage output option is engaged, the dc offset signal (A HVDCO, B HVDCO) is injected into the input of the high voltage amplifier board (instead of the output amplifier board (A3, A13)). This increases the amount of dc offset that can be provided with a small ac signal from the output attenuators. The low impedance ($\approx 0 \Omega$) output signal (A HVAMP-OUT, B HVAMPOUT) of the amplifier runs directly to the front panel output connector (CH A, CH B), without any series resistance. The outputs require a high impedance load.

SERVICE SELF TESTS ERROR CODES

3. **Compile a list** of suspect circuits from the first test that failed. One of the circuits exercised in this test is defective. When any of the circuits are highlighted with a *****, they are the most likely suspects. These suspect circuits form the columns that must be examined in step 4.

NOTE

This procedure assumes that there is only **one** failure in the instrument at a time.

- 4. **Examine Table 6-9.** Look for the column that has the most correlation between suspect circuits and exercised circuits. For example, when a particular circuit is on your list of suspects (see step 3), and it is exercised in EVERY test that failed, there is a good likelihood that it is defective. Conversely, when a particular circuit is on your list of suspects and it is NOT exercised in one of the other tests that failed, it is probably NOT the defective circuit.
- 5. This step depends on the individual situation. When there is only one highly suspect circuit, go directly to the board level repair sub-section for the board that contains the suspect circuit. When there is more than one suspect, go to Table 6-14, Fault Isolation Tests. Table 6-14 provides a method to test most of the boards in the HP 3326A to see if they are working properly. Start testing the board which appears first on the table. If that board is working properly, go to the next suspect board, and so on.

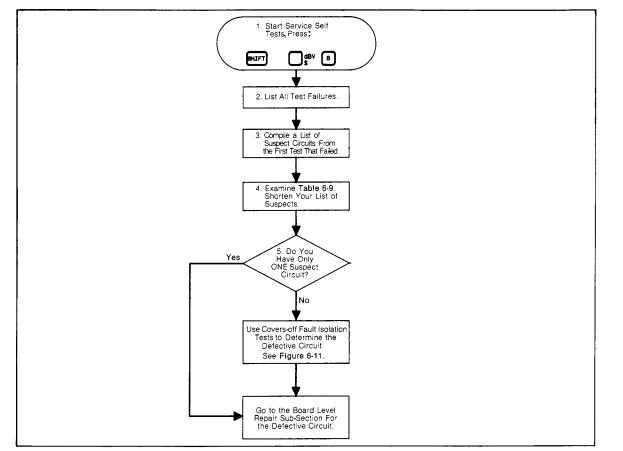


Figure 6-9. How to Use Table 6-9

	REFER	ENCE, CONTR	OL, AND CALIBRATION		CHANNEL A	CHANNEL B	UNTESTED AREAS
	A70 A70 A70	A50 A50 A50 A50 A50	A61 A61 A61 A61 A61 A61 A61 A61 A61 A61	A21 A21 A21 A21 A21 A21 A21 A21 A24 A24 A24 A24 A24 A24 A24 A24 A24 A24	A31 A31 A32 A33 A33 A33 A33 A33 A33 A33 A33 A33	A412 A444 A444 A444 A145 A144 A144 A144 A144	A70 A70 A61 A61 A23 A23 A23 A23 A23 A63 A63 A63 A63 A63 A63 A61 A61
			Щ				
			RFAC				ELAY
SERVICE		_	L L L	NTROI NFESET =FSET =FSET	17 RIVER	ATH ATH	TION TION TION TION TION 0 TION 0 N 002
SELF		GNAL	CH ROL CH ROL			DE P PATH D DR P DR P DR P	IES ATION ATION MOD R MOD R OPTION
		0 244444		RENCE RENCE RENCE RENCE RENCE RENCE RENCE		CONTROL E DETECTOR N DIGITAL NTROLLER INEL MODE E MODE PA M M R PATH RE PATH RE PATH RE PATH RE PATH RE PATH RE AND	
TESTS			SS, A SS, A DEC DEC DEC MOI	A STI ROL, STI ROL, ROL, REFEI SOFE SOFE			
							- 28 HASE HASE HASE PATHOUNE COMING COMINIC COMINIC COMINIC COMINICO CO C
	5V SI 15V 15V 5VFF					 >>⊑ ⊑>ĤOĆ ∞∞∞∞∞∞∞∞ >>⊆ ⊑>ĤOÉ >>⊆∞≥≥≥	
SCHEMATIC NUMBER ► NAME ERROR CODE ▼	99 99 99				╚╡╗╗╗╗╗╘╻╻╸╸		
LED FAIL 01							
STUCK KEY NMOS RAM	<u>••••</u>						
CMOS RAM ROM 1 FAIL 05							
ROM 2 FAIL 06		•					
IBUS FAIL 07							
FRACN DIGITAL, CH B FAIL 09		• • •					
FRACN DIGITAL, CH A FAIL 10							
VCO LOCKED 1, CH B FAIL 11 VCO LOCKED 1, CH A FAIL 12							
VCO LOCKED 2, CH B VCO LOCKED 2, CH A FAIL 13 FAIL 14							
SWEEP, CH B							
SWEEP, CH A			••*		• *		
OFFSET, CH B OFFSET, CH A FAIL 17 FAIL 18		• • •					
OFFSET SWITCH, CH B FAIL 19 OFFSET SWITCH, CH A FAIL 20							
AMPLITUDE, CH B							
AMPLITUDE, CH A FAIL 22							
SQUARE SWITCH, CH A FAIL 24							
OUTPUT OFFSET, CH B							
OUTPUT OFFSET, CH A FAIL 26 OUTPUT AMPLITUDE 1, CH B FAIL 27		• • • • *				· · · · · · · · · · · · · · · · · · ·	
OUTPUT AMPLITUDE 1, CH A OUTPUT AMPLITUDE 1, CH A FAIL 28 OUTPUT AMPLITUDE 2, CH B FAIL 29			• • • • • •				
OUTPUT AMPLITUDE 2, CH B FAIL 29 OUTPUT AMPLITUDE 2, CH A FAIL 30							

		REFERI	ENCE, CONTR	OL, AND CALIBRATION		CHANNEL A	CHANNEL B	UNTESTED AREAS
	BOARD NUMBER 🕨	A70 A70 A70 A70 A70	A50 A50 A50 A50	A61 A61 A61 A61 A61 A61 A61 A61 A61 A61	A21 A21 A21 A21 A21 A21 A21 A21 A21 A21	A31 A32 A33 A5 A5 A5 A5 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2	A44 A44 A44 A44 A44 A14 A14 A14 A14 A14	A11 A11 A11 A11 A11 A11 A11
SERVIC SELF TESTS	E SUSPECT BOARD ►	+ 5V SUPPLY + 15V SUPPLY + 15V SUPPLY + 15V SUPPLY	a.mudihekbuaku BMHz FROC CLK Signal BMHz FRACN CLK Signal A 100kHz Signal A 20MHz Signal B 20MHz Signal	JJP ADDRESS, MEMORY, INTERFACE INSTRUMENT BUS SWEEP LIMIT LATCHES KEYBOARD DISPLAY DRIVE, KEYBOARD DECODE A + B LEVEL CONTROL CH A LEVEL CH A LEVEL CH A MOP CH B AMP MOD CH A SOUARE SWITCH CH B SOUARE SWITCH	Read Data, Strobe control ch a control, ch a offset ch b control, ch b offset ch a offset switch ch b offset switch ch b offset switch voltage reference fracn decoder cal r/w logic levtestiofftest path amplitude/offset cal path dath	CHANCO CHAVCO CHAVCO CONTROL CHAFRACN DIGITAL CHAVCO÷2 CHANCO÷2 CHAMDULATOR CHAMIXER CHAMIXER CHASINISO MODE RELAY CHASINISO MODE RELAY	CH B VCO CH B VCO CONTROL CH B PLASE DETECTOR CH B FRACN DIGITAL CH B FRACN DIGITAL CH B VCO÷2 SWITCH CONTROLLER TWO-CHANNEL MODE PATH TWO-CHANNEL MODE PATH TWO-PHASE MODE PATH TWO-PHASE MODE PATH TWO-PHASE MODE RELAY CH B MIXER CH B SOUARE PATH CH B SOUARE PATH CH B OUTPUT AMP CH B ATTENUATOR CH B ATTENUATOR	+ 28V, - 28V SUPPLIES + 5VHPIB SUPPLY + 5VHPIB SUPPLY HP-IB INTERFACE CH A PHASE MODULATION CH B PHASE MODULATION PULSE PATH CH A COMBINER RELAY CH A COMBINER RELAY SYNC HP-IB SUPPORT OVEN REFERENCE (OPTION 001) CH A HV AMP (OPTION 002) CH B HV AMP (OPTION 002)
NAME	SCHEMATIC NUMBER	16 16 16 16 16 16 16	13 13 13 13 13 13 13 13 13 13 13 13 13 1	8 8 8 8 8 8 8 8 8 9 1 1 1 1 1 1 1 1 1 1	15 15 15 15 15 15 15 15 15 15 15 15 15 1	20 20 20 20 20 20 20 20 20 20 20 20 20 2	3 m m m + + 1 m m + + + + + + + + + + + +	
EXTERNAL AM, CH A	FAIL 31							
EXTERNAL AM, CH B AMPLITUDE CAL 1, CH B	FAIL 33	• • • • • •						
AMPLITUDE CAL 1, CH A RESIDUAL OFS CAL 1, CH I		••••••••						
	andon († 22. de septemperateur) na de ser de se De ser de ser		rake moniformit minimation following selecting with which will be also also	ter i bulun 1971a i burgit atter i Diriti kanta filmati i rugit diriti kanta i rugit diriti diriti diriti dirit		<u>CALINNEED MAATUUM MAAAMMAMATUUMIN MAAMMAMATUUMIN MAATUUMIN MAATUUMIN MAATUUMIN MAATUUMIN MAATUUMIN MAATUUMIN M</u> AA		
RESIDUAL OFS CAL 1, CH								
RESIDUAL OFS CAL 2, CH I RESIDUAL OFS CAL 2, CH /			╺╊╴╂╴┨╴┨╴┨┈┯┿┯┿					
AMPLITUDE CAL 2, CH B	FAIL 39	••••						
AMPLITUDE CAL 2, CH A	FAIL 40							
	FAIL 41							
RESIDUAL OFS CAL 3, CH E RESIDUAL OFS CAL 3, CH /								
RESIDUAL OFS CAL 5, CH 7 RESIDUAL OFS CAL 4, CH E								
RESIDUAL OFS CAL 4, CH /								
dc offset cal, ch a	FAIL 46	• • • • •		••••••••	• • • • • • •			
AMPLITUDE CAL 3, CH B	FAIL 47							
AMPLITUDE CAL 3, CH A		• • • • •						
PHASE CAL 1								
PHASE CAL 2	FAIL 50	• • • • •						
	1746.50		<u></u>					₄ _{┙┥╴┇┉} ╻╻╶╴╴╴╷╷╷╷╷╷╷╻╻╻╻╻

6-25

FAULT ISOLATION

Examples

You have completed steps 1 and 2 of the five step process - you have run the service self tests and compiled a list of all test failures. Here are several examples of how to process the information.

A. Service self test results: FAIL 47, 49, 50.

The first test that failed was test 47, Amplitude Cal 3, Ch B. Table 6-9 indicates that the switch controller and two-phase mode path of the RF switch board (A24) are the most likely suspect circuits. Remember that any of the circuits that are exercised in the test are suspects - A24 is simply the most likely suspect.

Now look at tests 49 and 50. Try to find correlations. Notice that the same circuits in the RF switch board are used in both of them. EVERY test that failed used the two suspect circuits. They must be defective. Go directly to board level repair.

35, 37, 39, 41, 43, 47, 49, 50.

The first test that failed was test 11. VCO Locked 1. Ch B. Table 6-9 indicates that the channel B VCO board (A41), VCO control board (A42), phase detector board (A43), fractional-N digital board (A44), and B 100kHz signal from the reference board (A50) are the most likely suspect circuits. Remember that any of the circuits that are exercised in the test are suspects - these are simply the most likely suspects.

Now look at the other tests that failed. Try to find correlations. Notice that test 13 used all of the suspect circuits. Test 27 does, too. All of the tests that failed use all of the suspect circuits. We cannot make the list of suspects any shorter by using Table 6-9.

Should we begin troubleshooting at the fractional-N circuits or the reference board? Which is really defective? Consult Table 6-14, Fault Isolation Tests, to determine which boards are working properly. Start with the board first in the table — the reference board (A50). If A50 is working correctly, then perform the test for the fractional-N boards.

After you find the defective board, proceed with board level repair.

The first test that failed was test 26, Output Offset, Ch A. Table 6-9 indicates that the channel A attenuator (A2), output amplifier (A3), preamplifier (A4), mixer (A5), and amplitude/offset calibration path of the calibrator (A36) are the most likely suspect circuits. Remember that any of the circuits that are exercised in the test are suspects - these are simply the most likely suspects.

B. Display reads: ERROR 174 BVCO. Service self test results: FAIL 11, 13, 27, 29, 31, 33,

C. Service self test results: FAIL 26, 28, 30, 42, 34, 36, 38, 40, 42, 44, 46, 48, 49, 50.

6-8 SELF TEST ERROR CODES

This sub-section outlines self test error codes. Table 6-9 lists the errors that occur when a user self test or a service self test fails (the user self tests are a subset of the service self tests). Always run the service self tests in the beginning of fault isolation since they isolate most instrument failures to a defective circuit. Table 6-10 lists the errors that occur when a continuously monitored parameter test fails. These tests provide information about operator errors as well as instrument failures. When a hardware failure message appears, run the service self tests to get detailed troubleshooting information.

Table 6-7 lists the steps required to run the self tests. Details of the self tests can be found in this section under the sub-sections entitled "User Self Tests," "Continuously Monitored Parameters," and "Service Self Tests." Table 6-8 lists the keystrokes required for local operation of the service self tests.

Self Tests	Action Required				
User Self Tests	Cycle power or push the blue SHIFT key followed by the SELECT key in the CALIBRATION block.				
Continuously Monitored Parameters	None.				
Service Self Tests	Push the blue SHIFT key, the % units key, and the 6 key, in sequence.				

Table 6-7. HP 3326A Self Tests

Toble	20	Sandra	Salf	Torte	Execution
IADIE	0-0.	Service	Sen	16212	EXECUTION

Кеу	Result
HIFT C dBV 6	Initiates service self tests.
Any key (except HIFT)	Restarts the tests after one has failed and the testing has stopped.
LOCAL	Repeats the most recently executed test.
БНІГТ	Stops self test execution.

What is Table 6-9? What do the symbols mean?

The vertical axis of Table 6-9 lists the 50 internal service self tests by failure code and test name, in the order that they are run. The horizontal axis lists the different circuits found in the HP 3326A, grouped into channel A and channel B circuits; reference, control, and calibration circuits; and untested areas. These circuits listed can be grouped into five categories:

- Entire PC boards, e.g., the channel A mixer board (A5). It is most useful to consider this board as serving one function.
- Functional sub-blocks on a PC board, e.g., the channel A level sub-block on the level/AM board. Since it is used only for the channel A amplitude tests, it is most useful to separate it from the channel B circuitry on the A22 board, and help quicken fault isolation between the channels.
- Analog switches or relays on a PC board, e.g., the channel B square switch on the A22 board. One of the self tests specifically exercises this switch. The table is most useful when this switch is separated from the rest of the circuitry.
- Signals generated on a PC board, e.g., the 8MHz PROC CLK signal from the reference board (A50). Instead of outlining the functional sub-blocks needed and running the risk of being too ambiguous, it is more useful to state the signal required. The schematic shows which sub-blocks are needed to produce the signal.
- Certain key signal paths on a PC board, e.g., the amplitude/offset calibration path on the calibrator board (A36). The calibrator board contains several different signal paths which use common circuitry in different ways. To give you a better understanding of how the circuit is being exercised in a given test, the board is divided into signal paths.

There are two symbols used on Table 6-9 — the \bullet and the X. When either of these symbols is entered on the table, it indicates that the self test exercises that particular circuit. To say that a circuit was "exercised" means that a circuit was "used" in the test. It could mean that the circuit was used to its limit and fully tested. Or it could mean that the circuit was used only to let the main signal pass through to another circuit.

When the symbol used on Table 6-9 is a 🗱 , it indicates that it is the FIRST time in the service self tests that the particular circuit is FULLY exercised. Notice that in some cases a particular circuit is highlighted several times, indicating that several distinct functions or portions of the circuit are tested at separate times.

Take the fractional-N decoder circuit (A36) as an example. In test 7, the instrument bus interface portion of the circuit is tested for the first time. Thus, it is highlighted. Then, test 9 exercises the ability of the circuit to write frequencies to the fractional-N IC for the first time. It is highlighted. Test 10 exercises the same circuitry, so it is given the \bigcirc symbol, indicating that the circuit is used and could be the cause of a failure, but it is NOT the first time in the service self tests that it was exercised.

The \bullet symbol indicates one of two things — either it is at least the SECOND time that the circuit is exercised in one particular manner, or the likelihood of the circuit causing a failure of the particular self test is very LOW. For example, the motherboard (A99) is needed for every test to run, but the likelihood of it causing a self test failure is very low.

How to Use Table 6-9

Using Table 6-9 is an easy, five step process (Figure 6-9).

- 1. Start the service self tests. Press: SHIFT BUS BUS 6
- 2. List all self test failures. In manual operation, press any key (except the blue BHIFT key) to resume testing after a failure has occurred. See Table 6-8.

Now look at the other tests that failed. Try to find correlations. Notice that test 28 uses all of the suspect circuits, and that several of these circuits are highlighted again, indicating that different functions of the circuits are tested. (Note that the A 20MHz signal from the reference board (A50) is highlighted also. It is probably not defective, however, since we are assuming that there is only one failure at a time. A 20MHz is not used in the first test that failed. This implies that it CANNOT be the defective circuit.) The rest of the tests that failed use all of the suspect circuits. The suspect circuit list remains as is.

Where should we begin troubleshooting? Which board is really defective? Consult Table 6-14, Fault Isolation Tests, to determine which boards are working properly. Start with the board first in the table — the mixer board (A5). If A5 is working correctly, then perform the test for the preamplifier board, and so on.

After you find the defective board, proceed with board level repair.

D. Service self test results: FAIL 33, 47.

The first test that failed was test 33, Amplitude Cal 1, Ch B. Table 6-9 indicates that the channel B modulator board (A16), the channel B level circuit on the level/AM board (A22), and the amplitude/offset calibration path on the calibrator board (P/O A36) are the most likely suspects. Remember that any of the circuits that are exercised in the test are suspects — these are simply the most likely suspects.

NOTE

This is the second time in Table 6-9 that A16 and the channel B level circuit on A22 have been highlighted, and the third time that the amplitude/offset calibration path on A36 has been highlighted. The first time the circuits were tested, they were checked for function only. The calibration tests check for the circuits meeting specification.

Now look at the other test that failed, Test 47. Try to find correlations. Test 47, Amplitude Cal 3, Ch B, exercises all of the suspect circuits. We cannot make the list of suspects shorter by using Table 6-9.

Where should we begin troubleshooting? Which board is really defective? By consulting Figure 6-10, Instrument Turn-on Hierarchy Flow Chart, we find that the channel B level circuit on the level/AM board (A22) is the highest in the turn-on hierarchy. The modulator depends on an input from A22. The calibrator board (P/O A36) depends on an input from the entire channel B chain, including the modulator and the level/AM boards. We should test A22, then A16, then A36.

Consult Table 6-14, Fault Isolation Tests. Notice that the table has no procedures for testing A22 or A36. It only has a procedure for testing the function of A16. It is not going to be easy to isolate this instrument failure. It involves a subtle performance problem.

Look at the format of the self tests. They test channel B first, then channel A. Notice that the channel B modulator board has a duplicate in channel A. **Try interchanging the two identical boards** (A6 and A16), and see if the subtle performance problem moves to channel A. If the failure follows the channel B board (A16), it is defective. Go to the board level repair sub-section.

If the failure stays in channel B (remember the channel A board is in channel B now), the problem is probably NOT with the modulator, but with A22 or A36. You must go to the board level repair sub-sections for these two boards to find the answer.

CAUTION

Two identical boards may be interchanged for troubleshooting, but must be returned to their original locations to avoid recalibration of the instrument.

Before interchanging boards, be sure that the correct voltages are being supplied to the board. If a board failure was caused by incorrect voltages powering the board, interchanging boards will only result in a failure of the second board.

6-9 USER SELF TESTS

The HP 3326A performs the user self tests when power is first applied to the instrument and when the blue SHIFT key is pressed prior to the SELECT key. First, the instrument displays the model number and the numbers of the installed options. For example, "3326A OP. 1 2" is displayed when both the oven reference and high voltage options are in place. Then, the first 14 of the 50 service self tests are attempted. See the "Service Self Tests" sub-section for complete test descriptions.

When one of the tests fails, an error code of the form "FAIL nn" appears on the display. See Table 6-9 for a list of the error codes and the probable boards that caused the failure. These error codes flash for only a few seconds, then the instrument tries to operate. Initiate the service self tests for a more rigorous instrument test.

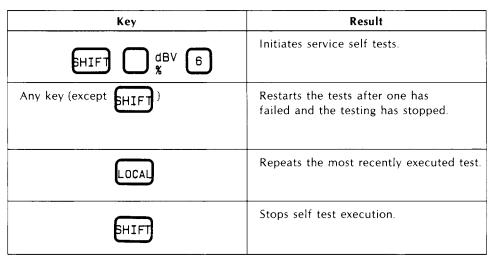
6-10 CONTINUOUSLY MONITORED PARAMETERS

Several hardware fault conditions and operator programming parameters are continuously monitored while the HP 3326A is operating. Error messages are displayed in the form "ERROR nnn, XXXX", where "nnn" represents a numeric display and "XXXX" represents a four character display. The tests are listed by these error messages in Table 6-10.

It is recommended that the service self tests be run before initiating any board level repair since these tests give you the most detailed troubleshooting information. See "Service Self Tests" sub-section.

Table 6-10. Error Codes for Continuously Monitored Parameters

ERROR#	FRONT PANEL ALPHA	
10	SNTX	Illegal HP-IB code syntax
11	RMOT	Front panel keypress in remote
12	LOCK	LOCAL key pressed in local lockout
20-29	RNGE	Entered parameter out of range
30	B FR	Channel B cannot track
40.40		Channel A in Two-Tone/HV on
40-49		Cannot interrogate or display parameter
50	CNVT	Units conversion rounded to zero
60-69	SUFX	Illegal units terminator
70		Entry increment value or terminator error
80 80	AMPL MODL	Incompatible with amplitude
86 97	MODE	Incompatible with modulation
87	FREQ	Incompatible with mode
88	CMBR	Incompatible with frequency
89	SWFR	Incompatible with combiner Start and stop frequencies equal
90 94	DUTY	Pulse duty cycle too narrow
94	SWFR	Illegal sweep frequencies for HV option
95	SWFR	Illegal sweep frequency for internal modulation
100	RATE	llegal sweep rate
110-114	DSWP	Illegal discrete sweep due to mode or lack of elements
115	DSHV	Illegal discrete sweep frequency with HV option
116	DSML	Illegal discrete sweep frequency with modulation
117	DSMD	Mode changed after discrete frequency sweep elements entered
120	POF	Cannot clear Channel A Phase Offset
130-139	нv	Cannot program High Voltage option
140	CSUM	Checksum error indicates bad instrument state
150		Requested state is incompatible
160	CRPT	Corrupted power-on state is preset
170	A OL	Channel A overloaded
171	B OL	Channel B overloaded
172	SYOL	Sync output overloaded
173	AVCO	Channel A VCO unlocked
174	BVCO	Channel B VCO unlocked
180	XREF	External Reference unlocked
190	MCAL	Internal AM or PM cal unsuccessful
191	PCAL	Phase cal unsuccessful
192	ACAL	Amplitude cal unsuccessful
193	OCAL	DC Offset cal unsuccessful
194	OCAL	Residual Offset cal unsuccessful


6-11 SERVICE SELF TESTS

The service self tests in the HP 3326A are designed to provide you with very thorough and flexible internal testing capabilities. The service self tests, in conjunction with the fault isolation tests, isolate most faults to a defective board very quickly. Use this powerful serviceability feature EVERY time an instrument needs a repair. See the introduction to the "Self Test Error Codes" sub-section for examples.

A detailed description of each test is included in this sub-section. Error messages are given in Table 6-9.

Local Operation

The self tests are initiated by pressing the blue SHIFT key, the % unit key, and the 6 key, in sequence. When a test passes, "PASS nn" is displayed. When an instrument fails a test, an error message of the form "FAIL nn" ("nn" corresponds to the number of the service self test which failed) appears on the display. See Table 6-9, Service Self Tests Error Codes. Any error code stops the test sequence. Pressing any key (except the blue SHIFT key) causes the testing to resume on the next test in the sequence. The most recently executed self test repeats when the LOCAL key is pressed. Pressing the blue SHIFT key causes the instrument to stop executing the self test and return to normal operation. This information is summarized in Figure 6-11.

Remote Operation

The HP 3326A can run the service self tests over the HP-IB. Table 6-12 lists the commands required. Connect the HP 3326A to a controller and a printer. When the appropriate command is sent over the HP-IB, the instrument performs all of the self tests and displays the results in the form of a character string of Ps and Fs. The result is a string of 14 characters for the user self tests and 50 characters for the service self tests — one character for each test performed, in numeric order. A "P" indicates the test passed, an "F" indicates the test failed.

Table	6-12.	Remote	Self	Test	Operation
Table	012.	Achiote	JCII	reac	operation

Self Tests	HP-IB Command		
User Self Tests	TST		
Service Self Tests	XTST		

The Basics

Certain circuits need to be functioning for the service self tests to be able to run. These include:

- The 8MHz PROC CLK signal produced by the reference board (A50).
- The microprocessor, address decoding, memory, and keyboard interface functional subblocks on the controller board (A61). (Note that the non-maskable interrupt line (NMI) is disabled throughout the self tests.)

- The keyboard display row drive and keyboard display column drive sub-blocks on the keyboard (A72).
- The +5V, +15V, -15V, and +5VFP supplies on the power supply board (A70).

When these circuits are functioning, the self test can run. The date of the software revision installed in the instrument appears on the display, and the self tests of the instrument begin.

NOTE

Each self test description includes a list of the circuits **specifically** exercised by the test. The list corresponds to those circuits marked with a **x** on Table 6-9. It does NOT include circuits exercised by a test earlier in the self test sequence. This information may be found by consulting Table 6-9, Service Self Tests Error Codes.

Self Test 01, LED

This test turns on all LED segments, shifts a known pattern through the front panel, and checks for errors.

All of the basic circuits needed for the self tests to operate (see "The Basics" above) are exercised, in addition to the keyboard decode sub-block on the keyboard (A62).

Self Test 02, Stuck Key

This test scans the keyboard (A62) to see if any keys are pressed. Any key which appears to be pressed is considered an error.

This test exercises the keyboard decode, keyboard display row drive, and keyboard display column drive sub-blocks on the keyboard, and the microprocessor, address decoding, memory, and keyboard interface sub-blocks on the controller (A61).

Self Test 03, NMOS RAM

This test stores ones and zeros in the NMOS RAM (memory locations Hex 800 to Hex FFF), and reads this data back from the memory locations. A failure indicates the data read back were incorrect. After the test, the previous RAM contents are restored.

This test exercises A61U303, the microprocessor, address decoding, memory, and keyboard interface sub-blocks on the controller (A61).

Self Test 04, CMOS RAM

This test stores ones and zeros in the CMOS RAM (memory locations Hex 1000 to Hex 17FF), and reads this data back from the memory locations. A failure indicates the data read back were incorrect. After the test, the previous RAM contents are restored.

This test exercises A61U302, the microprocessor, address decoding, memory, and keyboard interface sub-blocks on the controller (A61).

Self Test 05, ROM 1

This test performs a checksum test of ROM #1 (memory locations Hex 1800 to Hex 7FFF), using the preset conditions. A failure indicates the checksums that were calculated were incorrect. After the test, the previous ROM contents are restored.

This test exercises A61U305, the microprocessor, address decoding, memory, and keyboard interface sub-blocks on the controller (A61).

Self Test 06, ROM 2

This test performs a checksum test of ROM #2 (memory locations Hex 8000 to Hex FFFF), using the preset conditions. A failure indicates the checksums that were calculated were incorrect. After the test, the previous ROM contents are restored.

This test exercises A61U306, the microprocessor, address decoding, memory, and keyboard interface sub-blocks on the controller (A61).

Self Test 07, IBUS

This test uses the instrument bus (IBUS0-7) to write various data to and to read the data from a register on the calibrator board (A36). The test fails if the data do not match.

This test specifically exercises the instrument bus sub-block on the controller (A61) and the calibrator read/write logic sub-block on the calibrator/fractional-N decoder board (A36). When the test fails, these circuits could be at fault. The test could also fail, however, if one of the other boards on the instrument bus is pulling down the bus. Hence, the switch controller sub-block on the RF switch board (A24), the A + B level control sub-block on the level/AM board (A22), the read data sub-block on the offset board (A21), the channel A fractional-N digital board (A34), and the channel B fractional-N digital board (A44) are highlighted on Table 6-9.

If this test passes, the instrument bus interface between the controller board and the calibrator board is working properly. The other boards that are highlighted above are NOT pulling down the instrument bus. (No other statement can be made about the functionality of these boards. The individual instrument bus interfaces may still be defective.)

Self Test 08, A2 Positioning

This test checks to see if the channel A attenuator (A2) is in the channel A card nest by using a flag signal (A2FLAG). (Recall that A2 and A12 may be interchanged for troubleshooting, but must be returned to their original slots for normal operation.) A2FLAG travels to the channel B fractional-N digital board (A44), goes through some buffering circuitry, and is sent to the controller via the instrument bus. A failure of this test either indicates that the channel B attenuator board (A12) is in the channel A card nest or that there is no board in the channel A card nest or the latch on A44 is defective.

Self Test 09, FracN Digital, Ch B

This test writes data to the channel B fractional-N IC (A44U18), and reads back the data. A failure indicates the returned data are not correct.

This test exercises the channel B VCO board (A41), the channel B fractional-N digital board (A44), and the fractional-N decoder board (P/O A36). The decoder board needs the 8MHz FRACN CLK signal from the reference board (A50).

If this test passes, the input/output path from A36 to the fractional-N IC is functional. The VCO signal from A41 is present on A44. A41 is generating a signal in the 40 to 66 MHz range, but may not be exactly correct. The instrument bus interface circuit on A44 is working properly.

Self Test 10, FracN Digital, Ch A

This test writes data to the channel A fractional-N IC (A34U18), and reads back the data. A failure indicates the returned data are not correct.

This test exercises the channel A VCO board (A31) and the channel A fractional-N digital board (A34).

If this test passes, the input/output path from A36 to the fractional-N IC is functional. The VCO signal from A31 is present on A34. A31 is generating a signal in the 40 to 66 MHz range, but may not be exactly correct. The instrument bus interface circuit on A34 is working properly.

Self Test 11, VCO Locked 1, Ch B

This test exercises the low frequency range of the channel B local oscillator. The VCO is set to 30 MHz (outside the allowed frequency range), and an unlocked condition is expected. Then, the VCO is set to 39.8 MHz (within the allowed frequency range), and a locked condition is expected. (See the VCO UNLOCKED LED on A42.) A failure is indicated when these conditions are not met (i.e., the VCO unlocked detector is working incorrectly or the fractional-N loop is unlocked).

This test exercises A41, A42, A43, and A44. The B 100kHz signal from the reference board (A50) is also required.

If this test passes, the VCO control voltage (B VCO CONT) is changing correctly. The VCO unlocked detector (B VCOF) is working correctly.

Self Test 12, VCO Locked 1, Ch A

This test exercises the low frequency range of the channel A local oscillator. The VCO is set to 30 MHz (outside the allowed frequency range), and an unlocked condition is expected. Then, the VCO is set to 40 MHz (within the allowed frequency range), and a locked condition is expected. (See the VCO UNLOCKED LED on A32.) A failure is indicated when these conditions are not met (i.e., the VCO unlocked detector is working incorrectly or the fractional-N loop is unlocked).

This test exercises A31, A32, A33, and A34. The A 100kHz signal from the reference board (A50) is also required.

If this test passes, the VCO control voltage (A VCO CONT) is changing correctly. The VCO unlocked detector (A VCOF) is working correctly.

Self Test 13, VCO Locked 2, Ch B

This test exercises the high frequency range of the channel B local oscillator. The VCO is set to 90 MHz (outside the allowed frequency range), and an unlocked condition is expected. Then, the VCO is set to 66 MHz (within the allowed frequency range), and a locked condition is expected. (See the VCO UNLOCKED LED on A42.) A failure is indicated when these conditions are not met (i.e., the VCO unlocked detector is working incorrectly or the fractional-N loop is unlocked).

This test exercises A41, A42, A43, and A44.

If this test passes, the VCO control voltage (B VCO CONT) is changing correctly. The VCO unlocked detector (B VCOF) is working correctly.

Self Test 14, VCO Locked 2, Ch A

This test exercises the high frequency range of the channel A local oscillator. The VCO is set to 90 MHz (outside the allowed frequency range), and an unlocked condition is expected. Then, the VCO is set to 66 MHz (within the allowed frequency range), and a locked condition is expected. (See the VCO UNLOCKED LED on A32.) A failure is indicated when these conditions are not met (i.e., the VCO unlocked detector is working incorrectly or the fractional-N loop is unlocked).

This test exercises A31, A32, A33, and A34.

If this test passes, the VCO control voltage (A VCO CONT) is changing correctly. The VCO unlocked detector (A VCOF) is working correctly.

Self Test 15, Sweep, Ch B

This test exercises the channel B fractional-N local oscillator by producing two short sweeps. Both sweeps start at 0 Hz, sweep at a rate of 1 MHz per 100 ms, and have a marker frequency of 1 MHz. In the first sweep, the local oscillator is configured to sweep past the marker frequency; in the second sweep, the local oscillator is configured to stop at the marker frequency. Six tests are made — all must pass for the self test to pass. First, the sweep limit flag for channel B (B SWEEP LIMIT) is checked 50 ms after the start of each sweep to make sure it is high. Second, B SWEEP LIMIT is checked 150 ms after the start of each sweeps are checked to make sure that they are, respectively, not equal to 1 MHz and equal to 1 MHz.

This test exercises the channel B fractional-N digital board (A44, primarily the sweep and sweep limit circuits, B SWPL, and B SWEEP LIMIT), the fractional-N decoder board (P/O A36), and the sweep limit latches on the controller board (A61, B SWEEP LIMIT). The channel B phase detector board (A43) is NOT needed. (The channel B VCO board (A41) is needed, but performs the same functions that were exercised in former tests.)

Self Test 16, Sweep, Ch A

This test exercises the channel A fractional-N local oscillator by producing two short sweeps. Both sweeps start at 0 Hz, sweep at a rate of 1 MHz per 100 ms, and have a marker frequency of 1 MHz. In the first sweep, the local oscillator is configured to sweep past the marker frequency; in the second sweep, the local oscillator is configured to stop at the marker frequency. Six tests are <u>made — all must</u> pass for the self test to pass. First, the sweep limit flag for channel A (A SWEEP LIMIT) is checked 50 ms after the start of each sweep to make sure it is high. Second, A SWEEP LIMIT is checked 150 ms after the start of each sweep to make sure it is low. Third, the terminal frequencies 150 ms after the and equal to 1 MHz.

This test exercises the channel A fractional-N digital board (A34, primarily the sweep and sweep limit circuits, A <u>SWPL</u>, and A <u>SWEEP LIMIT</u>), and the sweep limit latches on the controller board (A61, A <u>SWEEP LIMIT</u>). The channel A phase detector board (A33) is NOT needed. (The channel A VCO board (A31) is needed, but performs the same functions that were exercised in former tests.)

Self Test 17, Offset, Ch B

This test sends a set of incrementing values to the channel B offset digital to analog converter (DAC) on the offset board (A21). (The channel A DAC is set to the middle of the scale, corresponding to 0 V.) The calibrator board (P/O A36) measures the result at the point OFFTEST on A21. To pass, the output voltage must be an increasing function of the channel B DAC setting.

This test exercises the offset board's control circuits (read data and strobe control subblocks) and channel B offset DAC (channel B control and channel B offset sub-blocks), and the calibrator board's voltage reference and calibrator read/write logic sub-blocks, and LEVTEST/OFFTEST path. (The calibrator board needs the A DLBC signal from the channel A fractional-N digital board (A34). It is used as a clock for the analog to digital converter. Hence, the A34 and A31 boards are marked on Table 6-9, but not highlighted.)

Self Test 18, Offset, Ch A

This test sends a set of incrementing values to the channel A offset digital to analog converter (DAC) on the offset board (A21). (The channel B DAC is set to the middle of the scale, corresponding to 0 V.) The calibrator board (P/O A36) measures the result at the point OFFTEST on A21. To pass, the output voltage must be an increasing function of the channel A DAC setting.

This test exercises the offset board's channel A offset DAC (channel A control and channel A offset sub-blocks).

Self Test 19, Offset Switch, Ch B

This test repeats self test 17 (offset, channel B) while the channel B high voltage option is activated. To pass, there must be no activity at the point OFFTEST on the offset board (A21). (Recall that the offset output is sent to the channel B high voltage amplifier board (A11), instead of the channel B output amplifier (A13), when the high voltage option is activated, and does not pass through the point OFFTEST.)

This test exercises the channel B offset switch on A21 (A21K21). A11 is NOT needed for this test to pass.

Self Test 20, Offset Switch, Ch A

This test repeats self test 18 (offset, channel A) while the channel A high voltage option is activated. To pass, there must be no activity at the point OFFTEST on the offset board (A21). (Recall that the offset output is sent to the channel A high voltage amplifier board (A1), instead of the channel A output amplifier (A3), when the high voltage option is activated, and does not pass through the point OFFTEST).

This test exercises the channel A offset switch on A21 (A21K1). A1 is NOT needed for this test to pass.

Self Test 21, Amplitude, Ch B

This test sends a set of incrementing values to the channel B level digital to analog converter (DAC) on the level/AM board (A22). (The channel A DAC is set to 20 dB below its highest value.) The calibrator board (P/O A36) measures the result at the point LEVTEST on A22. To pass, the output voltage must be an increasing function of the channel B DAC setting.

This test exercises the level/AM board's A + B level control and channel B level subblocks, and the calibrator board's LEVTEST/OFFTEST path. The channel A and channel B square switches on A22 are used to send the B SINLEV signal to the channel B modulator board (A16), instead of sending the B SQLEV signal to the square board (A23). See the overall block diagram.

Self Test 22, Amplitude, Ch A

This test sends a set of incrementing values to the channel A level digital to analog converter (DAC) on the level/AM board (A22). (The channel B DAC is set to 20 dB below its highest value.) The calibrator board (P/O A36) measures the result at the point LEVTEST on A22. To pass, the output voltage must be an increasing function of the channel B DAC setting.

This test exercises the level/AM board's A + B level control and channel A level sub-blocks.

Self Test 23, Square Switch, Ch B

This test repeats self test 21 (amplitude, channel B) while the square function is activated. To pass, there must be no activity at the point LEVTEST on the level/AM board (A22). (Recall that the level output B SQLEV is sent to the square board (A23), instead of the channel B modulator (A16), when the square function is activated, and does not pass through the point LEVTEST.)

This test exercises the channel B square switch on A22 (A22U9). A23 is NOT needed for this test to pass.

Self Test 24, Square Switch, Ch A

This test repeats self test 22 (amplitude, channel A) while the square function is activated. To pass, there must be no activity at the point LEVTEST on the level/AM board (A22). (Recall that the level output A SQLEV is sent to the square board (A23), instead of the channel A modulator (A6), when the square function is activated, and does not pass through the point LEVTEST.)

This test exercises the channel A square switch on A22 (A22U5). A23 is NOT needed for this test to pass.

Self Test 25, Output Offset, Ch B

This test repeats self test 17 (offset, channel B), but changes the point at which the calibrator (P/O A36) measures the result from OFFTEST on the offset board (A21) to the output of the channel B attenuator board (A12). In this way, the output amplifier sub-block of A13 and the channel B attenuator are tested. Only the dc signal path is needed (not the ac signal path) for the test to pass. To pass, the output voltage must be an increasing function of the channel B offset DAC setting.

This test exercises the channel B attenuator and the channel B output amplifier. Since the result is measured at the output of channel B, the normal amplitude/offset calibration path (instead of the LEVTEST/OFFTEST path) is used on the calibrator board.

Self Test 26, Output Offset, Ch A

This test repeats self test 18 (offset, channel A), but changes the point at which the calibrator (P/O A36) measures the result from OFFTEST on the offset board (A21) to the output of the channel A attenuator board (A2). In this way, the output amplifier sub-block of A3 and the channel A attenuator are tested. Only the dc signal path is needed (not the ac signal path) for the test to pass. To pass, the output voltage must be an increasing function of the channel A offset DAC setting.

This test exercises the channel A attenuator and the channel A output amplifier. Since the result is measured at the output of channel A, the normal amplitude/offset calibration path (instead of the LEVTEST/OFFTEST path) is used on the calibrator board.

Self Test 27, Output Amplitude 1, Ch B

This test repeats self test 21 (amplitude, channel B), but changes the point at which the calibrator (P/O A36) measures the result from LEVTEST on the level/AM board (A22) to the output of the channel B attenuator board (A12). In this way, the channel B output chain is tested. The entire channel B ac signal path is needed to the test to run. The instrument is in the two-channel mode. To pass, the output voltage must be an increasing function of the channel B level DAC setting.

This test exercises the signal paths of the channel B VCO \div 2 board (A45), modulator (A16), mixer (A15), preamplifier (A14), and output amplifier (A13). Since the instrument is in the two-channel mode, the B 20MHz signal from the reference board (A50) and the switch controller sub-block and two-channel mode path of the RF switch is exercised. (Recall the signal path of the channel B attenuator was tested in self test 25, and the rest of the fractional-N circuits were tested in self tests 9-16.)

Self Test 28, Output Amplitude 1, Ch A

This test repeats self test 22 (amplitude, channel A), but changes the point at which the calibrator (P/O A36) measures the result from LEVTEST on the level/AM board (A22) to the output of the channel A attenuator board (A2). In this way, the channel A output chain is tested. The entire channel A ac signal path is needed for the test to run. The instrument is in the two-channel mode. To pass, the output voltage must be an increasing function of the channel A level DAC setting.

This test exercises the signal paths of the channel A VCO \div 2 board (A35), modulator (A6), mixer (A5), preamplifier (A4), and output amplifier (A3). Since the instrument is in the two-channel mode, the A 20MHz signal from the reference board (A50) is needed. (Recall the signal path of the channel A attenuator was tested in self test 26, and the rest of the fractional-N circuits were tested in self tests 9-16.)

Self Test 29, Output Amplitude 2, Ch B

This test repeats self test 27 (output amplitude 1, channel B) while the square function is activated. To pass, the output voltage must be an increasing function of the channel B level DAC setting.

This test exercises the channel B sin/sq mode relay on the preamplifier board (A14), the channel B square switch on the level/AM board (A22), and the channel B square path on the square board (A23). The voltage reference sub-block on the calibrator board (P/O A36) is exercised also. The square board is very sensitive to any errors in the signal produced by this circuit (V REF).

Self Test 30, Output Amplitude 2, Ch A

This test repeats self test 28 (output amplitude 1, channel A) while the square function is activated. To pass, the output voltage must be an increasing function of the channel A level DAC setting.

This test exercises the channel A sin/sq mode relay on the preamplifier board (A4), the channel A square switch on the level/AM board (A22), and the channel A square path on the square board (A23).

Self Test 31, External AM, Ch B

This test activates external amplitude modulation in channel B, and checks for the result at the output of the channel B attenuator (A12). No input signal is sent to the modulation circuit. This causes a 50% reduction in amplitude. The test passes when the amplitude is reduced by one-third or more of its original value. (Recall that in normal operation, an external modulating signal is input through the rear panel connector. This test fails when there is a rear panel input present.)

This test exercises the channel B amplitude modulation circuit on the level/AM board (A22).

Self Test 32, External AM, Ch A

This test activates external amplitude modulation in channel A, and checks for the result at the output of the channel A attenuator (A2). No input signal is sent to the modulation circuit. This causes a 50% reduction in amplitude. The test passes when the amplitude is reduced by one-third or more of its original value. (Recall that in normal operation, an external modulating signal is input through the rear panel connector. This test fails when there is a rear panel input present.)

This test exercises the channel A amplitude modulation circuit on the level/AM board (A22).

Self Test 33, Amplitude Cal 1, Ch B

This test performs an amplitude calibration of channel B in the two-channel mode, with the sine function activated. A failure indicates that either (1) the amplitude cannot be calibrated to within specification or (2) the software calibration correction factors that are computed during the calibration routine are out of range.

Amplitude calibration of a specific channel requires that all of that channel's circuitry and the common control circuitry be working to specification. Failures of this test would be primarily due to a subtle amplitude error in the channel B modulator (A16), the channel B level sub-block on the level/AM board (A22), or the amplitude/offset calibration path of the calibrator (P/O A36).

Self Test 34, Amplitude Cal 1, Ch A

This test performs an amplitude calibration of channel A in the two-channel mode, with the sine function activated. A failure indicates that either (1) the amplitude cannot be calibrated to within specification or (2) the software calibration correction factors that are computed during the calibration routine are out of range.

Amplitude calibration of a specific channel requires that all of that channel's circuitry and the common control circuitry be working to specification. Failures of this test would be primarily due to a subtle amplitude error in the channel A modulator (A6), the channel A level sub-block on the level/AM board (A22), or the amplitude/offset calibration path of the calibrator (P/O A36).

Self Test 35, Residual Ofs Cal 1, Ch B

This test performs a residual offset calibration of channel B in the two-channel mode, with the sine function activated, and the pre-10 dB attenuator pad on A13 deactivated. A residual offset calibration programs 0 V dc offset, and adjusts the instrument accordingly. It corrects for any offset on the ac signal. A failure indicates that either (1) the offset cannot be calibrated to within specification or (2) the software calibration correction factors that are computed during the calibration routine are out of range.

Offset calibration of a specific channel requires that all of that channel's circuitry and the common control circuitry be working to specification. Failures of this test would be primarily due to a subtle offset error in the channel B mixer (A15) or the channel B offset sub-block on the offset board (A21).

Self Test 36, Residual Ofs Cal 1, Ch A

This test performs a residual offset calibration of channel A in the two-channel mode, with the sine function activated, and the pre-10 dB attenuator pad on A3 deactivated. A residual offset calibration programs 0 V dc offset, and adjusts the instrument accordingly. It corrects for any offset on the ac signal. A failure indicates that either (1) the offset cannot be calibrated to within specification or (2) the software calibration correction factors that are computed during the calibration routine are out of range.

Offset calibration of a specific channel requires that all of that channel's circuitry and the common control circuitry be working to specification. Failures of this test would be primarily due to a subtle offset error in the channel A mixer (A5) or the channel A offset sub-block on the offset board (A21).

Self Test 37, Residual Ofs Cal 2, Ch B

This test performs a residual offset calibration of channel B in the two-channel mode, with the sine function activated, and the pre-10 dB attenuator pad on A13 activated. A residual offset calibration programs 0 V dc offset, and adjusts the instrument accordingly. It corrects for any offset on the ac signal. A failure indicates that either (1) the offset cannot be calibrated to within specification or (2) the software calibration correction factors that are computed during the calibration routine are out of range.

Offset calibration of a specific channel requires that all of that channel's circuitry and the common control circuitry be working to specification. Failures of this test would be primarily due to a subtle offset error in the channel B mixer (A15) and/or the channel B offset sub-block on the offset board (A21), which were functionally tested in self test 45, or a hard failure of the pre-10 dB attenuator pad and driver on the channel B output amplifier (A13).

Self Test 38, Residual Ofs Cal 2, Ch A

This test performs a residual offset calibration of channel A in the two-channel mode, with the sine function activated, and the pre-10 dB attenuator pad on A3 activated. A residual offset calibration programs 0 V dc offset, and adjusts the instrument accordingly. It corrects for any offset on the ac signal. A failure indicates that either (1) the offset cannot be calibrated to within specification or (2) the software calibration correction factors that are computed during the calibration routine are out of range.

Offset calibration of a specific channel requires that all of that channel's circuitry and the common control circuitry be working to specification. Failures of this test would be primarily due to a subtle offset error in the channel A mixer (A5) and/or the channel A offset sub-block on the offset board (A21), which were functionally tested in self test 46, or a hard failure of the pre-10 dB attenuator pad and driver on the channel A output amplifier (A3).

Self Test 39, Amplitude Cal 2, Ch B

This test performs an amplitude calibration of channel B in the two-channel mode, with the square function activated. A failure indicates that either (1) the amplitude cannot be calibrated to within specification or (2) the software calibration correction factors that are computed during the calibration routine are out of range.

Amplitude calibration of a specific channel requires that all of that channel's circuitry and the common control circuitry be working to specification. Failures of this test would be primarily due to a subtle amplitude error in the channel B square path on the square board (A23).

Self Test 40, Amplitude Cal 2, Ch A

This test performs an amplitude calibration of channel A in the two-channel mode, with the square function activated. A failure indicates that either (1) the amplitude cannot be calibrated to within specification or (2) the software calibration correction factors that are computed during the calibration routine are out of range.

Amplitude calibration of a specific channel requires that all of that channel's circuitry and the common control circuitry be working to specification. Failures of this test would be primarily due to a subtle amplitude error in the channel A square path on the square board (A23).

Self Test 41, Residual Ofs Cal 3, Ch B

This test performs a residual offset calibration of channel B in the two-channel mode, with the square function activated, and the pre-10 dB attenuator pad on A13 deactivated. A residual offset calibration programs 0 V dc offset, and adjusts the instrument accordingly. It corrects for any offset on the ac signal. A failure indicates that either (1) the offset cannot be calibrated to within specification or (2) the software calibration correction factors that are computed during the calibration routine are out of range.

Offset calibration of a specific channel requires that all of that channel's circuitry and the common control circuitry be working to specification. Failures of this test would be primarily due to a subtle offset error in the channel B square path on the square board (A23).

Self Test 42, Residual Ofs Cal 3, Ch A

This test performs a residual offset calibration of channel A in the two-channel mode, with the square function activated, and the pre-10 dB attenuator pad on A3 deactivated. A residual offset calibration programs 0 V dc offset, and adjusts the instrument accordingly. It corrects for any offset on the ac signal. A failure indicates that either (1) the offset cannot be calibrated to within specification or (2) the software calibration correction factors that are computed during the calibration routine are out of range.

Offset calibration of a specific channel requires that all of that channel's circuitry and the common control circuitry be working to specification. Failures of this test would be primarily due to a subtle offset error in the channel A square path on the square board (A23).

Self Test 43, Residual Ofs Cal 4, Ch B

This test performs a residual offset calibration of channel B in the two-channel mode, with the square function activated, and the pre-10 dB attenuator pad on A13 activated. A residual offset calibration programs 0 V dc offset, and adjusts the instrument accordingly. It corrects for any offset on the ac signal. A failure indicates that either (1) the offset cannot be calibrated to within specification or (2) the software calibration correction factors that are computed during the calibration routine are out of range.

Offset calibration of a specific channel requires that all of that channel's circuitry and the common control circuitry be working to specification. All of the circuits exercised in this test have been exercised in above tests. This test provides no new information.

Self Test 44, Residual Ofs Cal 4, Ch A

This test performs a residual offset calibration of channel A in the two-channel mode, with the square function activated, and the pre-10 dB attenuator pad on A3 activated. A residual offset calibration programs 0 V dc offset, and adjusts the instrument accordingly. It corrects for any offset on the ac signal. A failure indicates that either (1) the offset cannot be calibrated to within specification or (2) the software calibration correction factors that are computed during the calibration routine are out of range.

Offset calibration of a specific channel requires that all of that channel's circuitry and the common control circuitry be working to specification. All of the circuits exercised in this test have been exercised in above tests. This test provides no new information.

Self Test 45, DC Offset Cal, Ch B

This test performs a dc offset calibration of channel B in the two-channel mode, with the sine function activated. A dc offset calibration programs a non-zero volt dc offset, and measures the result. It corrects for any dc offset error from the offset DAC on A21. A failure indicates that either (1) the offset cannot be calibrated to within specification or (2) the software calibration correction factors that are computed during the calibration routine are out of range.

Offset calibration of a specific channel requires that all of that channel's circuitry and the common control circuitry be working to specification. Failures of this test would be primarily due to a subtle offset error in the channel B offset sub-block on the offset board (A21). The sub-block is exercised in different ways than in any above tests.

Self Test 46, DC Offset Cal, Ch A

This test performs a dc offset calibration of channel A in the two-channel mode, with the sine function activated. A dc offset calibration programs a non-zero volt dc offset, and measures the result. It corrects for any dc offset error from the offset DAC on A21. A failure indicates that either (1) the offset cannot be calibrated to within specification or (2) the software calibration correction factors that are computed during the calibration routine are out of range.

Offset calibration of a specific channel requires that all of that channel's circuitry and the common control circuitry be working to specification. Failures of this test would be primarily due to a subtle offset error in the channel A offset sub-block on the offset board (A21). The sub-block is exercised in different ways than in any above tests.

Self Test 47, Amplitude Cal 3, Ch B

This test performs an amplitude calibration of channel B in the two-tone mode, with the sine function activated. A failure indicates that either (1) the amplitude cannot be calibrated to within specification or (2) the software calibration correction factors that are computed during the calibration routine are out of range.

This test exercises the switch controller and two-phase mode path of the RF switch (A24). Recall that the RF switch has only two possible configurations — the two-channel mode path and the two-phase mode path. The two-phase mode path is used in the two-phase, two-tone, and pulse modes.

Amplitude calibration of a specific channel requires that all of that channel's circuitry and the common control circuitry be working to specification. Failures of this test could also be due to a subtle amplitude error in the two-phase mode path on the RF switch board (A24).

Self Test 48, Amplitude Cal 3, Ch A

This test performs an amplitude calibration of channel A in the two-tone mode, with the sine function activated. A failure indicates that either (1) the amplitude cannot be calibrated to within specification or (2) the software calibration correction factors that are computed during the calibration routine are out of range.

Amplitude calibration of a specific channel requires that all of that channel's circuitry and the common control circuitry be working to specification. Failures of this test would be primarily due to a subtle amplitude error in the two-phase mode path on the RF switch board (A24), which was exercised in self test 47. This test provides no new information.

Self Test 49, Phase Cal 1

This test performs a phase calibration at 10 kHz in the two-phase mode, with the sine function activated. A failure indicates that either (1) the phase calibration routine cannot be completed (that is, the comparator loop cannot be broken) or (2) the software calibration correction factors that are computed during the calibration routine are out of range.

Phase calibration of the instrument requires that both of the channels and the common control circuitry are working to specification. Very accurate and clean frequencies are needed. Failures of this test would be primarily due to a subtle frequency error in one of the fractional-N oscillators (A34 or A44, in particular), a subtle spurious problem in one of the oscillators (for example, API spurs on A33 or A43), or a problem in the phase calibration path on the calibrator board (A36).

NOTE

Phase calibration is very sensitive to bad ground contacts. When the HP 3326A has poor phase calibration accuracy, check to make sure that (1) all of the top cover screws are firmly in place, (2) all of the motherboard screws are firmly in place, and (3) all of the cable connections are tight (particularly the ground contacts).

Self Test 50, Phase Cal 2

This test performs a phase calibration at 13 MHz in the two-phase mode, with the sine function activated. A failure indicates that either (1) the phase calibration routine cannot be completed (that is, the comparator loop cannot be broken) or (2) the software calibration correction factors that are computed during the calibration routine are out of range.

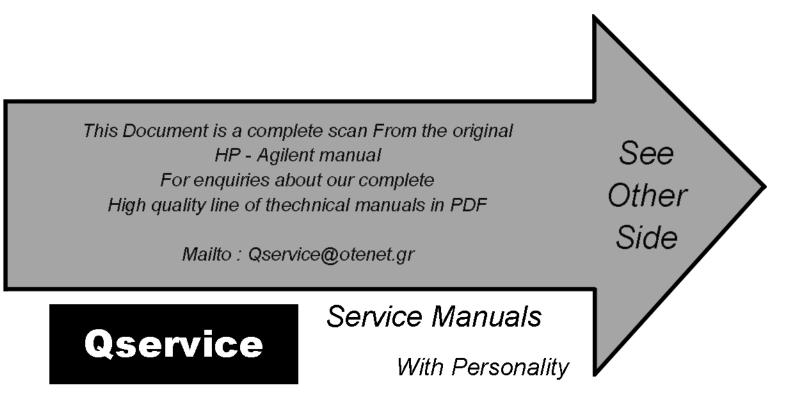
Phase calibration of the instrument requires that both of the channels and the common control circuitry are working to specification. Very accurate and clean frequencies are needed. Failures of this test would be primarily due to a subtle frequency error in one of the fractional-N oscillators (A34 or A44, in particular), a subtle spurious problem in one of the oscillators (for example, API spurs on A33 or A43), or a problem in the phase calibration path on the calibrator board (A36).

NOTE

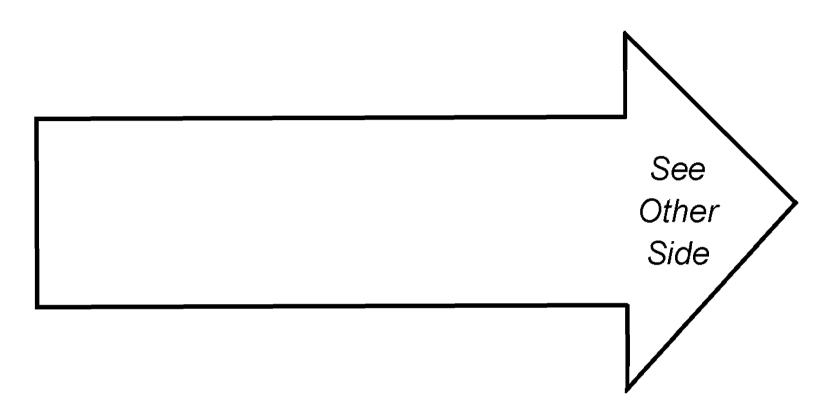
Phase calibration is very sensitive to bad ground contacts. When the HP 3326A has poor phase calibration accuracy, check to make sure that (1) all of the top cover screws are firmly in place, (2) all of the motherboard screws are firmly in place, and (3) all of the cable connections are tight (particularly the ground contacts).

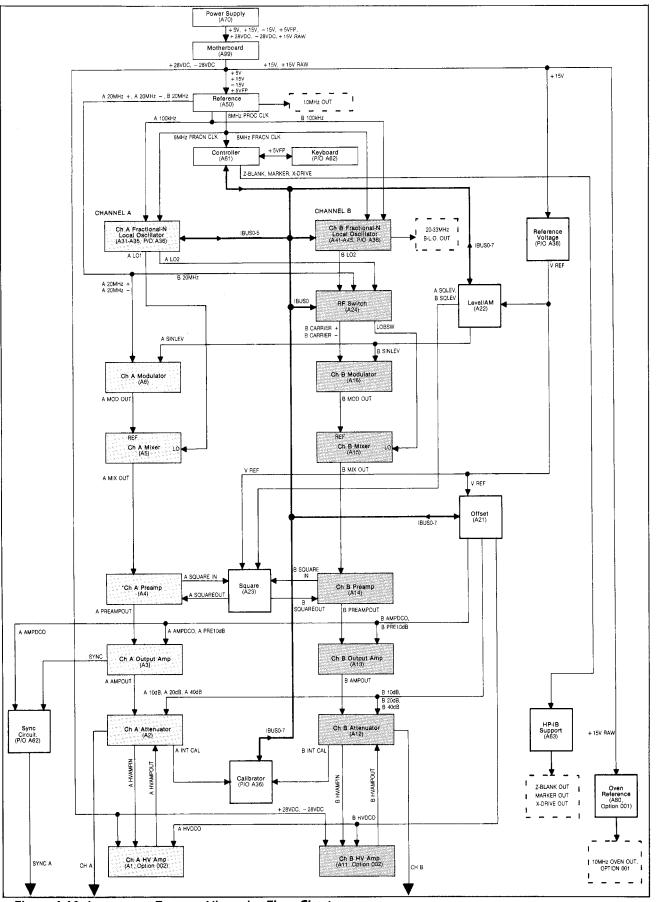
6-12 INSTRUMENT TURN-ON HIERARCHY

Figure 6-10 shows the order in which boards are turned on in the HP 3326A. This follows the main signal flow through the instrument. Each board in the instrument depends on the boards that are higher in the hierarchy. For example, the reference board (A50) depends on inputs from the motherboard (A99) and the power supply (A70) to function properly. This hierarchical view is useful in isolating a defective board. It provides a clear overall picture of the instrument, based on board dependencies.


The step-by-step fault isolation tests (Table 6-14) are listed in this hierarchical order. The power supply is listed first, then the reference board, and so on.

6-13 FAULT ISOLATION TESTS


Use the step-by-step fault isolation tests given in this sub-section to determine if a board is working properly. This allows you to narrow down a list of suspect defective boards. The defective board is found by a process of elimination. The procedure requires that the HP 3326A's top and bottom covers are removed. Hazardous signals are present in the HP 3326A, so be sure to take all necessary safety precautions.



Maintenance described herein is performed with power supplied to the instrument and protective covers removed. Such maintenance should be performed by service trained personnel who are aware of the hazards involved (for example, fire and electrical shock). Primary power is supplied to the instrument whenever the line cord is attached, independent of the power switch position. Where maintenance can be performed without power applied, remove the power cord. For the most complete, Accurate, and legible service manuals For obsolete test equipment

FAULT ISOLATION TESTS; TURN-ON HIERARCHY

CAUTION

To avoid the possibility of damage to test equipment, read each test thoroughly before starting it. Make any preliminary control settings necessary for correct test equipment operation.

What is Table 6-14?

Table 6-14 lists fault isolation tests that determine if a board is functioning properly. They are mostly analog tests and use only an oscilloscope, voltmeter, logic probe, and assorted cables. The tests provide consolidated information for tracking down hard failures. They do not cover most subtle errors. Subtle faults are most easily found by interchanging identical boards between the two channels (sub-section 6-4).

The tests assume any board can be defective. They are written in a serial fashion following the main signal flow of the instrument (Figure 6-10). The power supply test is first, followed by the tests for the other boards in the instrument.

Each fault isolation test lists the important input AND output signals for a board. This means that many signals are repeated in the table since an output of one board is an input to another. Each test is separate — it does not depend on the results of any other test. You can enter the table at any point.

Table 6-14 provides tests for most of the boards in the instrument. There are no tests for many of the digital boards, however. These boards are thoroughly tested by the service self tests (sub-section 6-11). There are also several features not tested. These features are very time-consuming to test and use a relatively small number of components. They include AM, PM, internal modulation, combined operation, and most of the external rear panel inputs.

NOTE

There is no fault isolation test for the motherboard. A figure of each board's motherboard connector showing signal routing between boards is included near each schematic. Signal names, descriptions, origins, and destinations are given alphabetically in the signal glossary (Appendix A).

How to Use Table 6-14

- **1. Turn the instrument on its side.** Remove top and bottom instrument covers. See Figure 6-12.
- 2. Review the list of suspect boards you compiled using the service self tests. Determine which board appears first in the fault isolation tests. Start testing that board.

If the self tests did not point to a group of suspect boards, all of the boards in the instrument are suspect. Start testing the boards at the top of the table. Begin with the power supply. Continue until you find the defective board.

- 3. Follow the instructions given in Table 6-14.
 - Set up the HP 3326A. Only deviations from INSTR PRESET are given.
 - Set up the test equipment.
 - Probe the test locations. The test locations are in one of two places on a motherboard connector or on the top of a PC board. See Figure 6-12.

NOTE

Although the +5V, +15V, and -15V supplies are only listed in the power supply test, check them for all boards. All connectors except XA61 and XA70 use pins 1, 2, and 3 for the +5V, +15V, and -15V supplies, respectively. The locations of the supplies on XA61 and XA70 are labeled on the motherboard.

 Are the signals normal? All parameters are required unless denoted by a ≅ character. All ≅ parameters are typical performance parameters of the instrument. Investigate only serious deviations.

If the signals are normal, cross the board off your list of suspects. Continue testing your list of suspect boards.

If the signals are abnormal, follow the instructions given in the last column of Table 6-14. The instructions direct you to the board that produces the input signal when an input signal is abnormal. They direct you to the board under test when an output signal is abnormal. When all input signals are normal and an output signal is abnormal, the board under test is defective. When an input signal is abnormal, the board that produces the input is probably defective. Perform the fault isolation test for that board.

5. Go to the board level repair sub-section for the defective board. The schematic number is given inside the ______ symbol next to the board name.

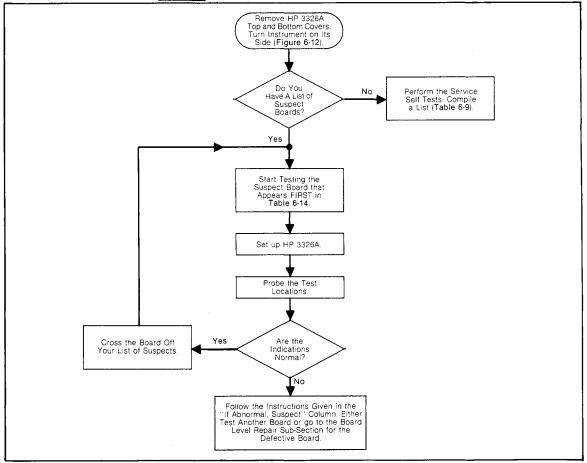


Figure 6-11. How to Use Table 6-14

Test Equipment

The fault isolation tests use a minimum amount of equipment (Table 6-13). The recommended model numbers are listed in Table 1-6.

Table 6-13. Fault Isolation Test Equipment

Oscilloscope Digital Voltmeter Logic Probe 10:1 Probes (2)

BNC Cables (2) Service Accessory Kit: SMB (f) to BNC (m) Adapter Cable Phono Plug to BNC (m) Adapter Cable

Sine Wave Signal Source † Spectrum Analyzer ‡

t Used for external trigger.

‡ Used to measure power supply ripple.

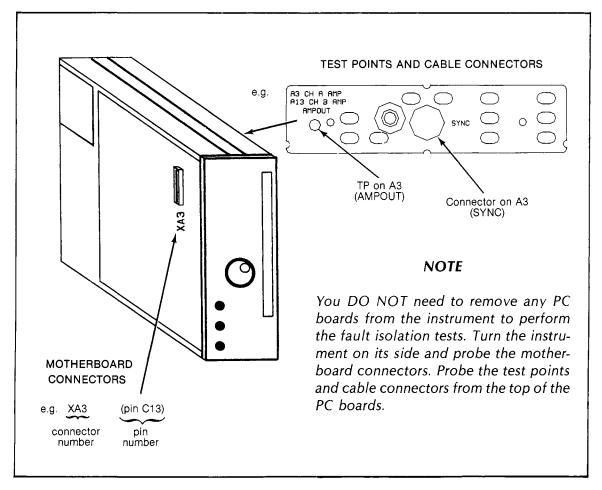


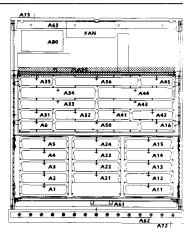
Figure 6-12. Fault isolation Test Signal Locations

A70, A50

Table 6-14. Fault Isolation Tests

Power Supply (A70)

Probe the test signal locations. If all signals are normal, A70 is functional.


16

Test Equipment

Voltmeter Oscilloscope (or 3585A Spectrum Analyzer)† 10:1 probe

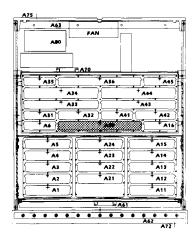
HP 3326A Setup

INSTR PRESET

Supply Name	Output Location	Return Location	Nominal Voltage	Voltage Tolerance‡	Ripple Tolerance
+15V	TP105	GND (TP700) or card nests	+15.000 V	±0.010 V	50 µVrms
-15V	TP205	GND (TP700) or card nests	-15.000 V	±0.020 V	50 µ∨rms
+ 5V	TP305	GND (TP700) or card nests	+5.100 V	±0.060 V	75 µVrms
+ 5VFP	ТР900	GNDFP (use card nests)	+ 5.00 V	±0.25 V	_
+ 5V HPIB	TP401	CGND (TP402) or chassis	+ 5.00 V	±0.25 V	
+ 28VDC	TP501	GND (TP700) or card nests	> 28.5 V	_	
- 28VDC	TP500	GND (TP700) or card nests	< -28.5 V		_

t Used for measuring ripple. When the supplies look clean on the oscilloscope, they are probably okay. Perform a complete ripple check when there is a problem with 60 Hz noise on the output.

* The voltage levels and ripple tolerances are given for fully loaded supplies. All PC boards must be in the instrument. Removing individual boards will change the load on the supplies and change the supply levels.


• Reference (A50)

Probe the test signal locations. If all signals are normal, A50 is functional.

Test Equipment

Oscilloscope 10:1 probes (2) SMB to BNC adapter cable Phono plug to BNC adapter cable

A50

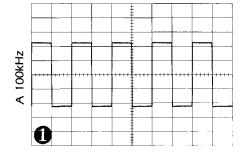
Table 6-14. Fault Isolation Tests Cont.

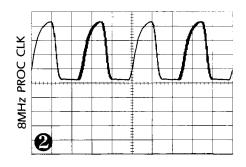
HP 3326A Setup

INSTR PRESET

Test Signal	Test Location	Normal Indication	If Abnormal, Suspect
Inputs: INH BREF	XA50(pins A12, C12)	TTL low.	RF switch (A24).
Outputs: A 100kHz	Connector on A50 (A 100 KHZ-A33)	DC coupled, ECL level, 100 kHz square.	Reference (A50).
B 100kHz	Connector on A50 (B 100 KHZ-A43)	Same as above.	Same as above.
8MHz PROC CLK	XA50(pin C6)	8 MHz, TTL level, square.	Same as above.
8MHz FRACN CLK	XA50(pin A6)	Same as above.	Same as above.
A 20MHz +	XA50(pin A15)	AC coupled, ECL level, 20 MHz square.	Same as above.
A 20MHz —	XA50(pin A14)	Same as above.	Same as above.
B 20MHz	XA50(pin C14)	Same as above.	Same as above.
10MHz OUT	Connector on A50 (10 MHZ OUT) into 50 Ω	10 MHz square, ≥0.5 Vpp.	Same as above.
EXT REF FLAG	TP on A50 (EXT REF LOCK)	TTL high.	Same as above.
REF LOOP UNLOCKED	TP on A50 (REF LOOP UNLOCKED)	TTL high.	Same as above.

Oscilloscope Setup


SMB to BNC adapter cable


Ch 1 coupling	AC
Ch 1 V/div	$200 \ \text{mV}$
Time/div	5 μs
Trigger	Ch 1

Oscilloscope Setup

10:1 probe

Ch 1 coupling Ch 1 V/div	DC 100 mV
Time/div	50 ns
Trigger	Ch 1

Table 6-14. Fault Isolation Tests Cont.

Oscilloscope Setup

10:1 probes (2)

Ch 1 coupling	AC
Chil coupling	AC
Ch 1 V/div	40 mV
Ch 2 coupling	AC
Ch 2 V/div	40 mV
Time/div	50 ns
Trigger	Ch 1

Oscilloscope Setup

Phono plug to BNC adapter cable

Ch 1 coupling	50 Ω DC
Ch 1 V/div	200 mV
Time/div	50 ns
Trigger	Ch 1

~ Controller (A61)

The only fault isolation test for this board is the service self test. If you suspect this board is broken, go to A61 board level repair, sub-section 6-33.

• Keyboard (A62)

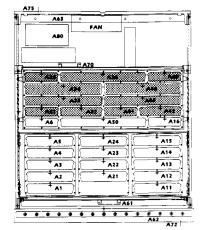
The only fault isolation test for this board is the service self test. If you suspect this board is broken, go to A62 board level repair, sub-section 6-34.

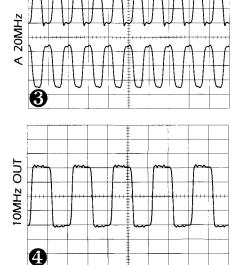
• Ch	Α	Local	Oscillator	(A31-	A35,	and	P/O	A36)
			Oscillator					

15

Probe the test signal locations. If all signals are normal, the fractional-N boards are functional.

NOTE


There are components on the motherboard (A99) for power supply decoupling. If there is a problem with the supplies, it may be due to a defective motherboard component. See the schematics for details.


Test Equipment

Oscilloscope Logic probe Sine wave generator 10:1 probes (2) SMB to BNC adapter cable Phono plug to BNC adapter cable

HP 3326A Setup

INSTR PRESET (2 CHANNEL mode) Ch B: FREQ 5 MHz

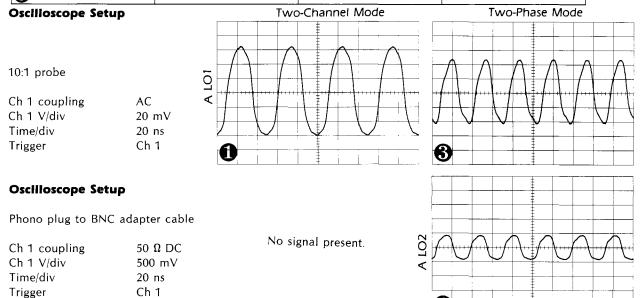
_

A31-A36

Table 6-14. Fault Isolation Tests Cont.

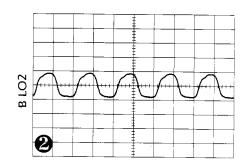
Test Signal	Test Location	Normal Indication	If Abnormal, Suspect
Inputs: A 100kHz, B 100kHz	Connectors on A50 (A 100 KHZ-A33, B 100 KHZ-A43)	DC coupled, ECL level, 100 kHz square.	Reference (A50).
8MHz FRACN CLK	XA36(pin A8)	8 MHz, TTL level, square.	Same as above.
IBUS0-5	XA36(pins C5, C6, C7, C8, C9, B4), XA34(pins A5, A6, A7, A8, B8, B13), XA44(pins A5, A6, A7, A8, B8, B13)	TTL low. Toggles when frequency is modified. Use logic probe.	Controller (A61).
ADD STROBE	XA36(pin A5)	TTL high. Toggles when frequency is modified. Use logic probe.	Same as above.
DATA STROBE	XA36(pin B6)	Same as above.	Same as above.
RESET	XA36(pin A6)	TTL high.	Same as above.
Outputs: A LO1	XA35(pin A15)	20.001 MHz square (≅ 20 MHz), AC coupled, ECL level, > 0.5 Vpp (≅ 0.8 Vpp).	Ch A fractional-N LO (A31-A36).
A LO2	Connector on A35 (LO 2) into 50 Ω	No signal present.	Same as above.
B LO2	Connector on A45 (LO 2) into 50 Ω	25 MHz square, AC coupled, ECL level, > 0.5 Vpp (≅ 0.8 Vpp).	Ch B fractional-N LO (A41-A45, A36).
IBUS0-5	XA36 (pins C5, C6, C7, C8, C9, B4), XA34 (pins A5, A6, A7, A8, B8, B13), XA44 (pins A5, A6, A7, A8, B8, B13)	TTL low. Toggles when frequency is modified. Use logic probe.	Controller (A61), fractional-N decoder (A36), fractional-N digital (A34, A44).
A DLBC	XA34(pin A10)	100 kHz square, TTL level, 32.5% duty cycle.	Ch A fractional-N LO.
ANALOG FAULT	XA32(pin C15), XA42(pin C15)	TTL high.	All boards that activate this line: HV amp (A1, A11), output amp (A3, A13), fractional-N LO boards
A SWEEP LIMIT, B SWEEP LIMIT	XA34 (pin A14), XA44 (pin A14)	TTL low. Toggles when sweeping. Press CONT to verify. Use logic probe.	Fractional-N LO.

A31-A36


Table 6-14. Fault Isolation Tests Cont.

Test Signal	Test Location	Normal Indication	If Abnormal, Suspect
OUTPUTS: SWEEP START	XA36(pin A7)	TTL high. Toggles when external trigger is used. To verify, insert 1 kHz sine, TTL level, into EXT TRIG IN rear panel input. Use logic probe. (The LED next to the SINGLE key should be blinking.)	Same as above.

HP 3326A Setup


INSTR PRESET 2 PHASE mode Ch A: FREQ 10 MHz

Test Signal	Test Location	Normal Indication	If Abnormal, Suspect	
Outputs: A LO1	XA35(pin A15)	30 MHz square, AC coupled, ECL level, > 0.5 Vpp (≅ 0.8 Vpp).	Ch A fractional-N LO.	
A LO2	Connector on A35 (LO 2) into 50 Ω	Same as above.	Same as above.	
B LO2	Connector on A45 (LO 2) into 50 Ω	20 MHz square, AC coupled, ECL level, > 0.5 Vpp (≅ 0.8 Vpp).	Ch B fractional-N LO.	

4

6

A31-A36, p/o A36

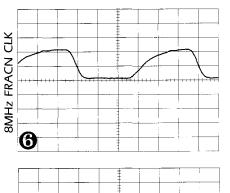
Table 6-14. Fault Isolation Tests Cont.

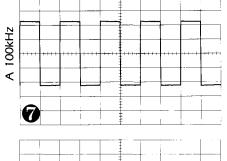
Oscilloscope Setup

10:1 probe

Ch 1 coupling	DC
Ch 1 V/div	200 mV
Time/div	20 ns
Trigger	Ch 1

Oscilloscope Setup


SMB to BNC adapter cable


Ch 1 coupling Ch 1 V/div	AC 200 mV
Time/div	5 μs
Trigger	Ch 1


Oscilloscope Setup

10:1 probe

Ch 1 coupling	DC
Ch 1 V/div	200 mV
Time/div	5 μs
Trigger	Ch 1
,	•

• Reference Voltage (P/O A36)

Probe the test signal location. If the signal is normal, the reference voltage sub-block on A36 is functional

Test Equipment

Voltmeter

HP 3326A Setup

INSTR PRESET

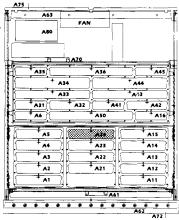
A75			
A63	0	0	
#	FAN	· [.11
A80			
1	<u> </u>		
H	CA79	فيبيها ويست	
A35 🛞		+ 2	A45
			a
	A34	· · · · ·	* A44
+	AII	· · · · · · · · · · · · · · · · · · ·	*A43
A31	+ A32	+A41	+ A42
		4 450	A14
A6	·	4 A50	
	সলি		
A5		A24	+ A16
		A24 A23	
A5		A24 A23	
A5		A24 A23 A22	A15 A14 A13
A5 A4 A3 A2		A24 A23	A15 A14 A13 A13 A12
A5		A24 A23 A22	A15 A14 A13
A5 A4 A3 A2		A24 A23 A23 A22 A21	A15 A14 A13 A13 A12
A5 A6 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3		A24 A23 A22 A21	A15 A14 A13 A14 A13 A12 A11
A5 A6 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3		A24 A23 A23 A22 A21	+ A15 + A14 + A13 + A12 + A12 + A11

Test Signal	Test Location	Normal Indication	If Abnormal, Suspect
Output:			
V REF	TP on A36 (V REF TEST)	10.240 ±0.010 Vdc.	Voltage reference sub-block on the calibrator (A36).

Table 6-14. Fault Isolation Tests Cont.

• RF Switch (A24)

Probe the test signal locations. If all signals are normal, A24 is functional.


10

Test Equipment

Oscilloscope Logic probe 10:1 probe Phono plug to BNC adapter cable

HP 3326A Setup

INSTR PRESET (2 CHANNEL mode) Ch B: FREQ 5 MHz

Test Signal	Test Location	Normal Indication	If Abnormal, Suspect
Inputs: A LO2	Connector on A35 (LO 2) into 50 Ω	No signal present.	ENABLE LO2 signal on RF switch (A24). See signal glossary.
в LO2	Connector on A45 (LO 2) into 50 Ω	25 MHz square, AC coupled, ECL level, > 0.5 Vpp (≅ 0.8 Vpp).	Ch B fractional-N LO (A41-A45, A36).
B 20MHz	XA24(pin A11)	20 MHz square, AC coupled, ECL level.	Reference (A50).
IBUSO	XA24(pin C4)	TTL low. Toggles when any hardware configuration changes (e.g. when frequency is modified). Use logic probe.	Controller (A61).
RF SWITCH Strobe	XA24(pin C5)	TTL high. Toggles low when the mode is changed from 2 CHANNEL to 2 PHASE, or from PULSE to 2 CHANNEL. Use logic probe.	Level/AM (A22).
Outputs: LOBSW	XA24(pin C15)	25 MHz square, AC coupled, ECL level, ≅ 0.4 Vpp.	RF switch (A24).
B CARRIER +	XA24 (pin A7)	20 MHz square, AC coupled, ECL level, > 0.5 Vpp.	Same as above.
B CARRIER -	XA24 (pin A8)	Same as above.	Same as above.
INH BREF	XA24 (pin A4)	TTL low.	Same as above.
ENABLE LO2	XA24 (pin A5)	TTL high (complement of INH BREF).	Same as above.

A24

Table 6-14. Fault Isolation Tests Cont.

HP 3326A Setup

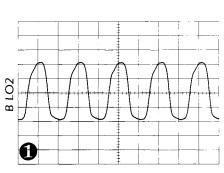
INSTR PRESET

2 PHASE mode

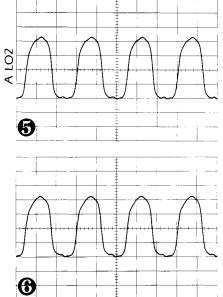
Test Signal	Test Location	Normal Indication	If Abnormal, Suspect
Inputs: A LO2	Connector on A35 (LO 2) into 50 Ω	20.001 MHz square (\cong 20 MHz), AC coupled, ECL level, > 0.5 Vpp (\cong 0.8 Vpp).	Ch A fractional-N LO (A31-A36).
в LO2	Connector on A45 (LO 2) into 50 Ω	20 MHz square, AC coupled, ECL level, > 0.5 Vpp.	Ch B fractional-N LO (A41-A45, A36).
B 20MHz	XA24(pin A11)	No signal present.	INH BREF signal on RF switch (A24). See signal glossary.
Outputs: LOBSW	XA24(pin C15)	20.001 MHz square (\cong 20 MHz), AC coupled, ECL level, \cong 0.4 Vpp.	RF switch (A24).
B CARRIER +	XA24 (pin A7)	20 MHz square, AC coupled, ECL level, > 0.5 Vpp.	Same as above.
B CARRIER -	XA24 (pin A8)	Same as above.	Same as above.
INH BREF	XA24 (pin A4)	TTL high.	Same as above.
ENABLE LO2	XA24(pin A5)	TTL low (complement of INH BREF).	Same as above.

Oscilloscope Setup

Two-Channel Mode

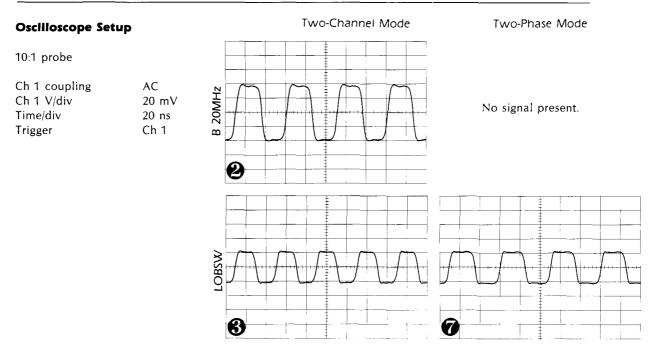

Two-Phase Mode

Phono plug to BNC adapter cable


50 Ω DC

200 mV 20 ns Ch 1

Ch	1	coupling	
Ch	1	V/div	
Tin	٦e	/div	
Trig	gg	er	



No signal present.

A24, A22

Table 6-14. Fault Isolation Tests Cont.

Oscilloscope Setup

10:1 probes (2)		
Ch 1 coupling Ch 1 V/div Ch 2 coupling Ch 2 V/div Time/div Trigger	AC 40 mV AC 40 mV 20 ns Ch 1	B CARRIER

• Level/AM (A22)

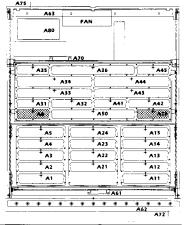
The only fault isolation test for this board is the service self test. If you suspect this board is broken, go to A22 board level repair, sub-section 6-27.

A6

Table 6-14. Fault Isolation Tests Cont.

• Ch A Modulator (A6) Ch B Modulator (A16)

_6__>


Probe the test signal locations. If all signals are normal, A6 and A16 are functional.

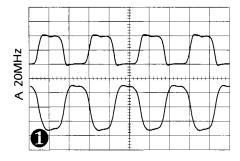
Test Equipment

Oscilloscope Voltmeter 10:1 probes (2) Phono plug to BNC adapter cable

HP 3326A Setup

INSTR PRESET Ch A: AMPTD 13.97 dBm Ch B: AMPTD 13.97 dBm

Test Signal	Test Location	Normal Indication	If Abnormal, Suspect
Inputs: A 20MHz +, B CARRIER +	XA6 (pin A12), XA16 (pin A12)	20 MHz square, AC coupled, ECL level, ≥ 0.5 Vpp.	Reference (A50), RF switch (A24).
A 20MHz —, B CARRIER —	XA6(pin A13), XA16(pin A13)	Same as above.	Same as above.
A SINLEV, B SINLEV	XA6(pin A5), XA16(pin A5)	3.5 to 4.5 Vdc	Level/AM (A22).
Outputs: A MOD OUT, B MOD OUT	Connector on A6, A16 (MOD OUT) into 50 Ω	20 MHz sine, 100 to 120 mVpp.	Modulator (A6, A16).


HP 3326A Setup

INSTR PRESET Ch A: AMPTD 13.98 dBm Ch B: AMPTD 13.98 dBm

Test Signal	Test Location	Normal Indication	If Abnormal, Suspect
Outputs: A MOD OUT, B MOD OUT	Connector on A6, A16 (MOD OUT) into 50 Ω	20 MHz sine, 30 to 38 mVpp (10 dB shift from first setup).	Modulator (A6, A16).

Oscilloscope Setup

10:1 probes (2)	
Ch 1 coupling	AC
Ch 1 V/div	40 mV
Ch 2 coupling	AC
Ch 2 V/div	40 mV
Time/div	20 ns
Trigger	Ch 1

Table 6-14. Fault Isolation Tests Cont.

5

Probe the test signal locations. If all signals are normal,

Oscilloscope Setup

Phono plug to BNC adapter cable

Ch 1 coupling	50 Ω DC
Ch 1 V/div	20 mV
Time/div	20 ns
Trigger	Ch 1

• Ch A Mixer (A5)

Test Equipment

HP 3326A Setup

INSTR PRESET

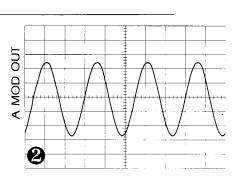
Ch A: FREQ

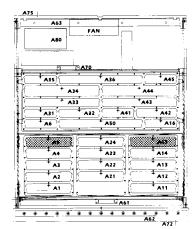
Ch B: FREQ

Oscilloscope

10:1 probe

Ch B Mixer (A15)

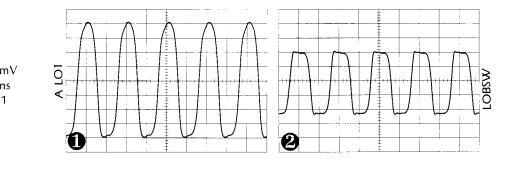

A5 and A15 are functional.


5 MHz

5 MHz

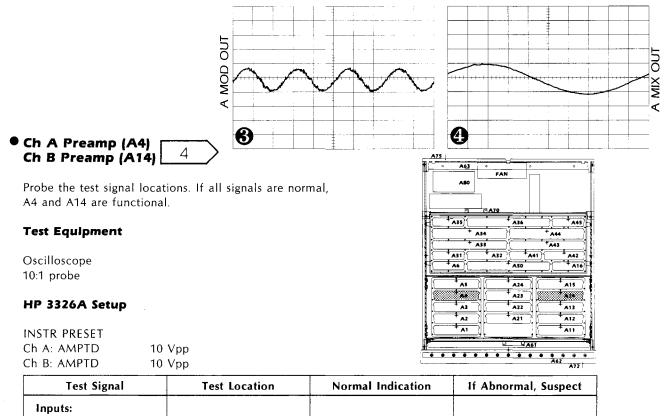
AMPTD 10 Vpp

AMPTD 10 Vpp



Test Signal	Test Location	Normal Indication	If Abnormal, Suspect
Inputs: A LO1	XA5(pin A5)	25 MHz square, AC coupled, ECL level, 0.5 Vpp (≅ 0.8 Vpp).	Ch A fractional-N LO (A31-A36).
LOBSW	XA15(pin A5)	25 MHz square, AC coupled, ECL level, ≅ 0.4 Vpp.	RF switch (A24).
A MOD OUT, B MOD OUT (after filter)	TP on A5, A15 (RF)	67 to 83 mVpp, 20 MHz sine.	Modulator (A6, A16).
Outputs: A MIX OUT, B MIX OUT	XA5(pin A16), XA15(pin A16)	225 to 270 mVpp, 5 MHz sine	Mixer (A5, A15).

Oscilloscope Setup


10:1 probe

Ch 1 coupling	AC
Ch 1 V/div	10 m\
Time/div	20 ns
Trigger	Ch 1

A5, A4

Table 6-14. Fault Isolation Tests Cont.

			ii / isiio/iiiui) suspeet
Inputs: A MIX OUT, B MIX OUT	TP on A4, A14 (INPUT)	1 kHz sine, ≅200 mVpp.	Mixer (A5, A15).
A SIN, B SIN	XA4(pin A4), XA14(pin A4)	TTL low.	Level/AM (A22).
Outputs: A PREAMPOUT, B PREAMPOUT	TP on A4, A14 (PREAMPOUT)	1 kHz sine, ≅2 Vpp.	Preamp (A4, A14).

HP 3326A Setup

INSTR PRESET Ch A: AMPTD 10 Vpp FUNCTION Square Ch B: AMPTD 10 Vpp FUNCTION Square

Test Signal	Test Location	Normal Indication	If Abnormal, Suspect
Inputs: A SIN, B SIN	XA4 (pin A4), XA14(pin A4)	TTL high.	Level/AM (A22).
A SQUAREOUT, B SQUAREOUT	XA4 (pin A9), XA14 (pin A9)	1 kHz square, ≅2 Vpp.	Square (A23). Check A SQUARE IN and B SQUARE IN signals below.
Outputs: A SQUARE IN, B SQUARE IN	XA4(pin A12), XA14(pin A12)	1 kHz sine, ≅2.5 Vpp.	Preamp (A4, A14).
A PREAMPOUT, B PREAMPOUT	XA4(pin A6), XA14(pin A6)	1 kHz square, ≅2 Vpp.	Relay on A4, A14.

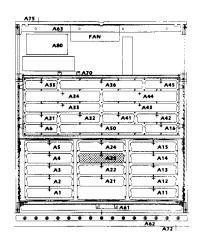
Table 6-14. Fault Isolation Tests Cont.

• Square (A23)

9

Probe the test signal locations. If all signals are normal, A23 is functional.

Test Equipment


Oscilloscope Voltmeter 10:1 probe

HP 3326A Setup

INSTR PRESET

Clear calibration constants, press:

BHIFT		0
Ch A:	FUNCTION	Square
	AMPTD	10 Vpp
Ch B:	FUNCTION	Square
	AMPTD	10 Vpp

Test Signal	Test Location	Normal Indication	If Abnormal, Suspect
Inputs: A SQUARE IN	TP on A23 (A SQUARE IN)	1 kHz sine, ≅2.5 Vpp, < 70 mV dc offset.	Ch A preamp (A4).
B SQUARE IN	TP on A23 (B SQUARE IN)	Same as above.	Ch B preamp (A14).
A SQLEV	XA23 (pin C10)	4.00 to 4.14 Vdc.	Level/AM (A22).
B SQLEV	XA23 (pin C8)	Same as above.	Same as above.
V REF	XA23 (pin A10)	10.240 ± .010 Vdc.	Reference voltage sub-block of calibrator board (A36).
SQUARE/PULSE	XA23 (pin C11)	TTL high.	Level/AM (A22).
A COMPAR ENABLE	XA23 (pin C12)	TTL high.	Same as above.
B COMPAR ENABLE	XA23 (pin C13)	TTL high.	Same as above.
Outputs: A SQUAREOUT	XA23 (pin C15)	1 kHz square, ≅2 Vpp, ≅ 0 V dc offset.	Square board (A23).
B SQUAREOUT	XA23 (pin C5)	Same as above.	Same as above.

NOTE

Perform a manual calibration (MANUAL key) or cycle power to reset the calibration correction constants.

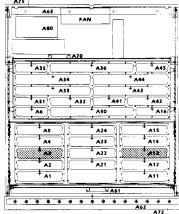
A21, A3, A2

Table 6-14. Fault Isolation Tests Cont.

• Offset (A21)

7

The only fault isolation test for this board is the service self test. If you suspect this board is broken, go to A21 board level repair, sub-section 6-26.


Probe the test signal locations. If all signals are normal, A3 and A13 are functional. (The pre-10 dB pad and driver sub-block is tested with the attenuator boards (A2, A12).)

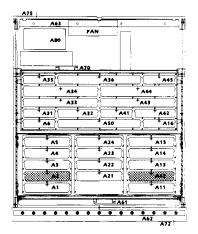
Test Equipment

Oscilloscope Voltmeter 10:1 probe Phono plug to BNC adapter cable

HP 3326A Setup

INSTR PRESET Ch A: AMPTD 10 Vpp Ch B: AMPTD 10 Vpp

Test Signal	Test Location	Normal Indication	If Abnormal, Suspect
Inputs: A PREAMPOUT, B PREAMPOUT	XA3 (pins A5,B5,C5), XA13 (pins A5,B5,C5)	1 kHz sine, ≅2 Vpp.	Preamp (A4, A14).
A AMPDCO, B AMPDCO	XA3 (pins A8, B8, C8), XA13(pins A8, B8, C8)	≅ 0 Vdc.	Offset (A21).
A PRE10dB, B PRE10dB	XA3 (pin C13), XA13 (pin C13)	TTL low.	Offset (A21).
Outputs: A AMPOUT, B AMPOUT	TP on A3, A13 (AMPOUT)	1 kHz sine, ≅20 Vpp.	Output amp (A3, A13).
SYNC	Connector on A3 (SYNC)	1 kHz sine, ≅20 Vpp.	Same as above.
A IOVLD, B IOVLD	XA3 (pins A13, B13), XA13 (pins A13, B13)	TTL high.	Same as above.


• Ch A Attenuator (A2) Ch B Attenuator (A12)

Probe the test signal locations. If all signals are normal, A2, A12, and the pre-10 dB pads on A3 and A13 are functional.

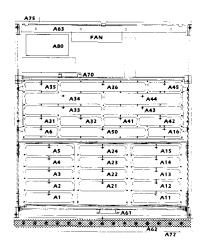
Test Equipment

Oscilloscope BNC cable

Table 6-14. Fault Isolation Tests Cont.

HP 3326A Setup	Test Location	If Amplitude is Abnormal, Suspect
INSTR PRESET Ch A: AMPTD 23.97 dBm Ch B: AMPTD 23.97 dBm	Front panel connector (CH A, CH B) or rear panel connector for Option 003 (CH A OUT, CH B OUT).	One of the four attenuator pads is engaged in error.
Modify tens digit of amplitude at 10 dB intervals. Verify the 10 dB step attenuation is taking place (i.e., the amplitude is being reduced to approximately one-third its original value).	Same as above.	Pre-10dB pad and driver sub-block on output amp (A3, A13). 10 dB, 20 dB, and 40 dB relays on attenuator (A2, A12). See level control table near the A2/A12 schematics for the levels when each attenuator is activated.

Sync Circuit on Keyboard (A62)


Probe the test signal locations. If all signals are normal, the synchronous output circuit (sync) on the keyboard (A62) is functional.

Test Equipment

Oscilloscope Voltmeter 10:1 probe Phono plug to BNC adapter cable BNC cable

HP 3326A Setup

INSTR PRESET

Test Signal	Test Location	Normal Indication	If Abnormal, Suspect
Inputs: SYNC	Connector on A3 (SYNC)	1 kHz sine, > 1.5 Vpp (≅ 2.0 Vpp).	Ch A output amp (A3).
A AMPDCO	XA61(pin C16)	≅ 0 Vdc.	Offset (A21), controller A61), or cable. The signal is produced on the offset board, and travels to the keyboard via the controller.
Output: SYNC A	Front panel connector (SYNC A) into 50 Ω	1 kHz square, ≅ 1.7 Vpp.	Sync circuit on keyboard (A62) or cable from A3 to A62.

FAULT ISOLATION

p/o A36, A63

Table 6-14. Fault Isolation Tests Cont.

• Calibrator (P/O A36) 12

The only fault isolation test for this board is the service self test. If you suspect this board is broken, go to A36 board level repair, sub-section 6-31.

● HP-IB Support (A63)

Probe the test signal locations. If all signals are normal, the external outputs circuit on A63 is functional.

NOTE

See controller/HP-IB support (A61, A63) board level repair sub-section for troubleshooting an HP-IB problem. This procedure tests the rear panel outputs circuitry.

Test Equipment

Oscilloscope BNC cables (2)

HP 3326A Setup

INSTR PRESET Sweep CONT

A75			
	•	0	27
ורייין	FAN		
A80			
المستحدثان إ	7		
P1	TR A70		
A35)	+ A36		\45 }
· · ·	34	+ 144	
+		+403	<u> </u>
		·	<u>,</u>
- * A31	A32		-
	+ A50	<u> </u>	<u>116</u>
		-) (∔	2
A5	A24	^1 } ^1	=1
1 7.44	1 T A23	714 TA14	1
	· · · · · · · · · · · · · · · · · · ·		
	+ A22		;
A3	+ A22		=1
+A3 +A2	4 P	A1	5
A3	+ A22		5
+A3 +A2	+A22 +A21	A1	5
+A3 +A2	+A22 +A21		5

Test Signal	Test Location	Normal Indication	If Abnormal, Suspect
Outputs: Z-BLANK OUT	Rear panel connector	TTL level, normally high, Low while sweeping.	HP-IB support (A63), controller (A61) or cable.
MARKER OUT	Rear panel connector	TTL level, normally high. Low when marker frequency is reached.	Same as above.
X-DRIVE OUT	Rear panel connector	Ramps from 0 to 10 V while sweeping. 1 s period.	Same as above.

Oscilloscope Setup

BNC cables (2)

Ch 1 Coupling	DC
Ch 1 V/Div	2 V
Ch 2 Coupling	DC
Ch 2 V/Div	2 V
Time/Div	500 r
Trigger	Ch 1

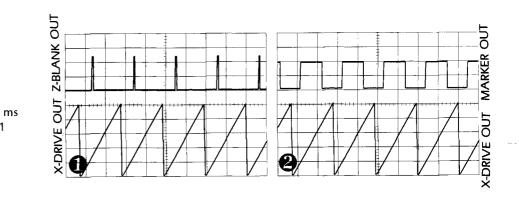
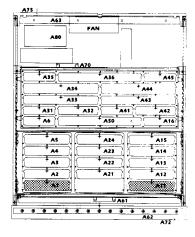


Table 6-14. Fault isolation Tests Cont.

Ch A HV Amp (A1, Option 002) Ch B HV Amp (A11, Option 002)


Probe the test signal locations. If all signals are normal, A1 and A11 are functional.

Test Equipment

Oscilloscope Voltmeter 10:1 probe BNC cable

HP 3326A Setup

INSTR PRESET Ch A: HV Option Activated AMPTD 40 Vpp Ch B: HV Option Activated AMPTD 40 Vpp

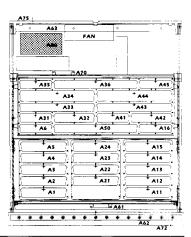
Do not short together the +28VDC and -28VDC supplies when probing on the motherboard.

Test Signal	Test Location	Normal Indication	If Abnormal, Suspect
Inputs: A HVAMPIN, B HVAMPIN	XA1(pin A5), XA11(pin A5)	≅19 Vpp, 1 kHz sine.	Attenuator (A2, A12).
A HVDCO, B HVDCO	XA1(pin A11), XA11(pin A11)	≅ 0 Vdc.	Offset (A21).
+ 28VDC	TP on A1, A11 (+28V1)	≅ +27 V.	Power supply (A70).
- 28VDC	TP on A1, A11 (-28V1)	≅ -27 V.	Power supply (A70).
Outputs: A HVAMPOUT, B HVAMPOUT	TP on A1, A11 (HVAMPOUT)	40 Vpp, 1 kHz sine.	HV amp (A1, A11).
СН А, СН В	Front panel connector (CH A, CH B) or rear panel connector for Option 003 (CH A OUT, CH B OUT). Use high impedance input.	Same as above.	Hi-voltage option relay on attenuator (A2, A12).
A HVOVLD, B HVOVLD	TP on A1, A11 (HVOVLD)	TTL high.	HV amp (A1, A11).

A80

Table 6-14. Fault Isolation Tests Cont.

• Oven Reference (A80, Option 001)


Probe the test signal locations. If all signals are normal, A80 is functional.

Test Equipment

Oscilloscope Voltmeter BNC cable

HP 3326A Setup

INSTR PRESET

Test Signal	Test Location	Normal Indication	If Abnormal, Suspect
Input:		~ 17.\/	D
+15V RAW	A80TP2 (+18V) (accessible from bottom of instrument)	> 17 V.	Power supply (A70).
Output: 10MHz OVEN OUT, OPTION 001	Rear panel connector	10 MHz sine, > 446.7 mVpk.	Oven reference (A80) or cable.
	into 50 Ω		

19

SECTION VI SERVICE — BOARD LEVEL REPAIR

	Board Level Repair
6-14	Introduction
6-15	PC Board Cross Reference6-69
6-16	Troubleshooting Hints
6-17	Safety Considerations
6-18	Logic Conventions
6-19	Logic Symbology
6-20	Channel A and Channel B HV Amplifier, A1 and A11 (Option 002) .6-74
6-21	Channel A and Channel B Attenuator, A2 and A12
6-22	Channel A and Channel B Output Amplifier, A3 and A136-91
6-23	Channel A and Channel B Preamplifier, A4 and A146-97
6-24	Channel A and Channel B Mixer, A5 and A156-105
6-25	Channel A and Channel B Modulator, A6 and A166-113
6-26	Offset, A21
6-27	Level/AM, A22
6-28	Square, A23
6-29	RF Switch, A24
6-30	Fractional-N Local Oscillators
6-31	Calibrator, P/O A366-193
6-32	Reference, A50
6-33	Controller and HP-IB Support, A61 and A636-217
6-34	Keyboard, A62
6-35	Power Supply, A70
6-36	Front and Rear ESD, A72 and A756-265
6-37	Oven Reference, A80 (Option 001)
6-38	Motherboard, A99

SECTION VI SERVICE (Continued)

BOARD LEVEL REPAIR

6-14 INTRODUCTION

This part of the service section provides troubleshooting and repair information for individual boards in the HP 3326A Two-Channel Synthesizer, including the high stability frequency reference (Option 001) and the high voltage output (Option 002).

Each board in the HP 3326A serves a single electrical function and is called a functional block. The first part of the service section, "Fault Isolation to the Board Level," should be used to find the defective board. "Board Level Repair" may then be used to further isolate the problem to the functional sub-block. At this point, the technician's expertise is relied upon to isolate the defective component in the functional sub-block.

Circuit theory and troubleshooting information for each board is included in this part of the service section. Sample waveforms and voltage levels appear on the schematics (or near the schematics if space is limited). Signal parameters preceded by an \cong character are typical parameter values and only serious deviations should be investigated. Specific troubleshooting procedures and hints are included when applicable.

Once repaired, it is necessary to perform all adjustments associated with the repaired board. A copy of Table 3-3, Post-Repair Adjustments, is included here. See Table 6-15.

	epaired Boards	Related Adjustments						
Reference Designator	Name	Number	Name					
A1, A11	HV Amp	15	HV Overshoot					
A2, A12	Attenuator	13	Flatness					
A3, A13	Output Amp	13	Flatness					
		14	Overshoot					
		16	Bias					
A4, A14	Preamp	11	2nd Harmonic					
		12	DC Offset Flatness					
A5, A15	Mixer	10	2:1 Spur 2nd Harmonic					
		12	DC Offset					
		13	Flatness					
		14	Overshoot					
		16	Bias					
A6, A16	Modulator	10	2:1 Spur					
		11	2nd Harmonic					
A21	Offset	9	A and B Offset					
A22	Level/AM							
A23	Square	12	DC Offset					
		14	Overshoot					
A24	RF Switch	10	2:1 Spur					
			2nd Harmonic					
A31, A41	VCO	4	VCO Freq					
		5	100 kHz APIs					
A32, A42	VCO Control	5	100 kHz					
A32, A42	VCO Control	6	APIs					
A33, A43	Phase Detector	5	100 kHz					
		6	APIs					
A34, A44	FracN Digital	5	100 kHz					
		6	APIs					
A35, A45	VCO ÷ 2	_	_					
P/O A36	FracN Decoder		_					
P/O A36	Calibrator	7	V Ref					
		8	Peak Detect Gain					
	.	9	A and B Offset					
A50	Reference	3	Freq Center					
A61	Controller	17	Battery Check					
A62	Keyboard		_					
A63	HP-IB Support							
A70	Power Supply	1	+ 15 V					
		3	Freq Center					
A72	Front ESD							
A75	Rear ESD							
A80	Oven Reference	2	Oven Freq					
A99	Motherboard		_					

Table 6-15. Post-Repair Adjustments

6-15 PC BOARD CROSS REFERENCE

The PC board cross reference table shown here lists the boards by numeric order of schematics, as well as numeric order of printed circuit boards. See Table 6-16. A copy of this table appears near the instrument block diagram (after the schematics).

Schematic	B	oard Numb	ber	Decid Marca			
Number	СН А	СН В	Common	Board Name	HP Part Number		
1.	A1	A11		HV Ampt	03326-66501		
2a.	A2			Attenuator	03326-66502		
2b.		A12		Attenuator	03326-66512		
3,	A3	A13		Output Amp	03326-66503		
4.	A4	A14		Preamp	03326-66504		
5.	A5	A15		Mixer	03326-66505		
6.	A6	A16		Modulator	03326-66506		
7.			A21	Offset	03326-66521		
8.			A22	Level/AM	03326-66522		
9.			A23	Square	03326-66523		
10.		-	A24	RF Switch	03326-66524		
11a.	A31	A41		VCO	03326-66531		
11b.	A32	A42		VCO Control	03326-66532		
11c.	A33	A43		Phase Detector	03326-66533		
11d.	A34	A44		FracN Digital	03326-66534		
11e.	A35	A45		VCO ÷ 2	03326-66535		
11f.			P/O A36	FracN Decoder	03326-66536		
12.	1	1	P/O A36	Calibrator	03326-66536		
13.			A50	Reference	03326-66550		
14a.			A61	Controller	03326-66561		
14b.		1	A61	Controller	03326-66561		
14c.			A61	Controller	03326-66561		
			A63	HP-IB Support	03326-66563		
15.			A62	Keyboard	03326-66562		
16.			A70	Power Supply	03326-66570		
17.			A72	Front ESD	03326-66572		
18.	}		A75	Rear ESD	03326-66575		
19 .			A80	Oven Reference‡	03326-66580		
			A99	Motherboard	03326-66599		

Table	6-16.	PC	Board	Cross	Reference
	• • • •				

† Option 002 only.

‡ Option 001 only.

6-16 TROUBLESHOOTING HINTS

When troubleshooting the circuit boards in the HP 3326A, keep the following things in mind:

- Use the two channel nature of the HP 3326A to its full advantage. Interchange identical boards between channel A and channel B to help isolate faults. See Table 6-3, Identical Boards.
- Use the two extender boards provided in the service accessory kit (see "Accessories Available" in Section I) to compare waveforms between identical boards in the two channels. See sub-section 6-5, "Waveform Comparison."
- Use a 10:1 probe with a ground spring (HP part number 1460-1476) when making high frequency measurements to minimize distortion.

- A detailed overall block diagram is located at the end of the schematics.
- Poor ground connections in the phono cables can cause intermittent problems that can appear to be subtle hardware failures (for example, poor phase or amplitude calibration accuracy). Crimping the phono connectors to improve the ground connections is recommended.
- It is possible that one circuit board is being loaded by another circuit board, resulting in an apparent failure in the first circuit board.
- Use cool spray to help isolate problems. Circuit cooler sprays are widely available and can be very helpful in isolating problems. The most generally used method is to spray selected components to see if the malfunction can be temporarily cured. If this can be accomplished, the bad component is then isolated. This method does not work all the time, but it can be a great timesaver. It is especially helpful on intermittent problems which get worse with a rise in temperature.
- Use signature analysis to troubleshoot digital circuits when possible. This is an extremely powerful troubleshooting tool that allows a "window" on a digital node to give a go/no-go test. These tests are found in the controller board (A61 troubleshooting (sub-section 6-33).

If a signature analyzer is not available, keep in mind that most digital failures involve a line that is stuck high or low. Thus, a little guided probing using an oscilloscope in the suspected areas may find the problem.

• Many problems on older instruments are directly traceable to corrosion. Often, simply removing and re-seating the affected printed circuit boards can "cure" a problem. Cleaning connector pins and/or switch contacts with an approved cleaning fluid is a permanent solution to many types of digital and analog circuit problems.

6-17 SAFETY CONSIDERATIONS

The HP 3326A is a Safety Class 1 instrument (provided with a protective earth terminal). The instrument and manuals should be reviewed for safety markings and instructions before operation. Refer to the Safety Symbol table in the preface of this manual.

CAUTION

Be sure that the power switch is in the STBY position before inserting or removing any circuit board. Power transients caused by insertion or removal may damage the circuit boards.

WARNING

Maintenance described herein is performed with power supplied to the instrument and protective covers removed. Such maintenance should be performed only by service-trained technicians who are aware of the hazards involved (for example, fire and electrical shock). Primary power is supplied to the instrument whenever the line cord is attached, independent of the power switch position. Where maintenance can be performed without power applied, the power cord should be removed.

6-18 LOGIC CONVENTIONS

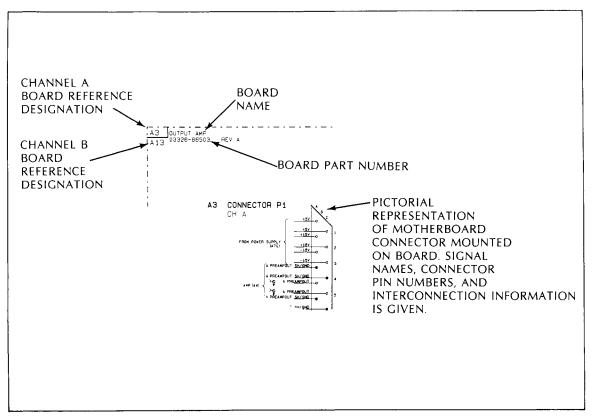

Positive logic convention is used in this manual unless otherwise noted. Positive logic conventions define a logic "1" or "high" as the more positive voltage and a logic "0" or "low" as the more negative voltage. Signals which are active low are denoted by a bar over the signal name. Most of the logic devices used in this instrument are either TTL or ECL; notes exist on the schematics indicating devices from these and other logic families. Table 6-17 lists the voltage levels that are associated with the TTL and ECL families.

Table 6-17. Logic Voltage Levels

LOGIC	TTL	ECL
High (1)	$\geq 2 V$	≥ 4.1 V
Low (0)	$\leq 0.8 V$	≤ 3.25 V

6-19 LOGIC SYMBOLOGY

The logic symbology used in this manual is based on ANSI Y32.14-1973. The reference designations and general schematic notes are shown in Figure 6-13 and Table 6-18, respectively.

Figure 6-13. Reference Designators

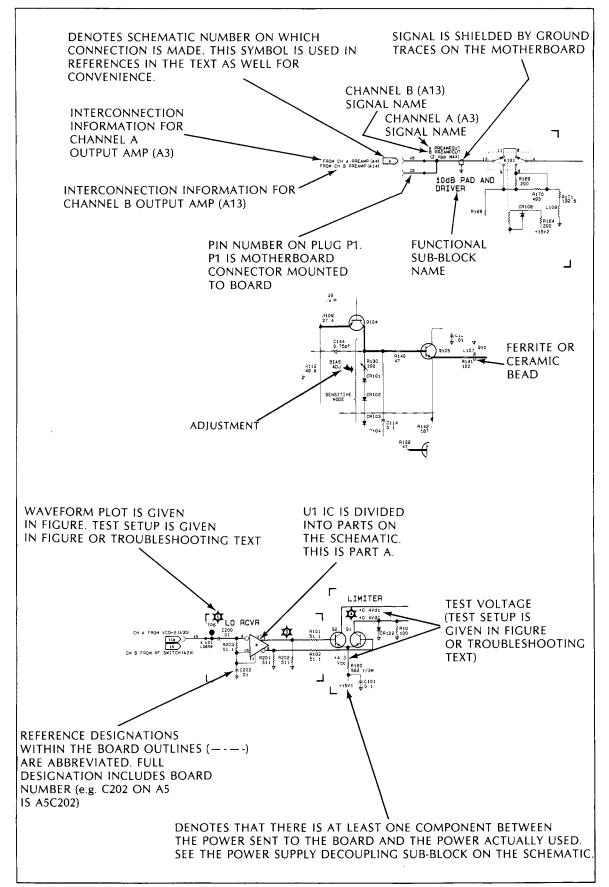
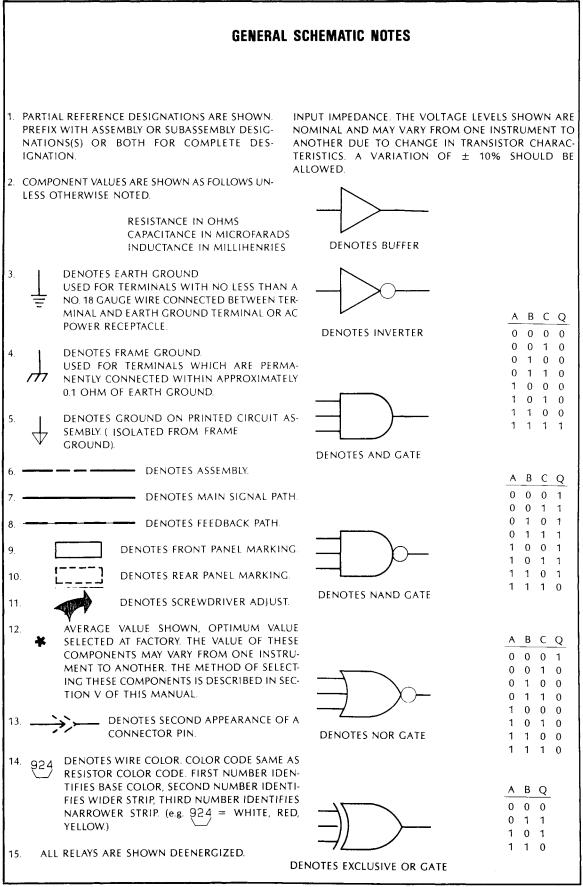



Figure 6-13. Reference Designator (cont.)

Table 6-18. General Schematic Notes

6-20 CHANNEL A AND CHANNEL B HV AMPLIFIER, A1 AND A11 (OPTION 002)

The information in this section should be used to isolate defective sub-blocks when servicing the HP 3326A. All procedures assume Fault Isolation to the Board Level has been used to determine which functional block (board) is defective.

Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltages and energy available at many points can, if contacted, result in personal injury.

Be sure that the power switch is in the STBY position before inserting or removing any circuit board. Power transients caused by insertion or removal may damage the circuit boards.

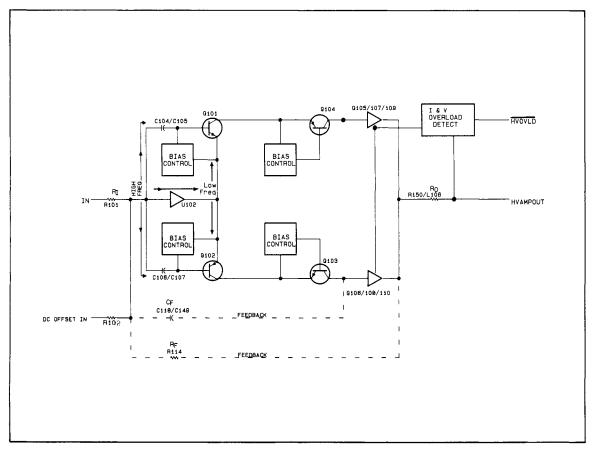


Figure 6-14. High Voltage Amplifier Block Diagram

Theory of Operation

The preamplifiers (A4 and A14), output amplifiers (A3 and A13) and high voltage amplifiers (A1 and A11, Option 002) share the same topology and general theory of operation, as described here. The amplifier can be viewed as a discrete version of an inverting operational amplifier (op amp). The overall gain of the amplifier is established by the ratio of the value of the feedback resistor (R114) to that of the input resistor (R101). The resistors share a common "virtual ground" point at the input to the amplifier. The input impedance of the amplifier is 953 Ω (as set by R101). The output impedance is 0 Ω or "low impedance."

The general operation of the amplifier is understood by separating the small signal operation from the biasing circuitry. The small signal circuits essentially consist of the ten transistors (Q101-Q110). These form a symmetrical "push-pull" configuration which can be further simplified by focusing on the function of the half circuit consisting of transistors Q101, Q104, Q105, and the parallel pair, Q107 and Q109. Transistors Q101 and Q104 form a cascode pair in which the collector of Q104 is a current source providing high voltage gain. The sensitive node marked on the schematic (which includes the collectors of Q103 and Q104, diodes CR103-CR106, and resistors R132, R133, and R140) can be regarded as a single high impedance gain point that is extremely sensitive to any parasitic capacitance. Touching this node severely affects the amplifier performance and stability. The Darlington transistor pair (Q105 and the parallel transistor pair Q107 and Q109) buffers the node and provides the output current drive capability of the amplifier.

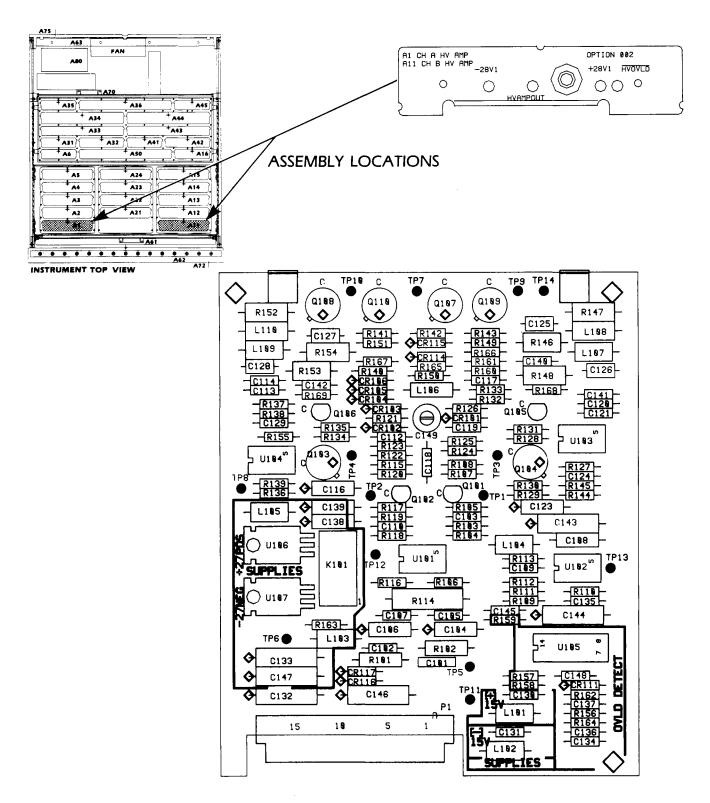
The amplifier contains two gain paths. One is ac coupled from the "virtual ground" point to the base circuits of transistors Q101 and Q102 through capacitors C104/C105 and C106/C107, respectively. This path is dominant at high frequencies. At low frequencies and dc the directly coupled path (through U102) is dominant. These signals are amplified and inverted by U102 and passed to the emitter circuits of Q101 and Q102. U102 provides a direct coupled path for biasing the amplifier at dc and provides additional loop gain at low frequencies for improving distortion in the audio range.

Op amps U101, 103, and 104 serve as biasing elements for each of the four cascode transistors (Q101-Q104). The base-emitter junctions are included in the feedback loops to eliminate amplifier sensitivity to temperature changes which cause (biasing) variations in V_{be} . This maintains the emitter voltages of Q101 and Q102 at approximately 0.5 V and -0.5 V and the base voltages of Q103 and Q104 at approximately 24.5 V and -24.5 V.

High frequency stability and compensation is achieved with a Miller capacitance (C118 and C149) which provides feedback from the high gain node to the "virtual ground" point. C149 is a variable capacitor which adjusts the circuit's square wave overshoot. The voltage across R133 establishes the output stage quiescent current level through the transistors Q107 through Q110.

Current and voltage overload detection are provided by the comparator circuitry of U105 which monitors the collector circuits of the Darlington amplifier pairs and the main signal output, HVAMPOUT. IC sections a and b monitor current overload by setting HVOVLD in the event of an overvoltage condition of the output signal. IC sections c and d monitor voltage overloads by setting HVOVLD in the event of a low voltage condition in the collector circuits of the final amplifier stage. (The terms "low voltage" and "overvoltage" in this discussion refer to signal magnitude). The HVOVLD signal goes to the attenuator board where it can activate protection irrespective of other logic conditions.

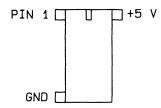
Troubleshooting

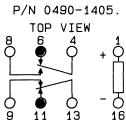

The multiple feedback design and delicate balance of the individual stages of this circuit make them highly interactive. This causes the symptoms of a problem in any part of the amplifier to propagate throughout. Also, due to the high open-loop gain, many of the component connections within the circuit are so sensitive to stray capacitance that the balance would be disturbed by probing with test equipment.

First, make a visual inspection of the board, looking for burned or otherwise damaged parts. Then check the power supplies on the board. It is useful to probe the input and output of the amplifier with an oscilloscope to determine whether the failure is catastrophic or not. The waveform shape of the output may contain a clue as to which half of the push-pull amplifier stages are failing. Test points are provided to measure bias in the base circuits of the first two stages.

If these basic troubleshooting methods have failed to isolate the problem, the fastest troubleshooting method is to replace components based on their probability of failure. This approach is recommended because of the circuit's troubleshooting difficulties. Replace transistors first, whole stages at a time, beginning at the output. It is recommended that all transistors in a stage be changed at the same time because failure of one tends to stress the performance parameters of the other(s). If Q107 is replaced, Q108 through Q110 should also be replaced. If low-frequency response is out of specification, replace U102. After that, the op amps composing the biasing for the first two stages should be replaced. If these replacements have not fixed the problem, replace the diodes in the sensitive node (see schematic) and check the larger capacitors on the board for shorts or leakage. These last two suggestions have about equal probability of solving the problem.

If the amplifier has failed in a manner that suggests that the overload protection circuitry is not operating properly (i.e., it was overloaded from the front panel), it is recommended that the protection circuitry be exercised and checked for failure. The high voltage amplifier has current and voltage overload detection provided by the comparator circuitry of U105. To exercise this circuit, ground pins 10, 9, 7, and 4, one at a time. Each should cause the instrument to indicate that it has been overloaded. The instrument should reset itself soon after removing the ground. It is recommended that the protection circuitry on the attenuator board be checked, also, as described in the attenuator board level repair sub-section.

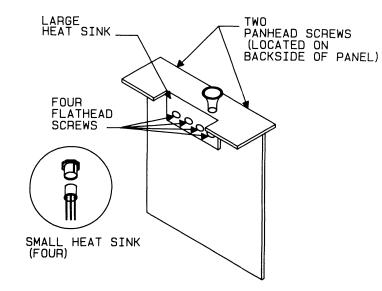

Refer to Table 6-15 for recommended post-repair adjustments.

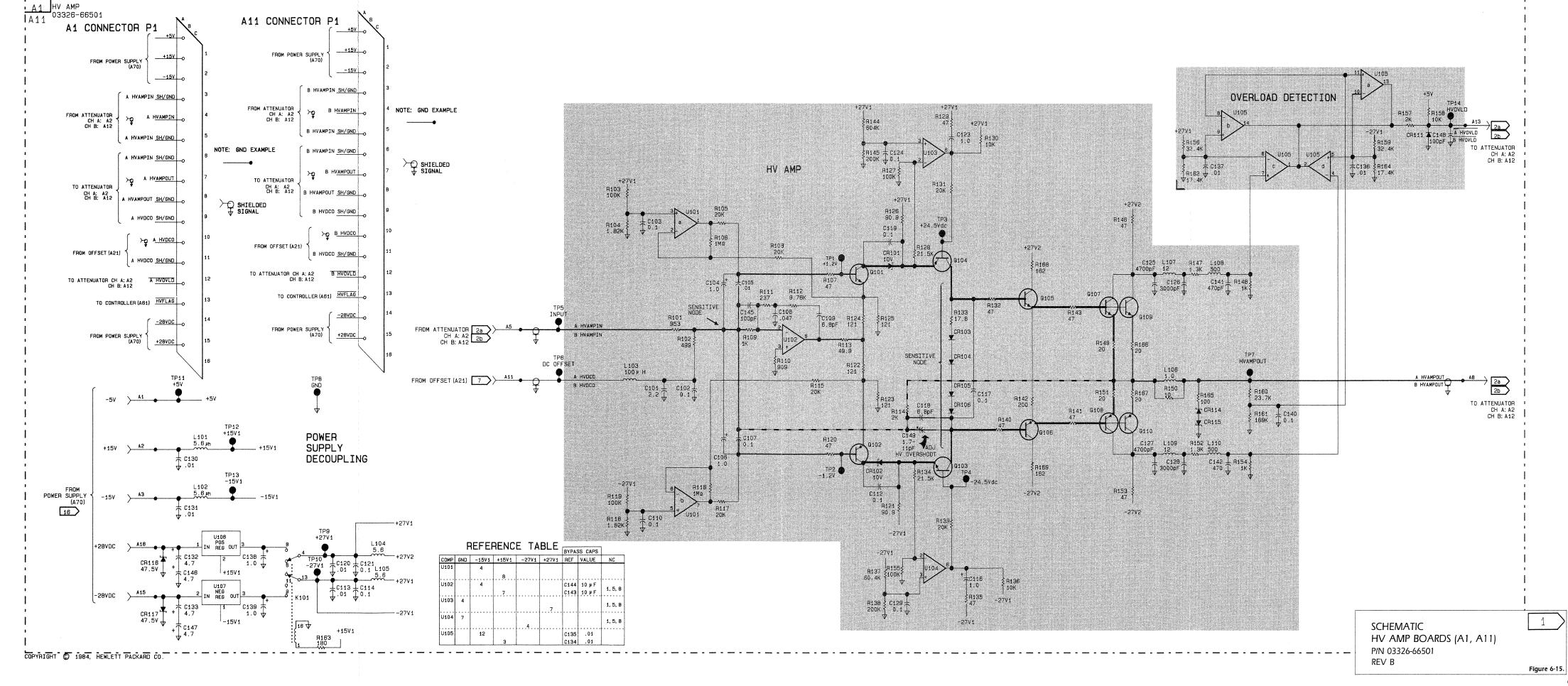

HV AMP BOARDS (A1, A11) P/N 03326-66501 REV B

NOTES:

1.ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN, REGARDLESS OF THE TOTAL PIN COUNT (e.g., FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16)

- 2.NO COMPONENT IS SUPPOSED TO BE LOADED ON THE FOOTPRINT OF THE JACK. THE FOOTPRINTS ARE USED FOR FACTORY TEST PURPOSES ONLY.
- 3. RELAYS ARE SHOWN IN THE DE-ENERGIZED STATE.




4. THIS BOARD IS USED TWICE IN THE INSTRUMENT -ONCE FOR CHANNEL A. AND ONCE FOR CHANNEL B. THE TWO IDENTICAL BOARDS MAY BE INTERCHANGED FOR TROUBLESHOOTING, BUT MUST BE RETURNED TO THEIR ORIGINAL LOCATIONS TO AVOID RECALIBRATION OF THE INSTRUMENT

- 5. REMOVE MAIN POWER CORD WHENEVER YOU ARE PLACING HIGH VOLTAGE AMPLIFIER BOARD (A1 OR A11) ON AN EXTENDER. OTHER WISE, THE +28 Vdc AND -28 Vdc SUPPLIES CAN SHORT THE CORD NESTS (GND) AND BLOW THE LINE FUSE.
- **8.** TOUCHING THE PART OF THE CIRCUIT MARKED "SENSITIVE NODE" WILL AFFECT THE STABILITY AND PERFORMANCE OF THE AMPLIFIER.

7. TO ACCESS TRANSISTORS UNDER LARGE HEAT SINK, REMOVE TOP COVER AND LARGE HEAT SINK. REMOVE TWO PANHEAD SCREWS HOLDING THE COVER AND FOUR FLATHEAD SCREWS HOLDING SMALL HEAT SINKS ONTO THE LARGE HEAT SINK.

6-21 CHANNEL A AND CHANNEL B ATTENUATOR, A2 AND A12

The information in this section should be used to isolate defective sub-blocks when servicing the HP 3326A. All procedures assume Fault Isolation to the Board Level has been used to determine which functional block (board) has failed.

Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltages and energy available at many points can, if contacted, result in personal injury.

CAUTION

Be sure that the power switch is in the STBY position before inserting or removing any circuit board. Power transients caused by insertion or removal may damage the circuit boards.

Theory of Operation

The attenuator board's primary function is to perform the final signal conditioning. This includes attenuating, combining signals, and routing signals to the high voltage amplifiers (if high voltage outputs, Option 002, is installed). This board also routes the output signal to the calibration circuitry during internal calibration and detects signals on the output large enough to damage the output circuitry and automatically protect itself.

Attenuation:

Attenuation is provided by a series of pads which are switched in and out to give step attenuation in increments of 10 dB, up to 60 dB.

Combiner:

When combined operation is selected, the combiner on the channel A attenuator receives the channel B output signal from the channel B attenuator and resistively sums it with the channel A output signal. The sum of the signals appears on the CH A output connector on the front panel.

High voltage outputs option:

The main signal is routed to the high voltage amplifier when the high voltage outputs option is installed and selected. Otherwise, the signal goes directly to the calibration/protection circuit relay.

Calibration/Protection:

After the high voltage amplifier relay, the signal may be routed directly to the output connector on the front panel or to the internal calibration circuits on the calibrator board (A36). The signal path to the calibration circuit has two relays in series (K107 and K108) to reduce crosstalk between channels when the instrument is not calibrating.

The relay used to route the output signal to the calibrator (K107) is also activated to protect the output circuitry from large signals applied to the output connector. This relay is activated by the calibration circuitry or the output protection circuitry.

The protection circuitry consists of the voltage overload sense circuit and the overload protect logic circuit. The overload condition is sensed using comparators which perform 5 V and 10 V overvoltage detection at the output connector. The overload protect logic circuit performs gating of the appropriate overload conditions, combines the various overload flag lines, and sends the result to an RS latch (U102). If an overload occurs, the latch is set, which drives the CAL/PRTCT relay, isolating the output circuitry from the output connector. The OVLD signal is sent to the processor indicating that the attenuator protection circuitry is activated. This state is maintained by the latch until the processor resets it (see A PROTECTCLEAR and B PROTECTCLEAR in the signal glossary).

Troubleshooting

The instrument bus circuit on the controller board (A61) and the control interface on this board can be tested using the Interface SA Test (see Tables 6-52 and 6-53 in the A61 troubleshooting sub-section 6-33). This test exercises the control lines from the controller board to determine if the controller or the control interface circuitry is defective.

If the attenuation is not stepping properly, check the signals used to select relay operation coming from the offset board. These may be manipulated through the use of the front panel and information contained in Table 6-19, which follows. Operation of all relays may be verified by determining whether a signal appears at pin 11, indicating a de-energized relay. If the signals to the drivers (U100) are correct and relay operation is not correct, check for proper operation of U100.

Any time an amplifier circuit is found to be defective such that overloading from the front panel output is a possible cause, the voltage overload and overload protect circuits should be exercised. Some of the inputs to the logic circuits come from the output amplifier and high voltage amplifier boards. These circuits should be tested individually as described in their respective board level repair sub-sections. The attenuator has two overload sensing circuits: the 10 volt overload (used when no attenuator pads are selected **and** the high voltage output is not selected) and the 5 volt overload (used when one or more pads are selected **and** the high voltage output is not selected). To exercise these circuits, put the attenuator on an extender board, make sure the high voltage output is not selected, and perform the following steps:

10V OVLD:

- Enter an amplitude of 4 Vpp on the front panel.
- Exercise the circuit by grounding U101, pin 9 and pin 10. Each should cause the instrument to protect itself. The instrument should reset the protect condition soon after the ground is removed.

5V OVLD:

- Enter an amplitude below 3 Vpp on the front panel.
- Exercise the circuit by grounding U101, pin 7 and pin 4. Each should cause the instrument to protect itself. The instrument should reset the protect condition soon after the ground is removed.

The following table shows the relationship between energization of the attenuator relays and signal output level. Note that the first column refers to the 10 dB pad located on the output amplifier boards, A3 and A13. Also, other relays on this board (used to select the combiner feature, the high voltage option, or calibration) may be exercised by using the front panel controls.

Table 6-19. Level Control

		Attenuator Relays									
Level	Pre- 10 dB	40 dB K103	20 dB K102	10 dB K101							
10.0 - 3.16 Vpp	0	0	0	0							
3.159 - 1.0 Vpp	1	0	0	0							
999.0 - 316.0 mVpp	1	0	0	1							
315.9 - 100.0 mVpp	1	0	1	0							
99.0 - 31.6 mVpp	1	0	1	1							
31.59 - 10.0 mVpp	1	1	0	0							
9.99 - 3.16 mVpp	1	1	0	1							
3.159 - 1.0 mVpp	1	1	1	0							

Where: 1 = relay energized

0 = relay de-energized

Table 6-20 shows the activation of relays for various instrument functions with attenuator board relays highlighted. Table 6-21 shows the activation of relays for instrument calibration with attenuator board relays highlighted.

Refer to Table 6-15 for recommended post-repair adjustments.

Table 6-20. Function Control

Switch Name	Reference Designator	0	ff	Si	ne	Squ	iare	D	C	н	v	Combined	AM	Ext	АМ	M	Ext	РМ	Sync PM
1	(pin no.)	A	B	A	В	A	В	A	В	A	B	Cor	Int	A	В	Int	A	В	(AB)
Ch A Cal/Prtct	A2K107	0	X	1	x	1	X	1	x	1	x	1	1	1	Х	1	1	Х	1
Ch B Cal/Prtct	A12K107	Х	0	x	1	x	1	x	1	x	1	1	1	1	1	1	1	1	1
Ch A HV Option	A2K106	X	X	X	x	x	X	X	x	1	. X	x	X	X	X	X	X	X	X
Ch B HV Option	A12K106	X	x	X	X	X	X	X	X	X	1	X	X	Х	X	X	X	X	X
Ch A Square	A4K101	Х	X	0	X	1	X	0	X	X	X	X	Х	X	Х	Х	Х	Х	X
Ch B Square	A14K101	Х	X	X	0	X	1	X	0	X	X	Х	Х	Х	Х	Х	Х	Х	X
Ch A Offset	A21K1	Х	Х	X	X	X	X	X	X	1	X	X	X	Х	Х	X	X	Х	X
Ch B Offset	A21K21	Х	X	X	X	X	X	X	Х	X	1	X	Х	Х	Х	X	X	Х	X
INT AM	A22U2(1)	Х	x	x	X	X	X	X	X	X	Х	X	ON (L)	OFF (H)	Х	X	X	Х	X
A EXT AM	A22U2(16)	Х	X	X	X	X	X	X	x	X	X	X	OFF (H)	ON (L)	X	X	X	X	X
B EXT AM	A22U6(1,16) A22U6(8,9)	Х	X	X	X	x	x	X	X	X	x	X	Х	Х	ON (L)	X	X	Х	x
INT PM	A32U22(1)	Х	x	X	x	X	X	X	X	X	X	X	Х	Х	Х	ON (L)	OFF (H)	OFF (H)	OFF (H)
A EXT PM	A32U22(16)	Х	X	X	X	X	X	x	X	X	X	x	X	X	Х	OFF (H)	ON (L)	Х	ON (L)
B EXT PM	A42U22(16)	Х	Х	x	X	X	x	X	X	x	x	X	X	X	X	X	X	ON (L)	X
Ch A PM	A32U22(9)	Х	X	X	X	x	x	X	Х	x	x	x	X	X	X	OFF (H)	OFF (H)	X	OFF (H)
Ch B PM	A42U22(9)	Х	X	X	X	X	X	x	X	X	x	X	x	X	X	x	X	OFF (H)	X
Ch A Combiner Isolation	A2K105	X	X	X	X	x	x	X	x	X	X	1	0	x	x	0	x	X	X
Ch A Combiner	A2K104	x	X	X	X	x	x	X	X	X	X	1	0	x	X	0	x	x	x
Ch B Combiner/ INT MOD	A12K104	x	X	X	X	X	x	X	X	X	X	1	1	X	x	1	X	X	x

 $\dagger X =$ Relay can be in either the de-energized or energized position in this function.

1 =Relay must be in the energized position in this function.

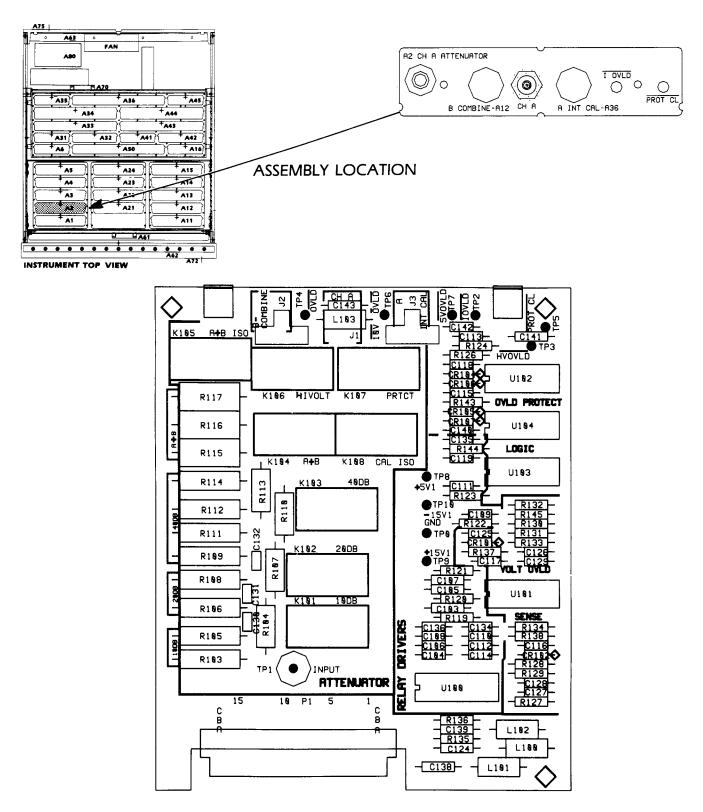
0 = Relay must be in the de-energized position in this function.

ON(L) = Control line for the switch must be TTL low in this function. This activates the switch.

OFF(H) = Control line for the switch must be TTL high in this function. This de-activates the switch.

Table 6-21. Calibration Contro	Table	trol
--------------------------------	-------	------

		Calibration									
Switch	Reference	Self	Test	Inter	External						
Name†	Designator	LEVTEST	OFFTEST	Amp/Offset	Phase	Phase					
CAL ISOLATION	A2K108, A12K108	Х	X	0	0	1					
CAL/PRTCT	A2K107, A12K107	X	X	0	0	1					
CAL AMP +	A36K1	Х	Х	×	0	0					
CAL AMP -	A36K2	Х	Х	X	0	0					
AMP CAL	A36K3	Х	Х	x	Х	X					
PHASE CAL	A36K4	Х	Х	0	1	1					
INT CAL	A36K5	Х	X	0	0	1					
PEAK DETECTOR INPUT	A36U203(1) A36U203(9)	OFF (H) ON	ON (L) OFF	OFF (H) OFF	x x	X X					
	A36U203(16)	(L) OFF (H)	(H) OFF (H)	(H) OFF (H)	х	x					
	A36U203(8)	OFF (H)	OFF (H)	ON (L)	Х	X					

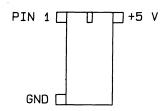

 $\dagger 0$ = Relay must be in the de-energized position for the calibration to take place.

1 = Relay must be in the energized position for the calibration to take place.

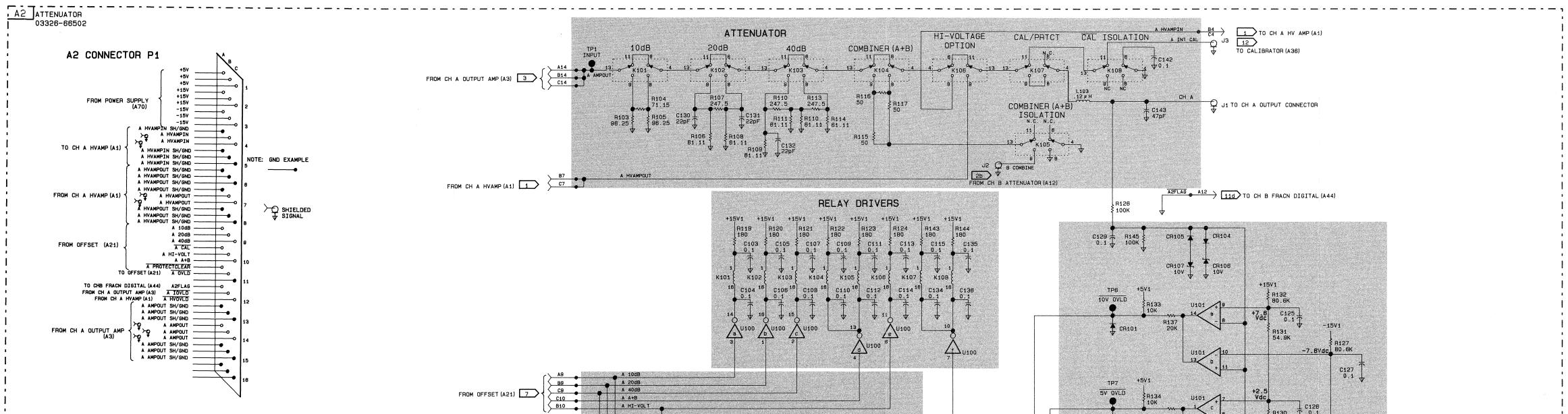
X = Relay can be in either the de-energized or energized position for the calibration to take place.

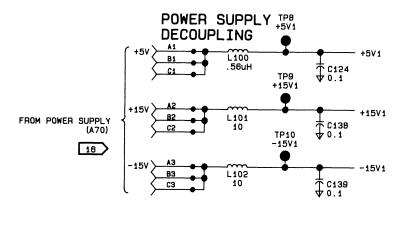
ON(L) = Control line for the switch must be TTL low for this calibration. This activates the switch.

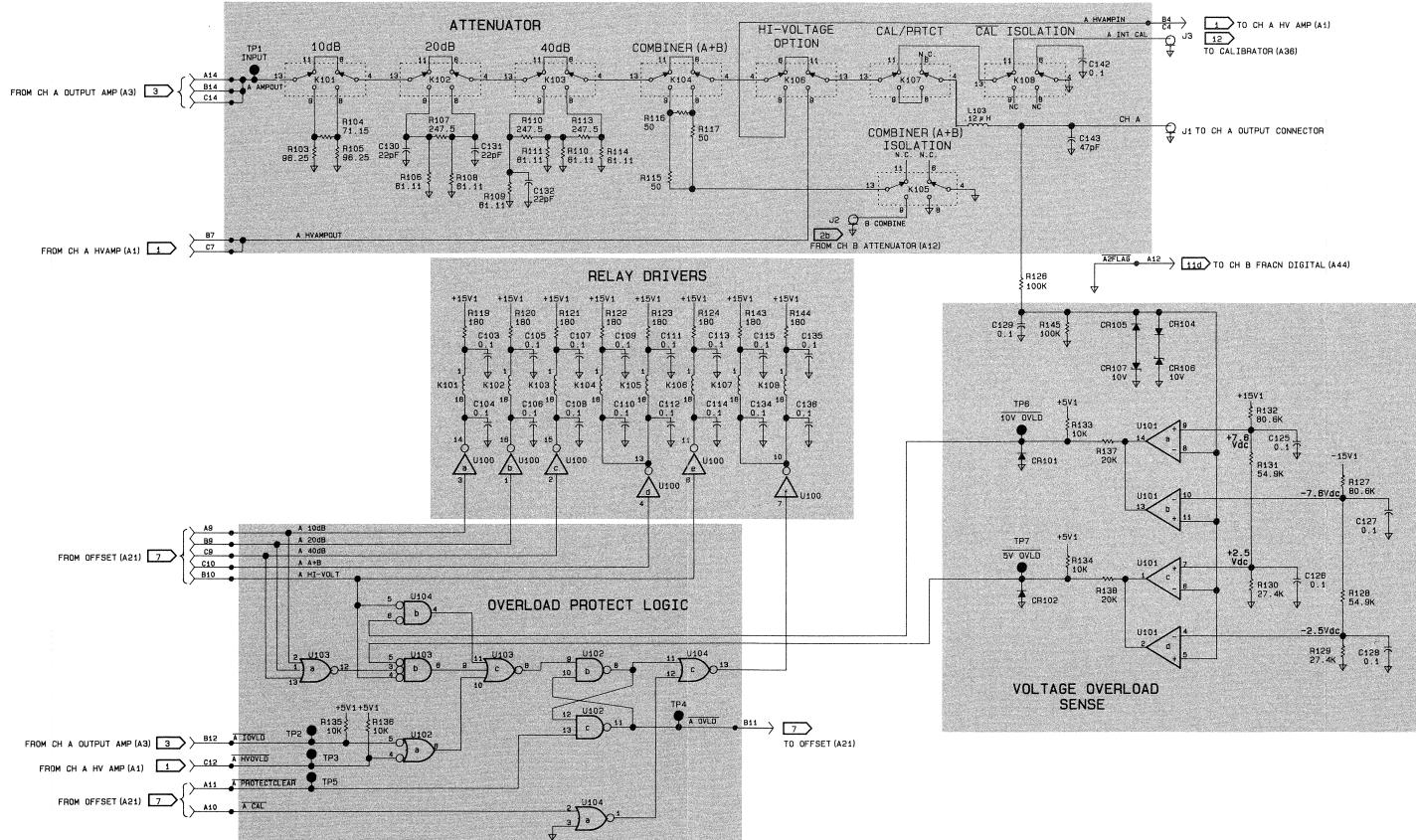
OFF (H) = Control line for the switch must be TTL high for this calibration. This de-activates the switch.


ATTENUATOR BOARD (A2) P/N 03326-66502 REV A

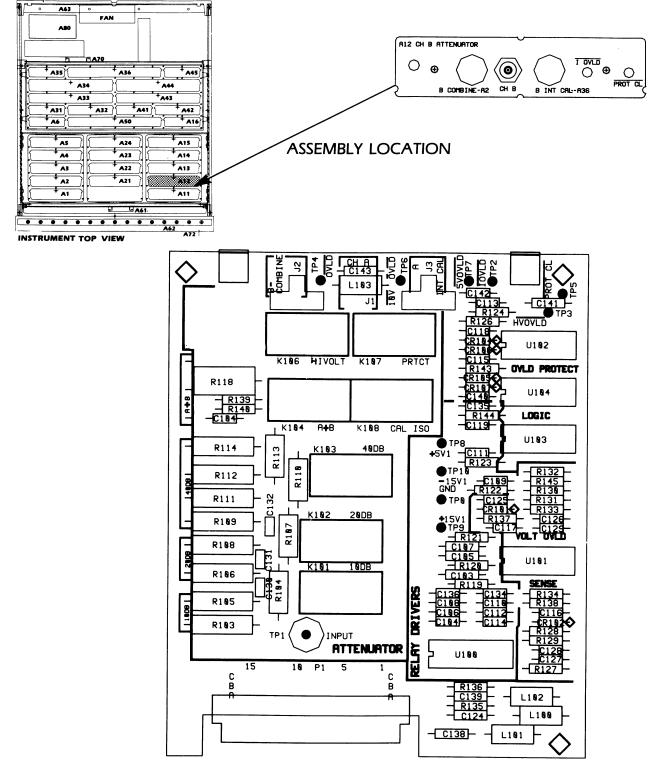
REFERENCE TABLE


					BYPASS CAP	ACITORS]
COMP.	+5V1	+15V1	-15V1	GND	REF.DESIG.	VALUE	N.C.
				8			5, 12
U100		9					
			12		C117	.01 #F	
U101		З			C116	.01 #F	
				7	[1, 2, 3
U102	14	1			C118	.01 #F	
				7			
U103	14				C119	.01 #F	
U104				7			8, 9, 10
0104	14				C140	.01 #F	


NOTES:


- 1. TTL DEVICES ARE USED IN THIS CIRCUIT.
- 2. ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN, REGARDLESS OF THE TOTAL PIN COUNT (e.g., FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16)

- 3. NO COMPONENT IS SUPPOSED TO BE LOADED ON THE FOOTPRINT OF THE JACK. THE FOOTPRINTS ARE USED FOR FACTORY TEST PURPOSES ONLY.
- 4. RELAY IS SHOWN IN THE DE-ENERGIZED STATE.
- 5. THE CHANNEL A ATTENUATOR (A2) AND THE CHANNEL B ATTENUATOR (A12) MAY BE INTERCHANGED FOR TROUBLESHOOTING PURPOSES. DUE TO SLIGHTLY DIFFERENT CIRCUITRY. HOWEVER, INTERNAL PHASE MODULATION, INTERNAL AMPLITUDE MODULATION, AND THE COMBINER FEATURES WILL NOT WORK. ALL OTHER FEATURES AND MODES WILL BE FULLY FUNCTIONAL.
- 6. POOR GROUND CONNECTIONS IN THE PHONO CABLES MAY CAUSE INTERMITTENT PROBLEMS THAT CAN APPEAR TO BE SUBTLE HARDWARE FAILURES (FOR EXAMPLE, POOR PHASE OR AMPLITUDE CALIBRATION ACCURACY). CRIMPING THE PHONO CONNECTORS TO IMPROVE THE GROUND CONNECTIONS IS RECOMMENDED.
- 7. WITH COMBINED OPERATION ACTIVATED. THE CHANNEL A AND CHANNEL B OUTPUT SIGNALS ARE SENT THROUGH THE RESISTIVE COMBINER CIRCUIT ON THE A2 BOARD. THIS CIRCUIT ATTENUATES THE SIGNALS BY 6.02 dB. THIS IS COMPENSATED FOR IN THE SOFTWARE, SO THE EFFECT IS TRANSPARENT TO THE USER. HOWEVER, IN SERVICING THE ATTENUATOR BOARD, IT IS AN IMPORTANT ITEM TO NOTE. EXPECT A SIGNAL ATTENUATION ON THE COMBINER CIRCUIT.

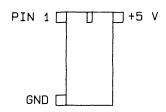


SCHEMATIC ATTENUATOR BOARDS (A2) P/N 03326-66502 REV A

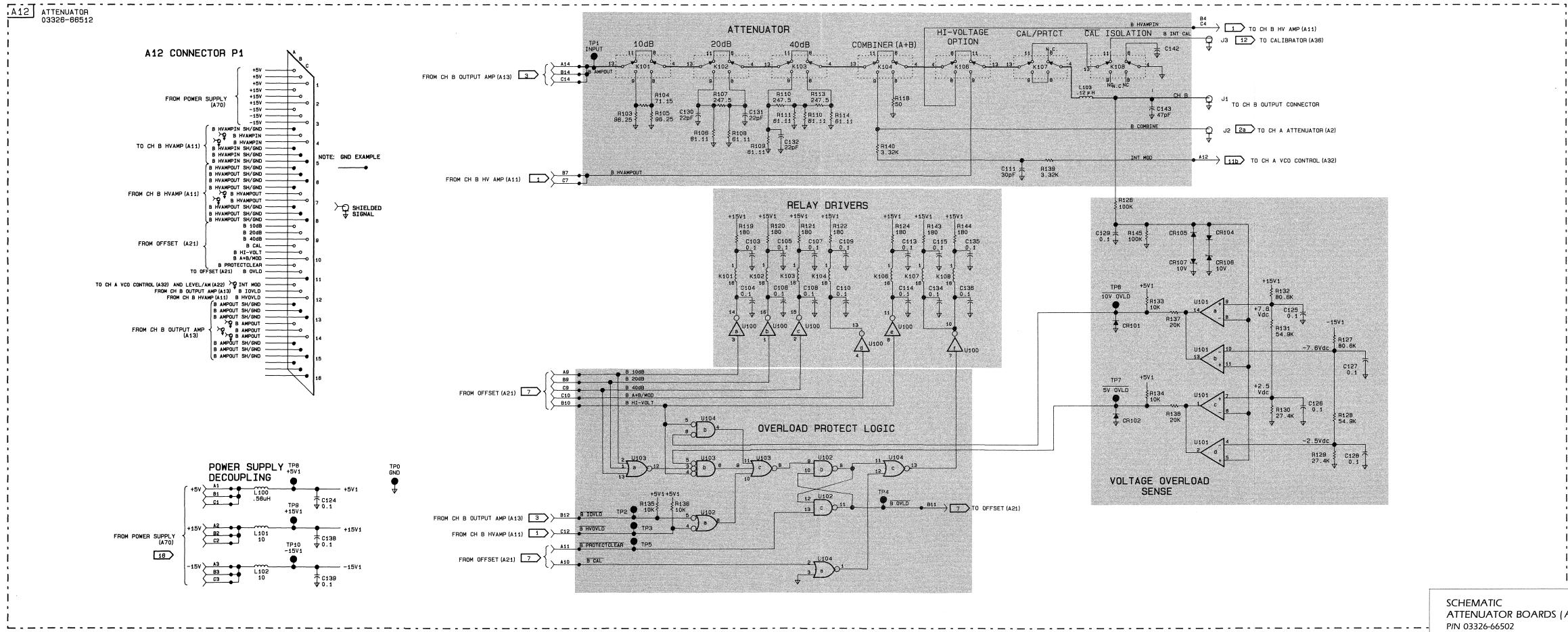
2a

Figure 6-1

SERVICE


ATTENUATOR BOARDS (A12) P/N 03326-66512 REV A

REFERENCE TABLE


					BYPASS CAP	CITORS	
COMP.	+5V1	+15V1	-15V1	GND	REF.DESIG.	VALUE	N.C.
U100				8			5, 12
		9					
U101			. 12		C117	.01 . #F.	
		З			C116	.01 #F	
U102				7			1, 2, 3
	14				C118	.01 #F	
U103				7			
	14		1		C119	.01 #F	
U104			1	7			8, 9, 1
	14	1			C140	.01 #F	

NOTES:

- 1. TTL DEVICES ARE USED IN THIS CIRCUIT.
- 2. ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN, REGARDLESS OF THE TOTAL PIN COUNT (e.g., FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16)

- 3. NO COMPONENT IS SUPPOSED TO BE LOADED ON THE FOOTPRINT OF THE JACK. THE FOOTPRINTS ARE USED FOR FACTORY TEST PURPOSES ONLY.
- 4. RELAY IS SHOWN IN THE DE-ENERGIZED STATE.
- 5. THE CHANNEL A ATTENUATOR (A2) AND THE CHANNEL B ATTENUATOR (A12) MAY BE INTERCHANGED FOR TROUBLESHOOTING PURPOSES. DUE TO SLIGHTLY DIFFERENT CIRCUITRY. HOWEVER, INTERNAL PHASE MODULATION, INTERNAL AMPLITUDE MODULATION, AND THE COMBINER FEATURES WILL NOT WORK. ALL OTHER FEATURES AND MODES WILL BE FULLY FUNCTIONAL.
- 6. POOR GROUND CONNECTIONS IN THE PHONO CABLES MAY CAUSE INTERMITTENT PROBLEMS THAT CAN APPEAR TO BE SUBTLE HARDWARE FAILURES (FOR EXAMPLE, POOR PHASE OR AMPLITUDE CALIBRATION ACCURACY). CRIMPING THE PHONO CONNECTORS TO IMPROVE THE GROUND CONNECTIONS IS RECOMMENDED.
- 7. WITH COMBINED OPERATION ACTIVATED, THE CHANNEL A AND CHANNEL B OUTPUT SIGNALS ARE SENT THROUGH THE RESISTIVE COMBINER CIRCUIT ON THE A2 BOARD. THIS CIRCUIT ATTENUATES THE SIGNALS BY 6.02 dB. THIS IS COMPENSATED FOR IN THE SOFTWARE. SO THE EFFECT IS TRANSPARENT TO THE USER. HOWEVER, IN SERVICING THE ATTENUATOR BOARD, IT IS AN IMPORTANT ITEM TO NOTE. EXPECT A SIGNAL ATTENUATION ON THE COMBINER CIRCUIT.

SCHEMATIC ATTENUATOR BOARDS (A12) P/N 03326-66502 rev a

Figure 6-17.

6-22 CHANNEL A AND CHANNEL B OUTPUT AMPLIFIER, A3 AND A13

The information in this section should be used to isolate defective sub-blocks when servicing the HP 3326A. All procedures assume Fault Isolation to the Board Level has been used to determine which functional block (board) has failed.

Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltages and energy available at many points can, if contacted, result in personal injury.

Be sure that the power switch is in the STBY position before inserting or removing any circuit board. Power transients caused by insertion or removal may damage the circuit boards.

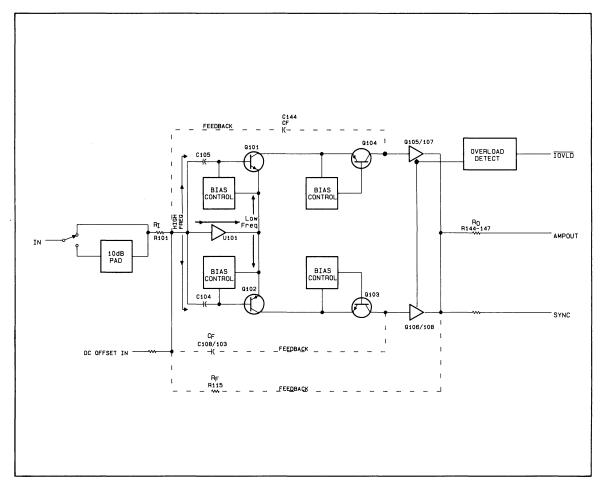


Figure 6-18. Output Amplifier Block Diagram

Theory of Operation

The preamplifiers (A4 and A14), output amplifiers (A3 and A13) and high voltage amplifiers (A1 and A11, Option 002) share the same topology and general theory of operation, as described here. The amplifier can be viewed as a discrete version of an inverting operational amplifier (op amp). The overall gain of the amplifier is established by the ratio of the value of the feedback resistor (R115) to that of the input resistor (R101). The resistors share a common "virtual ground" point at the input to the amplifier. The input impedance of the amplifier is 100 Ω (as set by R101). The output impedance would be 0 Ω , except that four parallel output resistors (R144, R145, R146, and R147) backmatch the output, giving the amplifier an output impedance of 50 Ω .

The general operation of the amplifier is understood by separating the small signal operation from the biasing circuitry. The small signal circuits essentially consist of the eight transistors (Q101-Q108). These form a symmetrical push-pull configuration which can be further simplified by focusing on the function of the half circuit consisting of transistors Q101, Q104, Q105, and Q107. Transistors Q101 and Q104 form a cascode pair in which the collector of Q104 is a current source providing high voltage gain. This node (which includes the collectors of Q103 and Q104, diodes CR101-CR104, and resistors R129, R130, and R140) can be regarded as a single high impedance gain point that is extremely sensitive to any parasitic capacitance. Touching this node severely affects the amplifier performance and stability. The Darlington transistor pair (Q105 and Q107) buffers the node and provides the output current drive capability of the amplifier.

The amplifier contains two gain paths. One is ac coupled from the "virtual ground" point to the "inverting" base inputs of the transistors Q101 and Q102 through capacitors C105 and C104, respectively. This path is dominant at high frequencies. At low frequencies and dc the directly coupled path (through U101) is dominant. These signals are amplified and inverted by U101 and passed to the "non-inverting" emitter inputs of Q101 and Q102. U101 provides a direct coupled path for biasing the amplifier at dc and provides additional loop gain at low frequencies for improving distortion in the audio range.

The dual op amps U102 and U104 serve as biasing elements for each of the four cascode transistors (Q101-Q104). The base-emitter junctions are included in the feedback loops to eliminate amplifier sensitivity to temperature changes which cause (biasing) variations in V_{be} . This maintains the emitter voltages of Q101 and Q102 at approximately 0.5 V and -0.5 V and the base voltages of Q103 and Q104 at approximately 13.3 V and -13.3 V.

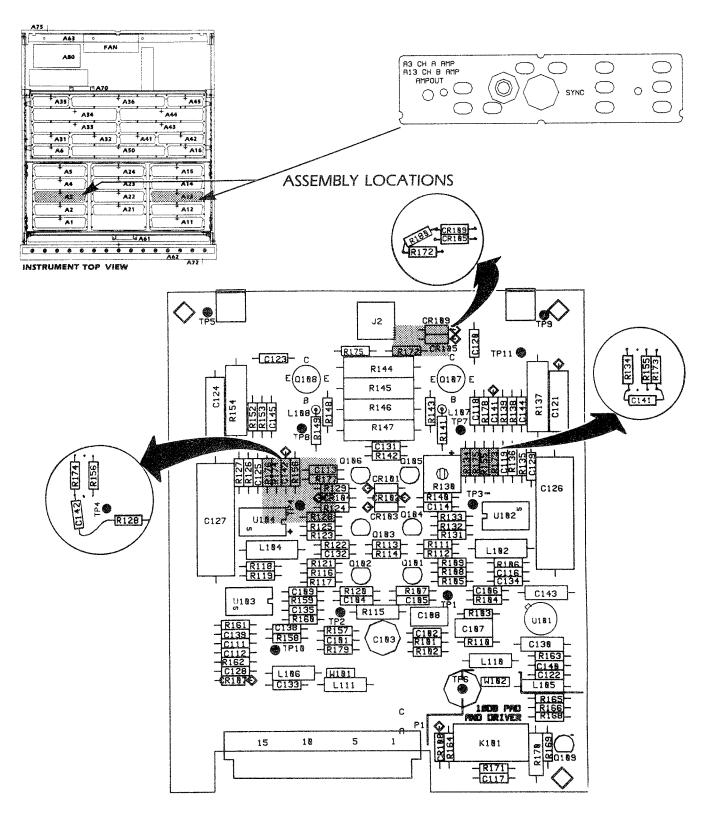
High frequency stability and compensation is achieved with a Miller capacitance (C108 and C103) which provides feedback from the high gain node to the "virtual ground" point. The voltage across R130 establishes the output stage quiescent current level through the transistors Q107 and Q108.

The current overload protection circuitry consists of comparators (U103) which monitor the collector circuits of the Darlington amplifier pairs Q105-Q107 and Q106-Q108. If either side of the final amplifier stage exceeds a fixed range, U103 activates the overload signal IOVLD. This condition occurs when excessive voltage appears on the instrument output connector and protection is not activated by the overload protect logic on the attenuator. The IOVLD signal goes to the attenuator board where it can activate protection irrespective of other logic conditions.

Troubleshooting

The instrument bus circuit on the controller board (A61) and the control interface on this board can be tested using the Interface SA Test (see Tables 6-52 and 6-53 in the A61 troubleshooting sub-section 6-33). This test exercises the control lines from the controller board to determine if the controller or the control interface circuitry is defective.

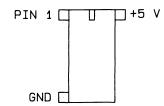
Special troubleshooting aids on the board include a jumper to de-energize the 10 dB attenuator at the input and a jumper to disable the DC offset input. The latter allows troubleshooting an offset problem to determine whether the fault is in the preamp or the offset circuits.

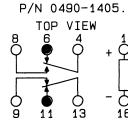

The multiple feedback design and delicate balance of the individual stages of this circuit make them highly interactive. This causes the symptoms of a problem in any part of the amplifier to propagate throughout. Also, due to the high open-loop gain, many of the component connections within the circuit are so sensitive to stray capacitance that the balance would be disturbed by probing with test equipment.

First, make a visual inspection of the board, looking for burned or otherwise damaged parts. Then check the power supplies on the board. It is useful to probe the input and output of the amplifier with an oscilloscope to determine whether the failure is catastrophic or not. The waveform shape of the output may contain a clue as to which half of the push-pull amplifier stages are failing. Test points are provided to measure bias in the base circuits of the first two stages.

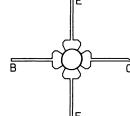
If these basic troubleshooting methods have failed to isolate the problem, the fastest troubleshooting method is to replace components based on their probability of failure. This approach is recommended because of the circuit's troubleshooting difficulties. Replace transistors first, whole stages at a time, beginning at the output. It is recommended that all transistors in a stage be changed at the same time because failure of one tends to stress the performance parameters of the other(s). If Q107 is replaced, Q108 should also be replaced. If low-frequency response is out of specification, replace U101. After that, the op amps composing the biasing for the first two stages should be replaced. If these replacements have not fixed the problem, replace the diodes in the sensitive node and check the larger capacitors on the board for shorts or leakage. These last two suggestions have about equal probability of solving the problem.

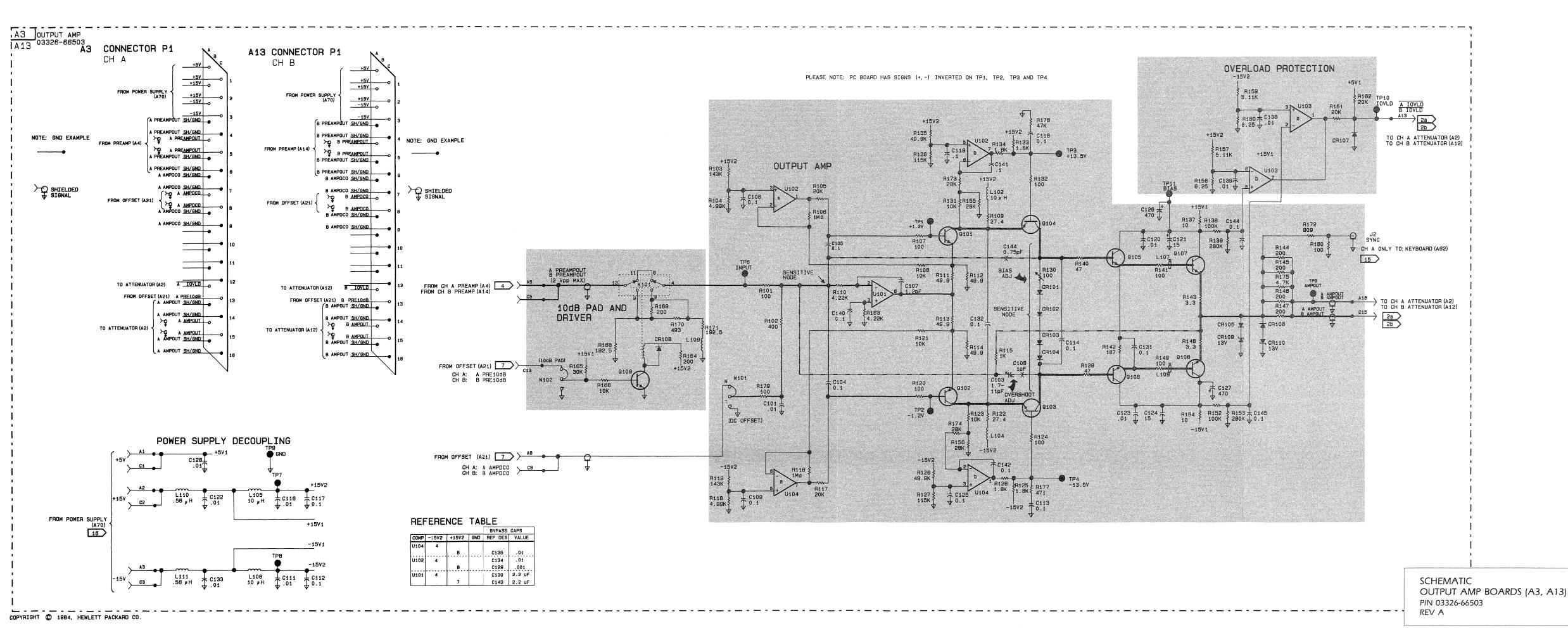
If the amplifier has failed in a manner that suggests that the overload protection circuitry is not operating properly (i.e., it was overloaded from the front panel), it is recommended that the protection circuitry be exercised and checked for failure. The output amplifier has current overload detection provided by the comparator circuitry of U103. To exercise this circuit, ground pins 2 and 5, one at a time. Each should cause the instrument to indicate that it has been overloaded. The instrument should reset itself soon after removing the ground. It is recommended that the protection circuitry on the attenuator board be checked, also, as described in the attenuator board level repair sub-section.

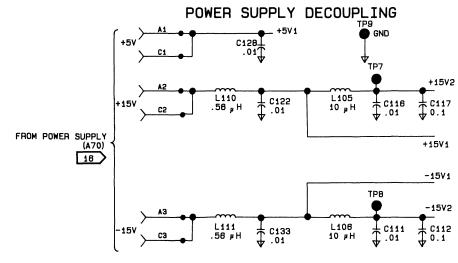

Refer to Table 6-15 for recommended post-repair adjustments.


OUTPUT AMP BOARDS (A3, A13) P/N 03326-66503 REV A

NOTES:


1.ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN, REGARDLESS OF THE TOTAL PIN COUNT (e.g., FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16).


- 2.NO COMPONENT IS SUPPOSED TO BE LOADED ON THE FOOTPRINT OF THE JACK. THE FOOTPRINTS ARE USED FOR FACTORY TEST PURPOSES ONLY.
- 3. RELAYS ARE SHOWN IN THE DE-ENERGIZED STATE.



- 4. THIS BOARD IS USED TWICE IN THE INSTRUMENT -ONCE FOR CHANNEL A, AND ONCE FOR CHANNEL B. THE TWO IDENTICAL BOARDS MAY BE INTERCHANGED FOR TROUBLESHOOTING, BUT MUST BE RETURNED TO THEIR ORIGINAL LOCATIONS TO AVOID RECALIBRATION OF THE INSTRUMENT
- 5. POOR GROUND CONNECTIONS IN THE PHONO CABLES MAY CAUSE INTERMITTENT PROBLEMS THAT CAN APPEAR TO BE SUBTLE HARDWARE FAILURES (FOR EXAMPLE, POOR PHASE OR AMPLITUDE CALIBRATION ACCURACY). CRIMPING THE PHONO CONNECTORS TO IMPROVE THE GROUND CONNECTIONS IS RECOMMENDED.
- 6. IF THE HIGH VOLTAGE AMPLIFIER (A1 OR A11, OPTION 002) IS ENGAGED, DC OFFSET IS NOT INJECTED INTO THE OUTPUT AMPLIFIER (A3 OR A13) THE OFFSET IS ROUTED TO THE HIGH VOLTAGE AMPLIFIER SUMMING JUNCTION INSTEAD.SEE THE OVERALL THEORY OF OPERATION FOR MORE DETAILS.
- 7. INSTALLATION OF Q107 AND Q108 ON A3, A13; WHEN REPLACING THIS COMPONENT, NOTE THAT THE COLLECTOR HAS A SLANTED-ENDED LEAD (INSTEAD OF A BLUNT-ENDED LEAD). PUT THIS LEAD INTO THE HOLE MARKED "C" ON THE PC BOARD.

8. TOUCHING THE PART OF THE CIRCUIT MARKED "SENSITIVE NODE" WILL AFFECT THE STABILITY AND PERFORMANCE OF THE AMPLIFIER.

					BYPASS	CAPS	
	COMP	-15V2	+15V2	GND	REF DES	VALUE	
i	U104	4					
			8		C135	.01	
	U102	4			C134	.01	
			8		C129	.001	
	U101	4			C130	2.2 uF	
			7		C143	2.2 uF	

Figure 6-19.

6-95

З

6-23 CHANNEL A AND CHANNEL B PREAMPLIFIER, A4 AND A14

The information in this section should be used to isolate defective sub-blocks when servicing the HP 3326A. All procedures assume Fault Isolation to the Board Level has been used to determine which functional block (board) has failed.

Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltages and energy available at many points can, if contacted, result in personal injury.

Be sure that the power switch is in the STBY position before inserting or removing any circuit board. Power transients caused by insertion or removal may damage the circuit boards.

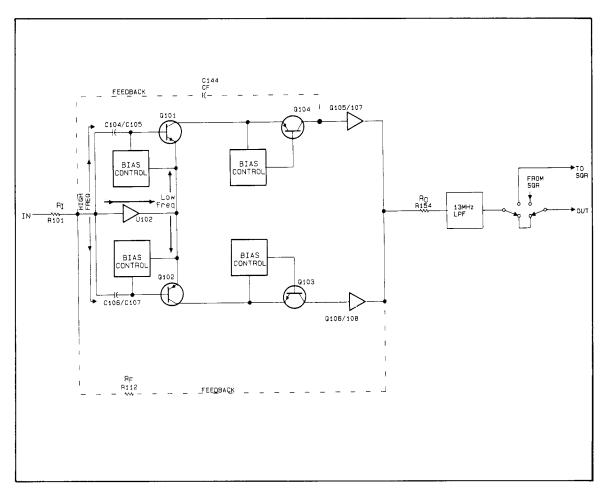


Figure 6-20. Preamplifier Block Diagram

Theory of Operation

The preamplifiers (A4 and A14), output amplifiers (A3 and A13) and high voltage amplifiers (A1 and A11, Option 002) share the same topology and general theory of operation, as described here. The amplifier can be viewed as a discrete version of an inverting operational amplifier (op amp). The overall gain of the amplifier is established by the ratio of the value of the feedback resistor (R112) to that of the input resistor (R101). The resistors share a common "virtual ground" point at the input to the amplifier. The input impedance of the amplifier is 100 Ω (as set by R101). The output impedance would be 0 Ω , except that R163 backmatches the output, giving the amplifier an output impedance of 50 Ω .

The general operation of the amplifier is understood by separating the small signal operation from the biasing circuitry. The small signal circuits essentially consist of the eight transistors (Q101-Q108). These form a symmetrical "push-pull" configuration which can be further simplified by focusing on the function of the "half-circuit" consisting of transistors Q101, Q104, Q105, and Q107. These perform the basic amplification. Transistors Q101 and Q104 form a cascode pair in which the collector of Q104 is a current source providing high voltage gain. This node (which includes the collectors of Q103 and Q104, diodes CR101-CR104, and resistors R130, R131, and R133) can be regarded as a single high impedance gain point that is extremely sensitive to any parasitic capacitance. Touching this node severely affects the amplifier performance and stability. The Darlington transistor pair (Q105 and Q107) buffers the node and provides the output current drive capability of the amplifier.

The amplifier contains two gain paths. One is ac coupled from the "virtual ground" point to the base circuits of transistors Q101 and Q102 through capacitors C110 and C111, respectively. This path is dominant at high frequencies. At low frequencies and dc the directly coupled path (through U101) is dominant. These signals are amplified and inverted by U101 and passed to the emitter circuits of Q101 and Q102. U101 provides a direct coupled path for biasing the amplifier at dc and provides additional loop gain at low frequencies for improving distortion in the audio range.

The dual op amps U102 and U104 serve as biasing elements for each of the four cascode transistors (Q101-Q104). The base-emitter junctions are included in the feedback loops to eliminate amplifier sensitivity to temperature changes which cause (biasing) variations in V_{be} . This maintains the emitter voltages of Q101 and Q102 at approximately 0.5 V and -0.5 V and the emitter voltages of Q103 and Q104 at approximately 10.0 V and -10.0 V.

High frequency stability and compensation is achieved with a Miller capacitance (C144) which provides feedback from the high gain node to the "virtual ground" point. The voltage across R130 establishes the output stage quiescent current level through the transistors Q107 and Q108.

The signal from the preamplifier feeds a passive 13 MHz low pass filter which then passes the signal on to the preamplifier output through a relay. The relay is used to select either the preamplifier's output or the square signal output from the square board (A23) to pass to the output amplifier (A3 or A13).

Troubleshooting

The instrument bus circuit on the controller board (A61) and the control interface on this board can be tested using the Interface SA Test (see Tables 6-52 and 6-53 in the A61 troubleshooting sub-section 6-33). This test exercises the control lines from the controller board to determine if the controller or the control interface circuitry is defective.

The multiple feedback design and delicate balance of the individual stages of this circuit make them highly interactive. This causes the symptoms of a problem in any part of the amplifier to propagate throughout. Also, due to the high open-loop gain, many of the component connections within the circuit are so sensitive to stray capacitance that the balance would be disturbed by probing with test equipment.

First, make a visual inspection of the board, looking for burned or otherwise damaged parts. Then check the power supplies on the board. It is useful to probe the input and output of the amplifier with an oscilloscope to determine whether the failure is catastrophic or not. The waveform shape of the output may contain a clue as to which half of the push-pull amplifier stages are failing. Test points are provided to measure bias in the base circuits of the first two stages.

If these basic troubleshooting methods have failed to isolate the problem, the fastest troubleshooting method is to replace components based on their probability of failure. This approach is recommended because of the circuit's troubleshooting difficulties. Replace transistors first, whole stages at a time, beginning at the output. It is recommended that all transistors in a stage be changed at the same time because failure of one tends to stress the performance parameters of the other(s). If Q107 is replaced, Q108 should also be replaced. If low-frequency response is out of specification, replace U101. After that, the op amps composing the biasing for the first two stages should be replaced. If these replacements have not fixed the problem, replace the diodes in the sensitive node and check the larger capacitors on the board for shorts or leakage. These last two suggestions have about equal probability of solving the problem.

If the amplifier has failed in a manner that suggests that the overload protection circuitry is not operating properly (i.e., it was overloaded from the front panel), it is recommended that the protection circuitry on the attenuator board be exercised and checked for failure as described in the attenuator board level repair.

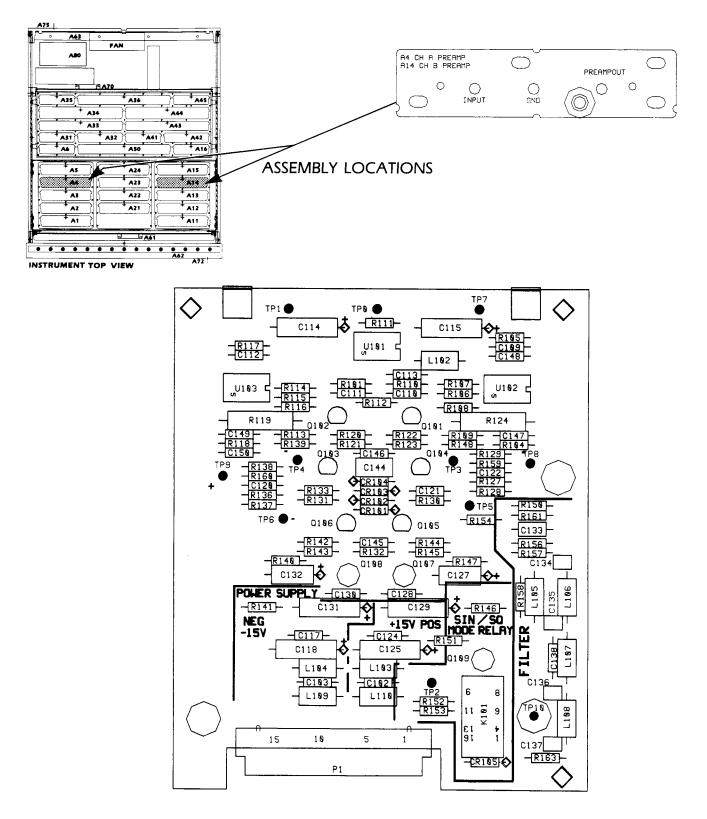
Table 6-22 shows the activation of relays for various instrument functions with relays on the preamplifier board highlighted.

Refer to Table 6-15 for recommended post-repair adjustments.

Table 6-22. Function Control

Switch Name	Reference Designator	Off		Sine		Squ	Square		DC		V	Combined	AM	Ext AM		PM	Ext PM		Sync PM
t	(pin no.)	A	В	A	B	A	В	A	В	A	В	Col	Int	A	В	Int	A	В	(AB)
Ch A Cal/Prtct	A2K107	0	X	1	x	1	X	1	X	1	x	1	1	1	X	1	1	Х	1
Ch B Cal/Prtct	A12K107	Х	0	x	1	x	1	x	1	X	1	1	1	1	1	1	1	1	1
Ch A HV Option	A2K106	Х	X	X	X	X	X	X	X	1	X	X	Х	Х	X	X	X	Х	X
Ch B HV Option	A12K106	Х	X	X	X	X	X	X	X	X	1	X	Х	X	X	X	X	X	X
Ch A Square	A4K101	X	X	0	X	1.	X	0	X	X	X	X	X	X.	X	x	X	X	X
Ch B Square	A14K101	X	X	X	0	X	1	X	0	X	X	X	Х	x	x	X	X	X	X
Ch A Offset	A21K1	Х	X	X	X	X	X	X	X	1	X	X	Х	X	X	X	X	X	X
Ch B Offset	A21K21	X	X	X	X	X	X	X	X	X	1	X	Х	X	х	X	X	Х	X
INT AM	A22U2(1)	X	X	X	x	X	X	X	X	X	X	X	ON (L)	OFF (H)	X	X	X	X	X
A EXT AM	A22U2(16)	Х	X	X	x	X	x	X	X	X	X	x	OFF (H)	ON (L)	X	X	X	X	X
B EXT AM	A22U6(1,16) A22U6(8,9)	Х	X	X	x	X	X	x	X	X	X	X	Х	Х	ON (L)	X	X	X	X
INT PM	A32U22(1)	Х	X	X	X	x	x	x	x	x	x	x	X	X	х	ON (L)	OFF (H)	OFF (H)	OFF (H)
A EXT PM	A32U22(16)	Х	X	x	X	X	x	X	X	X	X	x	X	X	x	OFF (H)	ON (L)	x	ON (L)
B EXT PM	A42U22(16)	X	X	X	X	X	X	X	X	X	x	X	X	X	X	X	х	ON (L)	X
Ch A PM	A32U22(9)	x	X	X	x	X	x	X	X	x	X	x	x	X	х	OFF (H)	OFF (H)	x	OFF (H)
Ch B PM	A42U22(9)	X	x	X	X	X	X	X	x	x	x	x	X	X	Х	X	X	OFF (H)	x
Ch A Combiner Isolation	A2K105	X	x	X	x	x	x	x	x	x	x	1	0	x	x	0	X	X	X
Ch A Combiner	A2K104	х	X	X	X	X	X	X	X	X	Х	1	0	X	x	0	х	X	X
Ch B Combiner/ INT MOD	A12K104	X	X	X	X	X	X	x	X	x	X	1	1	X	X	1	X	X	x

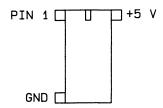
t X = Relay can be in either the de-energized or energized position in this function.

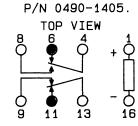

1 = Relay must be in the energized position in this function.

0 = Relay must be in the de-energized position in this function.

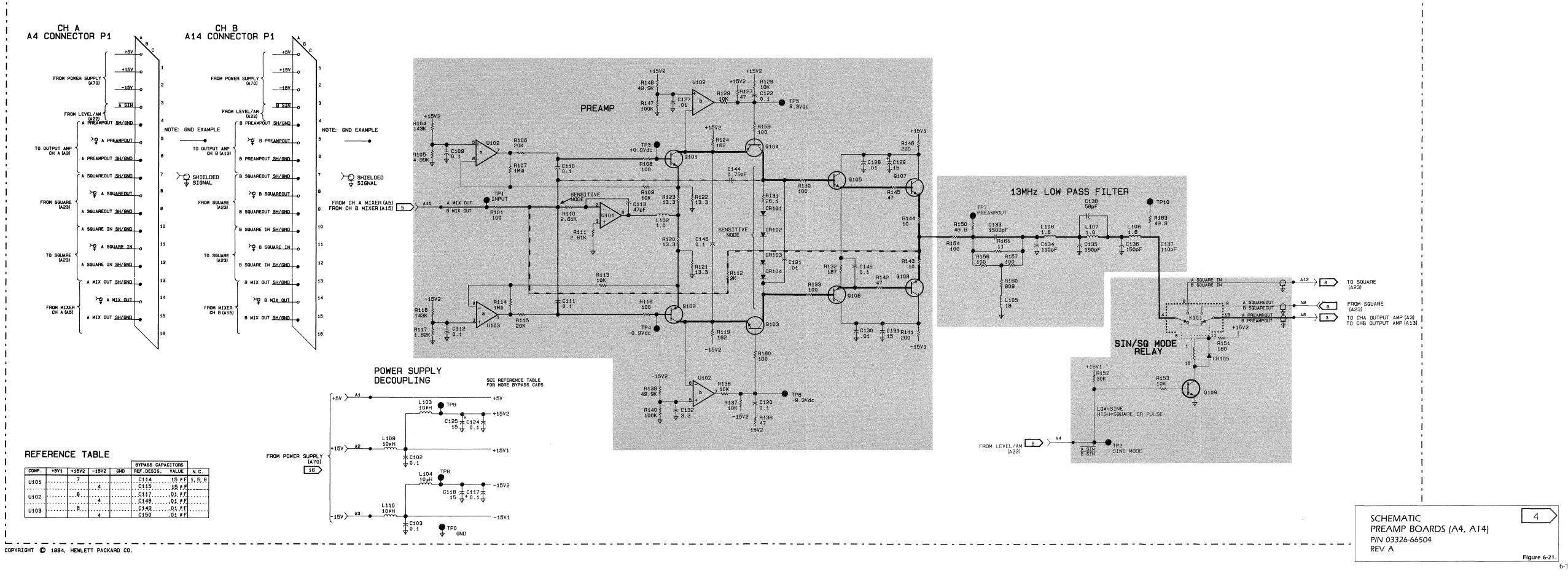
ON (L) = Control line for the switch must be TTL low in this function. This activates the switch.

OFF (H) = Control line for the switch must be TTL high in this function. This de-activates the switch.


SERVICE


PREAMP BOARDS (A4, A14) P/N 03326-66504 REV A

NOTES:


1. ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN, REGARDLESS OF THE TOTAL PIN COUNT (e.g., FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16).

- 2.NO COMPONENT IS SUPPOSED TO BE LOADED ON THE FOOTPRINT OF THE JACK. THE FOOTPRINTS ARE USED FOR FACTORY TEST PURPOSES ONLY.
- **3**. RELAYS ARE SHOWN IN THE DE-ENERGIZED STATE.

- 4. THIS BOARD IS USED TWICE IN THE INSTRUMENT -ONCE FOR CHANNEL A, AND ONCE FOR CHANNEL B. THE TWO IDENTICAL BOARDS MAY BE INTERCHANGED FOR TROUBLESHOOTING, BUT MUST BE RETURNED TO THEIR ORIGINAL LOCATIONS TO AVOID RECALIBRATION OF THE INSTRUMENT.
- 5.TOUCHING THE PART OF THE CIRCUIT MARKED "SENSITIVE NODE" WILL AFFECT THE STABILITY AND PERFORMANCE OF THE AMPLIFIER.

A14 03326-66504

					BYPASS CAP	CITORS	
COMP.	+5V1	+15V2	-15V2	GND	REF.DESIG.	VALUE	N.C.
U101		7			C114	15 # F	1, 5, 8
0101			4		C115	15 # F	
U102 ·····		8			C117	.01 # F	
		4		C148	.01 # F		
U103		8			C149	.01 # F	
0100			4		C150	.01 # F	

COPYRIGHT 🔘 1984, HEWLETT PACKARD CO.

6-24 CHANNEL A AND CHANNEL B MIXER, A5 AND A15

The information in this section should be used to isolate defective sub-blocks when servicing the HP 3326A. All procedures assume Fault Isolation to the Board Level has been used to determine which functional block (board) has failed.

Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltages and energy available at many points can, if contacted, result in personal injury.

Be sure that the power switch is in the STBY position before inserting or removing any circuit board. Power transients caused by insertion or removal may damage the circuit boards.

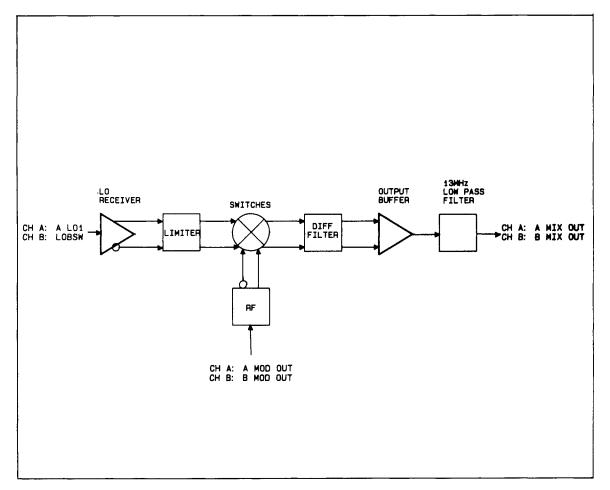


Figure 6-22. Mixer Block Diagram

Theory of Operation

Signal inputs to the channel A mixer are A LO1 and A MOD OUT. Signal inputs to the channel B mixer are LOBSW and B MOD OUT. The output of the mixer (A MIX OUT, B MIX OUT) is the difference frequency between the local oscillator input frequency and the reference input frequency. The output amplitude is set by the amplitude of the reference input (A MOD OUT, B MOD OUT) and the conversion gain of the mixer (MIX OUT/MOD OUT = 7 dB).

The LO receiver sub-block is one section of an ECL line receiver package. Two of the receivers on the IC are not used. The gate's complementary outputs drive the limiter's emitter coupled pair.

The RF sub-block contains a portion of a 50 Ω , 20 MHz; bandpass filter (C21, C22, and L20). The first portion of this filter appears on the modulator board. A transformer (T1) converts the A MOD OUT and B MOD OUT signals from single ended to differential ended to drive the emitter coupled pair (Q3). The RF outputs are equal and 180° out of phase. The 2:1 spur adjustment (R316) affects the balance of the emitter resistance of the differential amplifier (Q3) to reduce the level of an unwanted, in-band, spurious product (the second harmonic of the reference minus the LO frequency).

The switches sub-block consists of two emitter coupled pairs (Q5 and Q6) which are turned on and off by the 20 to 33 MHz limiter output (± 0.3 V). This, in conjunction with the complementary RF sub-block output signals, multiplies the reference input by ± 1 at the LO rate, mixing the reference and LO together.

The outputs of the switches are the sum ($F_{1o} + F_{rf}$) and difference ($F_{1o} F_{rf}$) products and residual feedthrough signals (F_{1o} and F_{rf} , individually). The sum product is attenuated by the differential filter composed of L407-L410, C413-C415 and C417.

The output buffer is a unity gain difference amplifier with a single-ended output. The configuration of this sub-block is clarified by the expanded block diagram shown in Figure 6-23. The NPN transistors in the differential amplifier and the current sources are all on the same substrate in transistor array U400.

The adjustments for this sub-block are R400, R424, and C400. R400 adjusts dc offset of the output buffer. This adjusts square wave symmetry and sets the instrument's square wave second harmonic distortion. R424 balances collector currents in the input pair to improve second harmonic distortion of the sine wave output. C400 provides high frequency peaking to flatten the output response.

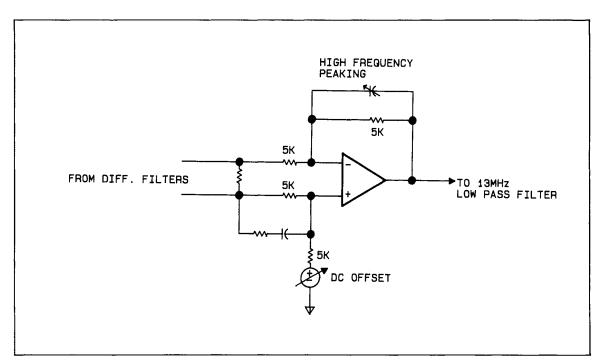


Figure 6-23. Output Buffer Expanded Block Diagram

Troubleshooting

Mixer operation is the same for all modes. The difference between the modes is the point of origin of the channel B LOBSW input from the RF switch board (A24). The RF switch either sends the channel B local oscillator output, the channel A local oscillator output, or the 20 MHz reference signal to the mixer board, depending on the mode. The point of origin of the signal is transparent to the mixer circuitry. The mixer behaves the same in any mode; it receives two inputs and produces one output.

This circuit may be analyzed by putting it on an extender (be sure to turn the power off before removing the board) and comparing the oscilloscope waveforms in Figure 6-24 with those of the defective unit. The instrument setup for these waveforms is given in the figure.

NOTE

Expect high spurious signal levels, particularly 2:1 spurs, when the mixer board is either on an extender board or its top cover plate is not tightly screwed down.

If the channel A and channel B modulator boards (A6 and A16) or mixer boards are interchanged for troubleshooting, the output amplitude of the instrument may change by ± 1 dB. If the channel A and channel B preamplifier boards (A4 and A14) or mixer boards are interchanged, the flatness of the output channel may vary. It is recommended that the boards be returned to their original positions after troubleshooting to reduce postrepair adjustment time.

Refer to Table 6-15 for recommended post-repair adjustments.

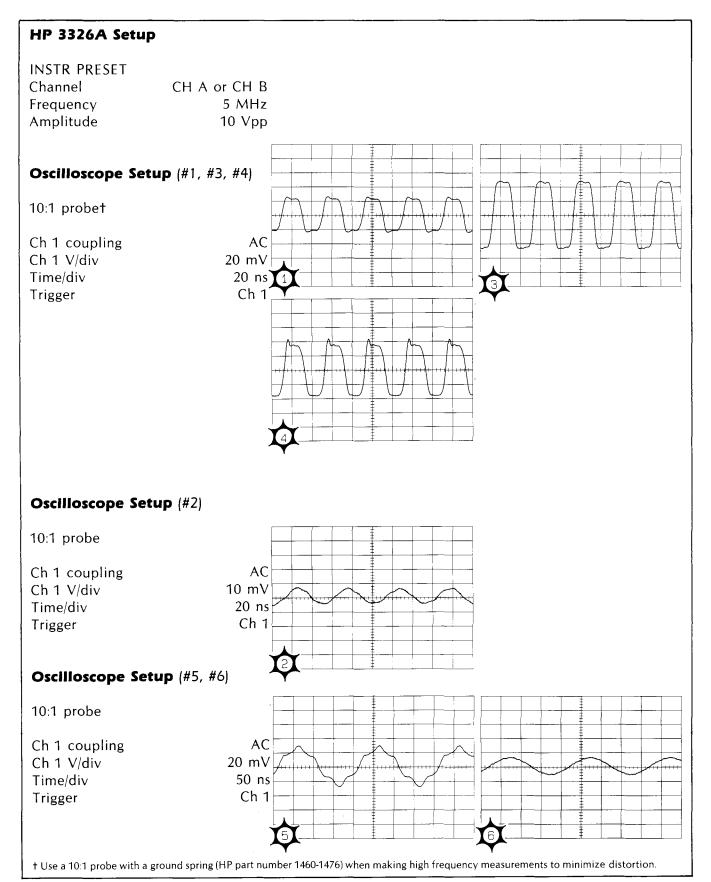
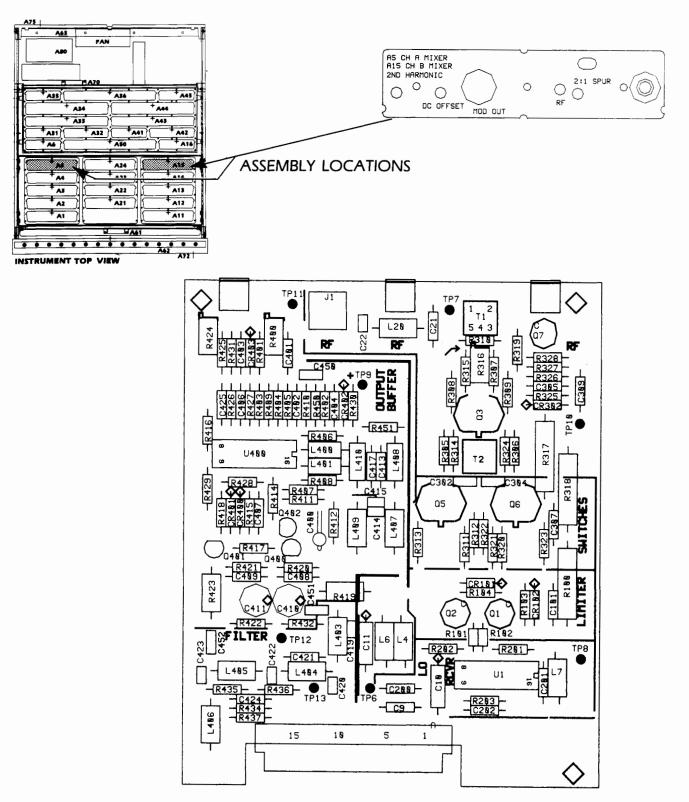
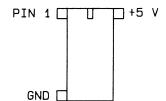
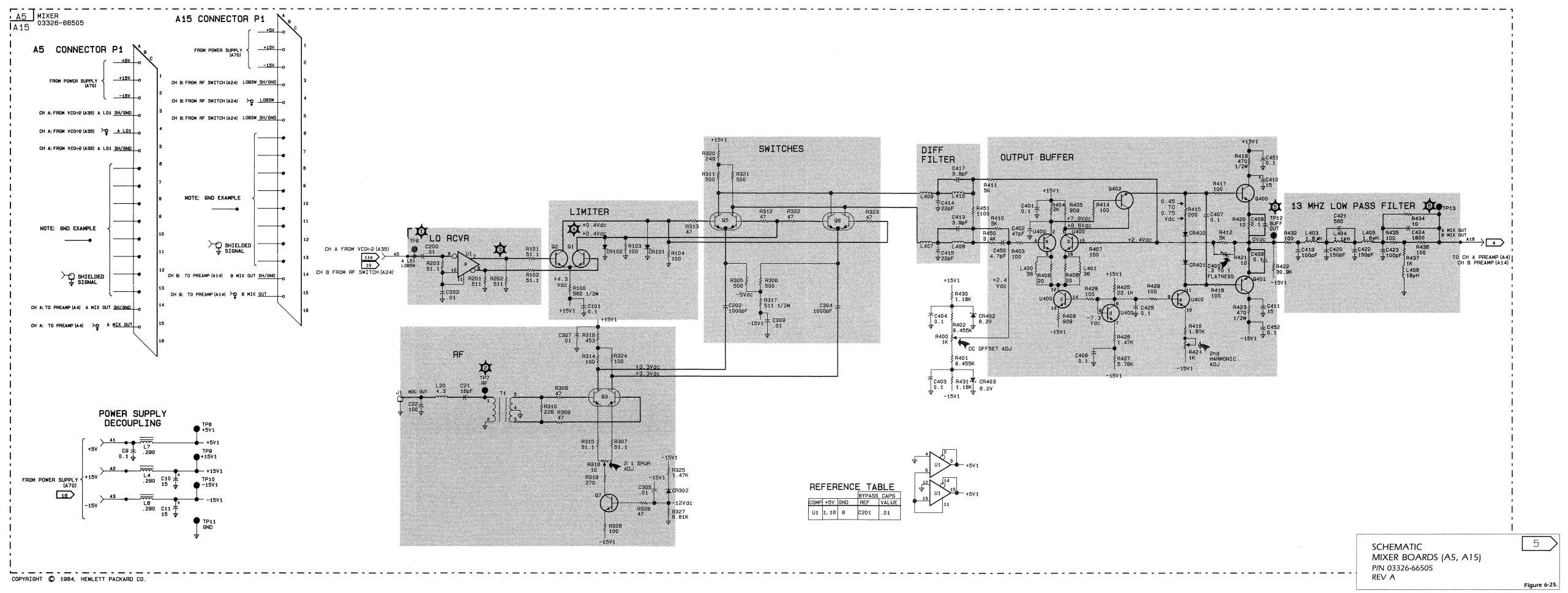



Figure 6-24. Mixer Board Waveforms


SERVICE


MIXER BOARDS (A5, A15) P/N 03326-66505 REV B

NOTES:

1. ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN, REGARDLESS OF THE TOTAL PIN COUNT (e.g., FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16).

- 2.THIS BOARD IS USED TWICE IN THE INSTRUMENT -ONCE FOR CHANNEL A, AND ONCE FOR CHANNEL B. THE TWO IDENTICAL BOARDS MAY BE INTERCHANGED FOR TROUBLESHOOTING, BUT MUST BE RETURNED TO THEIR ORIGINAL LOCATIONS TO AVOID RECALIBRATION OF THE INSTRUMENT.
- **3.** POOR GROUND CONNECTIONS IN THE PHONO CABLES MAY CAUSE INTERMITTENT PROBLEMS THAT CAN APPEAR TO BE SUBTLE HARDWARE FAILURES (FOR EXAMPLE, POOR PHASE OR AMPLITUDE CALIBRATION ACCURACY). CRIMPING THE PHONO CONNECTORS TO IMPROVE THE GROUND CONNECTIONS IS RECOMMENDED.

6-25 CHANNEL A AND CHANNEL B MODULATOR, A6 AND A16

The information in this section should be used to isolate defective sub-blocks when servicing the HP 3326A. All procedures assume Fault Isolation to the Board Level has been used to determine which functional block (board) has failed.

Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltages and energy available at many points can, if contacted, result in personal injury.

CAUTION

Be sure that the power switch is in the STBY position before inserting or removing any circuit board. Power transients caused by insertion or removal may damage the circuit boards.

Theory of Operation

The modulator board serves as the frequency reference for the mixer board and provides level control; the level of the modulator signal output (MOD OUT) defines the channel output level over a 10 dB range (the 10 dB step attenuators provide the coarse level adjustment over a 70 dB range). The modulator changes the level of the input signal (A 20MHz or B CARRIER, depending on the channel), but does not change the frequency. In all modes except two-tone, the frequency of the input signal is 20 MHz. In the two-tone mode, the frequency in the channel B modulator can vary from 19.9 to 20.1 MHz. See the overall theory of operation in sub-section 6-7 for details.

The modulator board has two inputs: a differential ECL level square wave (A 20MHz or B CARRIER) and an amplitude control signal (A SINLEV or B SINLEV). The dc level of the SINLEV signal provides the level control of the output signal. The ac component of SINLEV provides amplitude modulation of the output signal. The modulator output (MOD OUT), a sine wave, goes to the mixer board (A5 or A15).

When SINLEV is +4 Vdc, the modulator output is at nominal full scale (approximately -16 dBm into 50 ohms). Normal dc levels of the SINLEV signal are between +4 and +1.3 Vdc. At +1.3 Vdc, the modulator output level is approximately -26 dBm (-10 dB relative to full scale). When amplitude modulation is selected, the dc level is limited to +2 Vdc and an ac signal is added to the dc signal on SINLEV to produce modulation. Addition and scaling of this signal is provided by the level/AM board.

The six sub-blocks that make up the modulator board are the RF buffer, the SINLEV filtering, the base bias, the current sources, the modulator, and the BP filter (two sections of a three section bandpass filter). The RF buffer receives the differential square wave signal (A 20MHz or B CARRIER) and amplifies it to the full ECL level. The output of the RF buffer is ac coupled to the modulator sub-block. The base bias sub-block provides the dc offset necessary for proper operation of the modulator sub-block. The SINLEV input signal passes through a low pass filter whose break frequency is 1.4 MHz. The modulator is a Gilbert multiplier with emitter degeneration (R30) which increases the linear operating region and sets the circuit gain. Bias for the modulator passes through a bandpass filter, one-third of which exists on the mixer board (A5 or A15). This filter attenuates all harmonics of the 20 MHz signal by 90 dB or more, turning the square wave input of the modulator into a clean sine wave.

Troubleshooting

- 1. Turn the HP 3326A off, put the defective modulator board on an extender, then turn the instrument on.
- 2. Set the HP 3326A as follows:

INSTR PRESET	
CHANNEL	CH A or CH B
AMPLITUDE	13.97 dBm

- 3. Check the RF buffer sub-block. Using two 10:1 probes and an oscilloscope, check the waveforms #1 and #2 (see Figure 6-27).
- 4. Check the bias voltages present at either side of R30. If they are not as indicated on the schematic, suspect the SINLEV filtering sub-block or U2.
- 5. Check the modulator sub-block by examining U2(pin 7). The required output is shown in waveform #3. If the output is incorrect, check the bias voltages given on the schematic for the base bias and current sources sub-blocks. If the output is correct, suspect the BP filter sub-block.

Refer to Table 6-15 for recommended post-repair adjustments.

HP 3326A Setup

Trigger

10:1 probes (2)

Ch 1 coupling

Ch 1 V/div Ch 2 coupling

Ch 2 V/div

10:1 probe

Ch 1 V/div Time/div

Trigger

Ch 1 coupling

Ch 1 coupling

Ch 1 V/div

Time/div

Trigger

Time/div

Trigger

Oscilloscope Setup (#2)

Oscilloscope Setup (#3)

Oscilloscope Setup (#4)

Phono plug to BNC adapter cable

INSTR PRESET Channel CH A or CH B 13.97 dBm Amplitude **Oscilloscope Setup** (#1) 10:1 probes (2)† AC Ch 1 coupling Ch 1 V/div 20 mV AC Ch 2 coupling Ch 2 V/div 20 mV Time/div 20 ns

Ch 1

AC

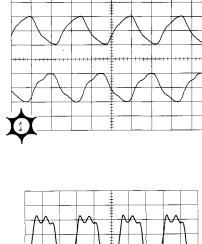
AC

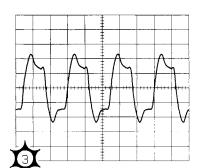
AC 40 mV

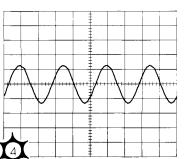
> 20 ns Ch 1

50 Ω DC

40 mV

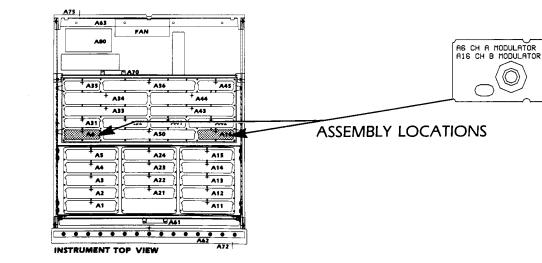

20 ns

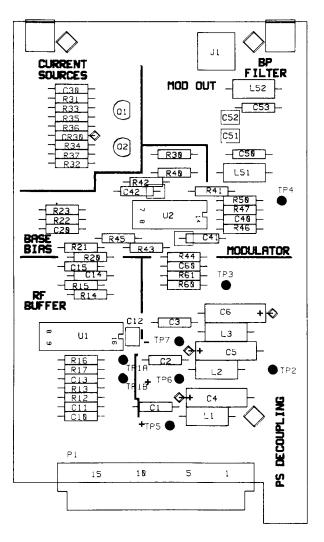

Ch 1


40 mV

40 mV

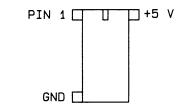
20 ns Ch 1





† Use a 10:1 probe with a ground spring (HP part number 1460-1476) when making high frequency measurements to minimize	
distortion.	l

MOD OUT



MODULATOR BOARDS (A6, A16) P/N 03326-66506 REV A

NOTES:

ALL INTEGRATED CIRCUITS ARE CORNER POWERED 1. ALL INTEGRATED CIRCOTTS ARE CONTENT ON THE REFERENCE TABLE. CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN, REGARDLESS OF THE TOTAL PIN COUNT (e.g., FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16).

- 2. THIS BOARD IS USED TWICE IN THE INSTRUMENT -ONCE FOR CHANNEL A. AND ONCE FOR CHANNEL B. THE TWO IDENTICAL BOARDS MAY BE INTERCHANGED FOR TROUBLESHOOTING, BUT MUST BE RETURNED TO THEIR ORIGINAL LOCATIONS TO AVOID RECALIBRATION OF THE INSTRUMENT.
- **3.** POOR GROUND CONNECTIONS IN THE PHONO CABLES MAY CAUSE INTERMITTENT PROBLEMS THAT CAN APPEAR TO BE SUBTLE HARDWARE FAILURES (FOR EXAMPLE, POOR PHASE OR AMPLITUDE CALIBRATION ACCURACY). CRIMPING THE PHONO CONNECTORS TO IMPROVE THE GROUND CONNECTIONS IS RECOMMENDED.

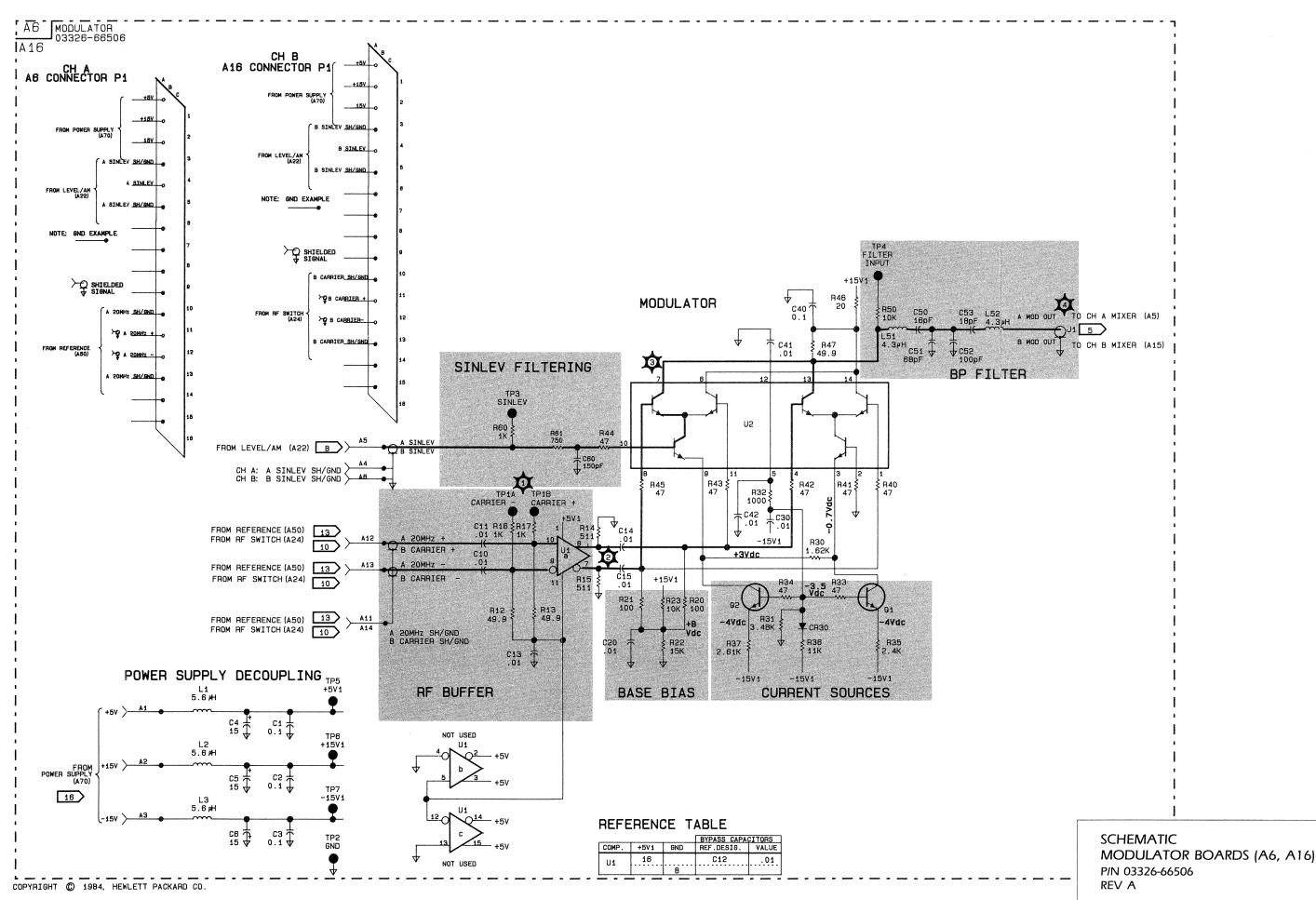


Figure 6-27.

6

6-26 OFFSET, A21

The information in this section should be used to isolate defective sub-blocks when servicing the HP 3326A. All procedures assume Fault Isolation to the Board Level has been used to determine which functional block (board) has failed.

Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltages and energy available at many points can, if contacted, result in personal injury.

CAUTION

Be sure that the power switch is in the STBY position before inserting or removing any circuit board. Power transients caused by insertion or removal may damage the circuit boards.

Theory of Operation

The offset board provides the dc offset for the two channels. The 10.24 ref sub-block receives a voltage reference signal (V REF) from the calibrator board (P/O A36). This signal is filtered to remove high frequency components, buffered, and used to derive accurate bias currents for the digital to analog converters (DACs) and bias currents for the current to voltage converters.

The controller sends information to the offset control board via the instrument data bus (IBUS0-7). For a list of all the bits and their definitions, consult the table on the schematic. To send information, the address strobe line (ADD STROBE) is pulled low, and the address of the latch that receives the data is placed on the instrument bus (IBUS0-7). The address is latched into register U42 when ADD STROBE goes high. The outputs of U42 are sent to the select pins of U43, a 3:8 multiplexer. When the instrument bus DATA STROBE line goes low, U43 is enabled, and its selected output goes low. The valid data is placed on the instrument bus, and is latched into the register clocked by the active output of U43 when DATA STROBE goes high.

RESET is sent to the CLR inputs of the data latches. When a RESET occurs, all DAC bits are set to a TTL low level, resulting in an output of the largest possible negative dc offset voltage. See the strobe control sub-block.

The dc offset voltage for each channel is derived with a DAC and a current to voltage converter. See the A offset and B offset sub-blocks. The DAC takes the 1.024 mA reference current, multiplies it by a scaling factor, and sends it to a current to voltage converter. This dc offset voltage (A AMPDCO or B AMPDCO) is sent to the output amplifier (A3 or A13), unless the high voltage option is activated. In that case, the dc offset voltage (A HVDCO or B HVDCO) is sent to the high voltage amplifier (A1 or A11). Both the output amplifier and high voltage amplifier invert the signal, so the dc offset voltage seen on the offset board is opposite in polarity from the offset at the output.

The A control and B control sub-blocks send control information to the attenuating pads on the attenuator boards and output amplifier boards.

The overload signals ($\overline{A \text{ OVLD}}$ or $\overline{B \text{ OVLD}}$) from the attenuators (A2 and A12) are received by the analog fault sub-block, where they are sent through the equivalent of an OR gate (a wired-OR). When the ANALOG FAULT line is active, the controller interrupts the microprocessor. The processor reads U41 (see the read data sub-block) and determines if an overload condition is causing the interrupt. See the signal glossary in Appendix A for other reasons that an active ANALOG FAULT signal would be sent to the controller.

Troubleshooting

The instrument bus circuit on the controller board (A61) and the control interface on this board can be tested using the Interface SA Test (see Tables 6-52 and 6-53 in the A61 troubleshooting sub-section 6-33). This test exercises the control lines from the controller board to determine if the controller or the control interface circuitry is defective.

Table 6-23 shows how the relays and analog switches in the instrument function. The relays in the offset board are highlighted (K1 and K21). These relays direct the offset signals to the output amplifier boards (A3, A13) under normal instrument operation and to the high voltage amplifier boards (A1, A11) when the high voltage option is activated. See the overall theory of operation (sub-section 6-7) for details.

SERVICE

Table 6-23. Function Control

Switch Name	Reference Designator	Off		Sine		Squ	Square		c	н	v	Combined	AM	Ext	АМ	Mq	Ext	РМ	Sync PM
t	(pin no.)	Α	В	A	В	A	В	A	В	A	B	Cor	Int	A	B	<u>I</u>	A	B	(AB)
Ch A Cal/Prtct	A2K107	0	X	1	X	1	X	1	X	1	X	1	1	1	X	1	1	X	1
Ch B Cal/Prtct	A12K107	Х	0	Х	1	Х	1	Х	1	Х	1	1	1	1	1	1	1	1	1
Ch A HV Option	A2K106	Х	Х	X	X	Х	Х	X	Х	1	X	X	Х	Х	Х	Х	Х	X	X
Ch B HV Option	A12K106	Х	X	Х	X	X	X	X	Х	X	1	X	X	X	X	X	X	X	X
Ch A Square	A4K101	X	X	0	X	1	Х	0	X	X	X	x	Х	Х	X	X	Х	x	Х
Ch B Square	A14K101	Х	X	X	0	Х	1	X	0	X	X	X	X	Х	X	X	X	X	X
Ch A Offset	A21K1	x	X	X	x	x	X	x	X	1	X	X	X	X	X	x	X	X	X
Ch B Offset	A21K21	X	x	X	x	X	x	X	X	X	1	X	x	X	x	X	X	x	X
INT AM	A22U2(1)	X	X	X	X	X	X	x	X	X	x	X	ON (L)	OFF (H)	X	X	X	X	Х
a ext am	A22U2(16)	Х	X	X	X	X	X	х	х	X	x	X	OFF (H)	ON (L)	X	X	X	X	X
b ext am	A22U6(1,16) A22U6(8,9)	X	X	X	X	x	X	x	X	X	x	X	X	X	ON (L)	X	X	X	X
INT PM	A32U22(1)	X	X	X	x	x	X	х	Х	x	X	Х	X	X	Х	ON (L)	OFF (H)	OFF (H)	OFF (H)
A EXT PM	A32U22(16)	Х	x	X	X	Х	X	x	x	X	х	x	X	X	Х	OFF (H)	ON (L)	X	ON (L)
B EXT PM	A42U22(16)	X	x	x	X	X	X	x	x	X	X	x	x	X	x	X	X	ON (L)	X
Ch A PM	A32U22(9)	X	x	x	x	X	X	x	x	X	x	x	x	X	x	OFF (H)	OFF (H)	x	OFF (H)
Ch B PM	A42U22(9)	X	x	x	X	X	x	X	x	X	x	X	X	X	X	X	х	OFF (H)	х
Ch A Combiner Isolation	A2K105	X	x	x	X	x	x	x	x	X	x	1	0	X	X	0	X	x	X
Ch A Combiner	A2K104	x	x	X	х	X	X	x	X	X	X	1	0	х	х	0	Х	x	X
Ch B Combiner/ INT MOD	A12K104	X	X	X	x	X	X	X	X	X	X	1	1	X	X	1	x	x	Х

 $\dagger X =$ Relay can be in either the de-energized or energized position in this function.

1 = Relay must be in the energized position in this function.

0 = Relay must be in the de-energized position in this function.

ON(L) = Control line for the switch must be TTL low in this function. This activates the switch.

OFF (H) = Control line for the switch must be TTL high in this function. This de-activates the switch.

- 1. Turn power off, place the offset board on an extender, then turn power on.
- 2. Check the following circuit inputs using a logic probe (see schematic):

RESET (from A61). Signal should be TTL high.

ADD STROBE and DATA STROBE (from A61). These signals are normally high and toggle when offset is modified.

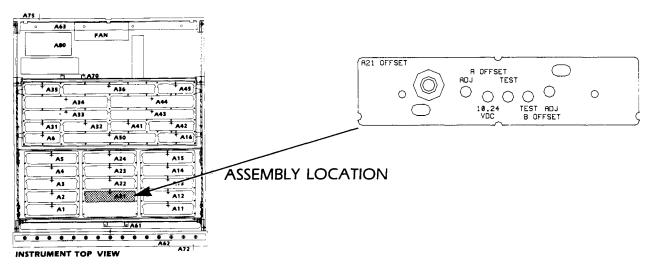
- 3. Check that the buffered voltage reference (TP6) is 10.240 Vdc \pm 10 mVdc.
- 4. Preset the HP 3326A. Check the strobe control sub-block using Table 6-24. This table does not exercise the read data strobe (U43, pin 11). This strobe is normally high. It toggles only when an instrument overload occurs and the ANALOG FAULT line is TTL low. The microprocessor uses the strobe to read data from the offset board to determine if the board caused the fault.

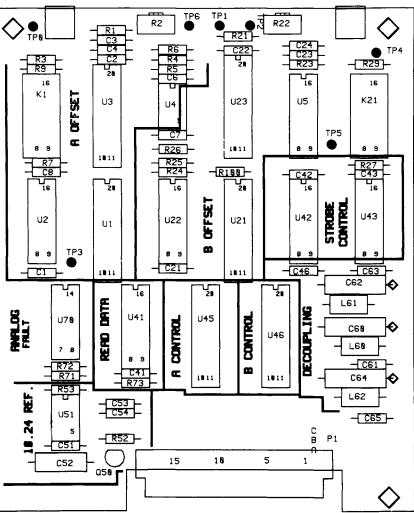
Test Location (pin no.)	Test Setup	Normal Indication (TTL)				
U42(12) U42(15) U42(2) U42(5) U42(10)	Modify channel A offset	Normally low, toggles when modified				
U43(15) U43(14) U43(9)	Modify channel A offset	Normally high, toggles when modified				
U43(13) U43(12) U43(7)	Modify channel B offset	Normally high, toggles when modified				

Table 6-24. Strobe Control Sub-block Troubleshooting

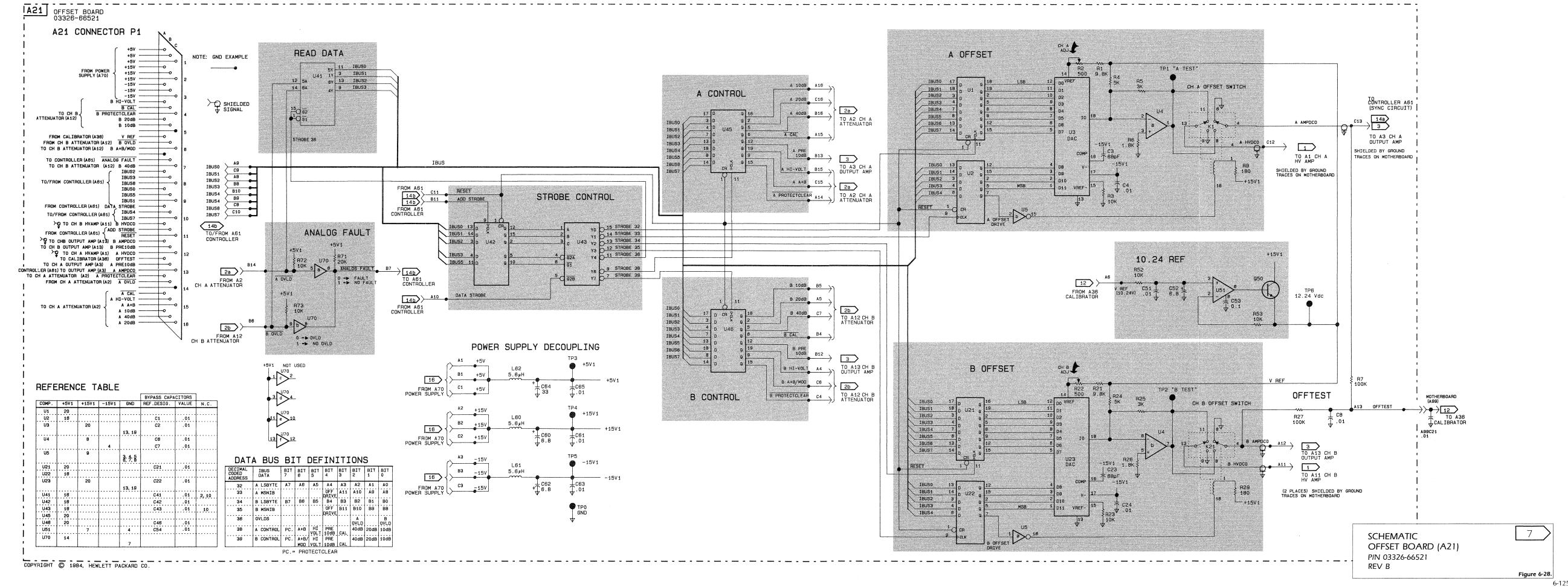
5. For channel A offset failures, preset the instrument and check the A control and A offset sub-blocks using Tables 6-25 and 6-26. For channel B offset failures, use the same tables and substitute the corresponding signal names (e.g., B 10dB for A 10dB), reference designators (e.g., U23 for U3, TP2 for TP1), and channel (channel B for channel A).

Table 6-25. /	A Control	Sub-block	Troubleshooting
---------------	-----------	-----------	-----------------

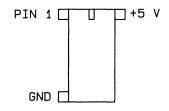

Signal Name	Test Location U45(pin no.)	Normal Indication in INSTR PRESET (TTL)	Test Setup	Normal Indication in Test Condition
A 10dB	U45(16)	Low	Amplitude = $0.0316 V$	High
A 20dB	U45(2)	High	Amplitude = $0.0315 V$	Low
A 40dB	U45(5)	Low	Amplitude = $0.0315 V$	High
A CAL	U45(6)	High	Perform MANUAL calibration	Low
A PRE10dB	U45(12)	High	Amplitude = 3.16 V	Low
A HI-VOLT	U45(19)	Low	Channel A high voltage	
			option on	High
A A+B	U45(9)	Low	Combined operation on	High
A PROTECTCLEAR	U45(15)	Hight	_	_


t only changes during instrument overload

HP 3326A Setup	Τ	Pin numbers of DAC inputs (U3)†								DAC Output (TP1)			
	MSB 1	2	3	4	5	6	7	8	9	10	11	LSB 12	
INSTR PRESET Channel CH A Function DC DC Offset +5 V Clear calibration constants, press: SHIFT, %, 0	0	0	0	1	0	1	1	1	1	1	0	1	-5.0 ± 0.1 V
Change DC Offset to -5 V	1	1	1	0	1	0	0	0	0	0	1	0	$+5.0 \pm 0.1$ V

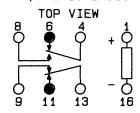

t 1 = TTL high0 = TTL low

Refer to Table 6-15 for recommended post-repair adjustments.



OFFSET BOARD (A21) P/N 03326-66521 REV B

NOTES:


- 1. TTL DEVICES ARE USED IN THIS CIRCUIT
- 2. ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN, REGARDLESS OF THE TOTAL PIN COUNT (e.g., FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16).

3. BEFORE TROUBLESHOOTING ANY OF THE DIGITAL TO ANALOG CONVERTERS (DACs) IN THE HP 3326A OR THE SIGNALS A SINLEV, B SINLEV, A SQLEV, AND B SQLEV, RESET THE CALIBRATION CORRECTION CONSTANTS. THIS IS DONE BY USING A HIDDEN FRONT PANEL COMMAND. PRESS SEQUENTIALLY:

4. RELAYS ARE SHOWN IN THE DE-ENERGIZED STATE. P/N 0490-1405

6-27 LEVEL/AM, A22

The information in this section should be used to isolate defective sub-blocks when servicing the HP 3326A. All procedures assume Fault Isolation to the Board Level has been used to determine which functional block (board) has failed.

Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltages and energy available at many points can, if contacted, result in personal injury.

CAUTION

Be sure that the power switch is in the STBY position before inserting or removing any circuit board. Power transients caused by insertion or removal may damage the circuit boards.

Theory of Operation

The 10.24 ref sub-block receives a voltage reference signal (V REF) from the calibrator board (P/O A36). The combination of R1, C1, and C2 forms a low pass filter to filter out any high frequency noise that may be present. V REF is then sent into a voltage follower (U1) to limit the current drain on V REF. The buffered reference voltage provides very accurate bias currents for the digital to analog converters (DACs) and for the modulation input circuit that shifts the level. This signal is also used to derive an accurate + 5 V for the A SINLEV and B SINLEV signals when the instrument is programmed for the square function or is in the pulse mode.

There are three AM inputs to this board: two external signals for modulating the two channels with an external source (A AMPTD MOD IN and B AMPTD MOD IN), and one internal input for modulating channel A with channel B (INT MOD). All input signals go into resistor dividers and low pass filters. U2a acts like a 2:1 multiplexer, allowing either the channel A external modulation signal or the internal modulation signal to be sent to a non-inverting amplifier (U3a). The output of U3a, along with R108 and R109, forms a 0 to 1 mA current sink which can take all or part of the current from the 1 mA current source (consisting of the buffered 10.24 volt V REF signal, R110, and R111). The remaining current is the DAC reference current. A +1 V signal at the external or internal modulation port results in a 1 mA, full scale reference current going into the DAC. A -1 V modulation input results in zero reference current.

The channel B external modulation signal works the same as above, except U7a is an inverting amplifier (instead of a non-inverting one). Thus, a -1 V modulation input leads to a 1 mA full scale reference current, while a +1 V input leads to zero reference current.

When the 3326A is modulated by an external source, the output signal varies according to Table 6-27. This shows that channel A is modulated 180° out of phase with respect to channel B and that the modulating signal may not vary beyond the range from -1 V to +1 V.

Mod Input	Amplitude Channel A	Amplitude Channel B
0 V	A	В
+1 V	2×A	0
-1 V	0	2 × B

Table 6-27. Channel Output vs. Modulation Input Signal

Diodes CR102 and CR202 prevent the reference current from getting too high and damaging the DAC. Zener diodes CR100 and CR101 prevent ac overvoltage and dc overvoltage damage.

In the output stage, from the node where the DAC reference current is derived to the output of the board, the circuit looks the same for both channels. The DAC multiplies the reference current by a scaling factor, sends this output current to a current to voltage converter (consisting of R113 and U3b for channel A and R209 and U7b for channel B), and sends it to an output multiplexer.

The output multiplexer performs the switching that makes A SINLEV, B SINLEV, A SQLEV, and B SQLEV the correct voltages. Table 6-28 shows the relation between the HP 3326A functions and the required signal voltage levels.

Function	A SIN B SIN (TTL)	A COMPAR ENABLE B COMPAR ENABLE (TTL)	A SINLEV B SINLEV	A SQLEV B SQLEV
Sine	Low	Low	0 to 5 V	0 V
Square or Pulse	High	High	5 V	0 to 5 V
DC Only	High	Low	Programmed to 0 V	0 V
Off	High	Low	Programmed to 0 V	0 V

Table 6-28. Level/AM Output Signal Voltage Levels

The A and B level control sub-block receives information from the microprocessor on the controller board (A61). The processor controls the DAC codes, the RF SWITCH STROBE (which enables the RF switch to change positions), and enable bits (A COMPAR ENABLE) and B COMPAR ENABLE) for the square board (A23). To send information over the instrument bus (IBUS0-7), the address of the receiving latch is placed on the bus and latched into the register (U14) when the address strobe line (ADD STROBE) goes high. The outputs of U14 go into U15, a 3:8 multiplexer. When the bus' DATA STROBE line goes low, U15 is enabled and the selected output goes low. The valid data is placed on the bus. When DATA STROBE goes high, the data is latched into one of the U10 to U13 registers.

NOTE

The clear lines for U10 to U13 are tied to the instrument RESET line so the DAC code is 0 when power is applied to the instrument. This prevents any unplanned full scale output.

Troubleshooting

The instrument bus circuit on the controller board (A61) and the control interface on this board can be tested using the Interface SA Test (see Tables 6-52 and 6-53 in the A61 troubleshooting sub-section 6-33). This test exercises the control lines from the controller board to determine if the controller or the control interface circuitry is defective.

Table 6-29 shows how the relays and analog switches in the instrument function. The switches in the level/AM board are highlighted (U2 and U6). These switches control external and internal phase modulation.

Table 6-29. Function Control

Switch Name t	Reference Designator	Off		Sine		Square		DC		HV		Combined	AM	Ext AM		PM	Ext PM		Sync PM
	(pin no.)	А	B	A	В	A	В	A	В	A	B	S	Int	Α	B	lut	A	В	(AB)
Ch A Cal/Prtct	A2K107	0	X	1	X	1	X	1	X	1	X	1	1	1	Х	1	1	X	1
Ch B Cal/Prtct	A12K107	Х	0	X	1	X	1	X	1	X	1	1	1	1	1	1	1	1	1
Ch A HV Option	A2K106	Х	X	X	X	X	X	X	X	1	X	X	X	X	Х	X	X	X	X
Ch B HV Option	A12K106	Х	X	X	X	X	X	X	X	X	1	X	X	X	X	X	X	x	X
Ch A Square	A4K101	Х	X	0	X	1	X	0	X	X	X	X	X	Х	Х	X	X	X	X
Ch B Square	A14K101	Х	X	X	0	X	1	X	0	X	Х	X	X	X	X	X	X	Х	X
Ch A Offset	A21K1	Х	X	X	X	X	X	X	X	1	X	X	X	X	X	X	X	X	X
Ch B Offset	A21K21	Х	X	X	X	X	X	X	X	X	1	X	X	X	X	X	X	X	X
INT AM	A22U2(1)	X	X	x	x	X	x	x	X	x	x	x	ON (L)	OFF (H)	X	X	X	X	X
A EXT AM	A22U2(16)	X	x	X	X	x	x	X	x	X	x	x	OFF (H)	ON (L)	X	X	x	X	X
B EXT AM	A22U6(1,16) A22U6(8,9)	X	x	X	x	x	x	X	X	x	x	X	x	X	ON (L)	x	X	X	X
INT PM	A32U22(1)	х	x	x	X	x	x	x	X	X	x	X	X	X	X	ON (L)	OFF (H)	OFF (H)	OFF (H)
A EXT PM	A32U22(16)	Х	X	X	X	x	x	x	X	x	X	Х	X	X	X	OFF (H)	ON (L)	X	ON (L)
B EXT PM	A42U22(16)	X	X	x	x	x	X	X	X	X	X	X	X	X	X	X	X	ON (L)	X
Ch A PM	A32U22(9)	X	X	x	X	X	x	x	X	x	X	X	X	х	x	OFF (H)	OFF (H)	x	OFF (H)
Ch B PM	A42U22(9)	x	x	X	X	X	x	x	X	X	X	X	x	x	x	x	X	OFF (H)	X
Ch A Combiner Isolation	A2K105	Х	x	x	x	x	x	x	X	x	X	1	0	X	x	0	x	x	X
Ch A Combiner	A2K104	X	X	Х	X	X	X	X	X	X	X	1	0	X	X	0	X	X	X
Ch B Combiner/ INT MOD	A12K104	X	X	X	X	x	x	X	X	X	x	1	1	X	X	1	X	X	X

t X = Relay can be in either the de-energized or energized position in this function.

1 =Relay must be in the energized position in this function.

0 = Relay must be in the de-energized position in this function.

ON(L) = Control line for the switch must be TTL low in this function. This activates the switch.

OFF(H) = Control line for the switch must be TTL high in this function. This de-activates the switch.

- 1. Turn power off, place the level/AM board on an extender, then turn power on.
- 2. Check the following circuit inputs using a logic probe (see schematic):

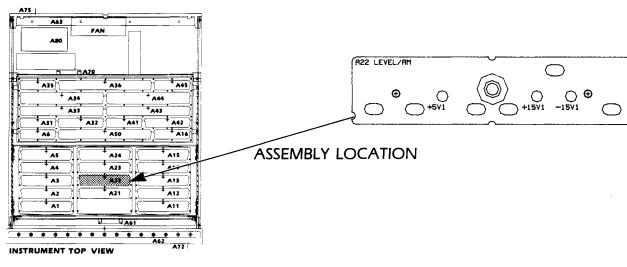
RESET (from A61). Signal should be TTL high.

ADD STROBE and DATA STROBE (from A61). These signals are normally high and toggle when amplitude is modified.

- 3. Check that the voltage reference from the calibrator board (TP1) is 10.240 Vdc \pm 10 mVdc. Check that the buffered voltage reference (TP2) is present.
- 4. Check the A and B level control sub-block. Preset the HP 3326A. Check the sub-block using Table 6-30. This table does not exercise the data lines going to the DACs (U4 and U8). This is done in step 5.

Signal Name	Test Location (pin no.)	Normal Indication in INSTR PRESET (TTL)	Test Setup	Normal Indication in Test Condition
_	U14(2) U14(5) U14(7) U14(15) U14(12)	High	Modify channel A or B amplitude	Toggles
-	U15(9)	High	Change mode from 2 CHANNEL to 2 PHASE	Toggles low then high
_	U15(12) U15(14)	High	Modify channel B amplitude	Toggles
_	U15(13) U15(15)	High	Modify channel A amplitude	Toggles
SQUARE/PULSE	U10(9)	High	Activate PULSE mode	Low
—	U10(6)	High	Activate channel B external AM	Low
B COMPAR ENABLE	U10(5)	Low	Activate PULSE mode	High
BSIN	U10(2)	Low	Change channel B function to square wave	High
_	U11(9)	High	Activate internal AM	Low
_	U11(6)	High	Activate channel A external AM	Low
A COMPAR ENABLE	U11(5)	Low	Activate PULSE mode	High
ASIN	U11(2)	Low	Change channel A function to square wave	High

Table 6-30. A and B Level Control Sub-block Troubleshooting


5. For channel A level failures, preset the instrument and check the channel A level subblock using Table 6-31. For channel B level failures, use the same table and substitute the corresponding reference designators (e.g., U8 for U4, TP12 for TP7) and channel (channel B for channel A).

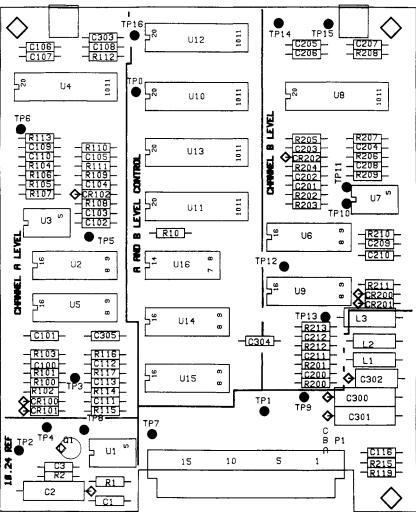
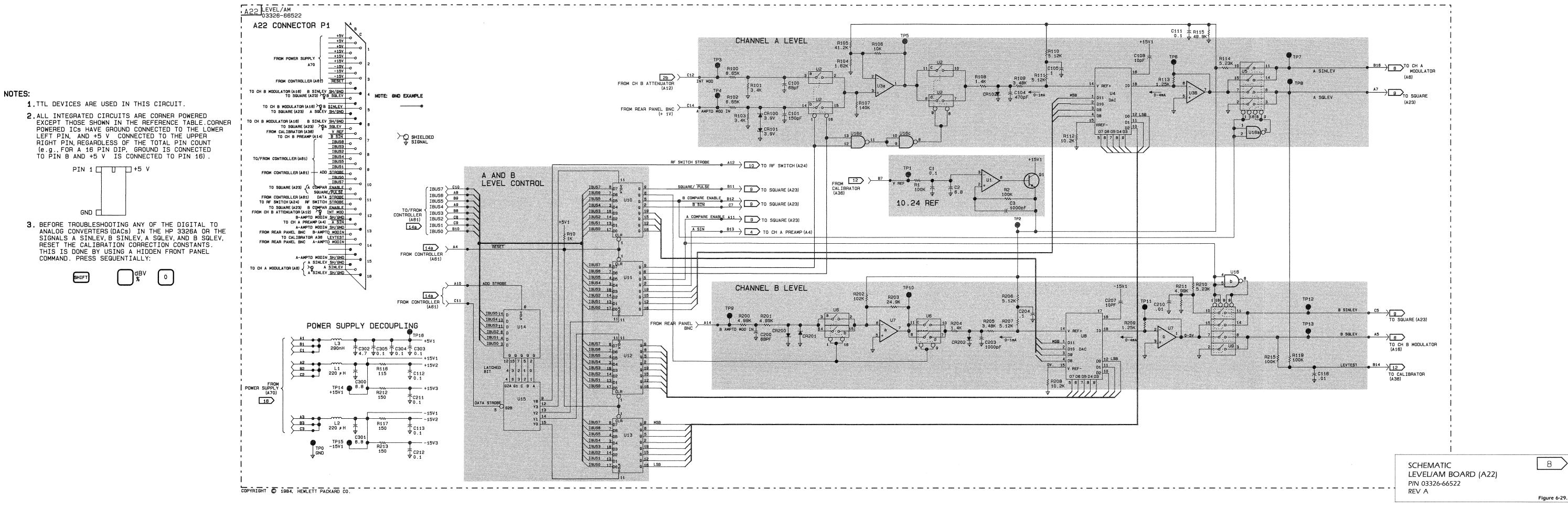

			Pin	num									
HP 3326A Setup	MSB 1	2	3	4	5	6	7	8	9	10	11	LSB 12	DAC Output (TP7)
INSTR PRESET Channel CH A Amplitude 10 V Clear calibration constants, press: SHIFT, %, 0	1	1	0	1	0	0	0	0	0	1	0	1	4.07 ± 0.1 V
Change Amplitude to 8.4 V	1	0	1	0	1	1	1	0	1	1	1	1	3.41 ± 0.1 V
Change Amplitude to 5.0 V	0	1	1	0	1	0	0	0	0	0	1	0	$2.03 \pm 0.1 V$
Change Amplitude to 3.16 V	0	1	0	0	0	0	0	1	1	1	0	1	1.28 ± 0.1 V

Table 6-31. Channel A Level Sub-block Troubleshooting


t 1 = TTL high

0 = TTL low

LEVEL/AM BOARD (A22) P/N 03326-66522 REV A

6-135

6-28 SQUARE, A23

The information in this section should be used to isolate defective sub-blocks when servicing the HP 3326A. All procedures assume Fault Isolation to the Board Level has been used to determine which functional block (board) has failed.

Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltages and energy available at many points can, if contacted, result in personal injury.

CAUTION

Be sure that the power switch is in the STBY position before inserting or removing any circuit board. Power transients caused by insertion or removal may damage the circuit boards.

Theory of Operation

The square board has three operation configurations:

- 1. Square function
- 2. DC function
- 3. Pulse mode
- 1. Square function:

Either or both channels can be configured for square operation. In this configuration, the input and output sub-blocks are identical for the two channels. The following discussion for channel A square function is true for channel B.

U100 is a comparator controlled by the A COMPAR ENABLE signal. The A SQUARE IN signal from the preamplifier board is a sine wave signal whose amplitude is approximately 2.5 Vpp at the frequency selected by the user. U100 turns the sine wave into a square wave at TTL levels. The resistive divider R106 and R107 shifts the output of U100 to ECL levels.

During square operation the SQUARE/PULSE line is TTL high, disabling the U300 flip-flops and activating gate U301a to pass the square wave. U301c buffers this signal and provides differential drive to the A output sub-block. The differential signal lines for the B channel are inverted with respect to the A channel.

The heart of the output circuit (U400) is a balanced modulator IC. The output waveform is the product of the differential drive signal and the voltage across the gain-setting resistor R410. The input signal A SQLEV controls the output amplitude. The full scale value of A SQLEV is 4 Vdc. U401a multiplies A SQLEV by -0.5 and subtracts 8 volts from it so that full scale at TP402 is -10 V. At lowest amplitude (A SQLEV = 0 V), TP402 reads -8 V. The left end of R410 is driven to the voltage at TP402 by U401b. The voltage on the other end of R410 is fixed at -8 V by U401d. At full scale, 2 V appears across R410 and the output (U400 pin 12) swings ± 1.5 V. The output at U400 pin 6 is the complement of that at pin 12. These signals are buffered by emitter follower transistor stages and summed by U401c, which forces the sum to be zero. This insures that the output signal (A SQUAREOUT at TP400) is centered about ground, regardless of the duty cycle.

2. DC function:

Either or both channels can be configured for DC output. In this configuration, the squaring circuit is turned off and the square board output is used as a zero volt reference for the output amplifier.

When the DC function is activated the A COMPAR ENABLE signal is TTL low, which disables U100. A SQLEV signal input is set to zero scale or 0 Vdc. No signal propagates through the circuit and the output signal is a dc voltage near ground potential.

3. Pulse mode:

This feature appears in the front panel mode section. In this mode, both A and B square circuits are used to operate a pair of flip-flops such that the duty cycle of the output pulse waveform is directly related to the phase difference between channels A and B. The B output is the complement of output A.

In the pulse mode, the SQUARE/PULSE line is TTL low, enabling flip-flops U300a and b and disabling gates U301a and U302b. The output of the flip-flops is a pulse whose duty cycle is a function of the phase difference between A SQUARE IN and B SQUARE IN. U301b and U302a buffer the output from the flip-flops, feeding the pulse waveform to both output sub-blocks. In pulse mode, the output sub-blocks operate exactly the same as they do in the square function.

Troubleshooting

This circuit may be analyzed by putting it on an extender (be sure to turn the power off before removing the board) and comparing the oscilloscope waveforms in Figure 6-30 with those of the defective unit. The instrument configuration for these waveforms is given in the figure.

Refer to Table 6-15 for recommended post-repair adjustments.

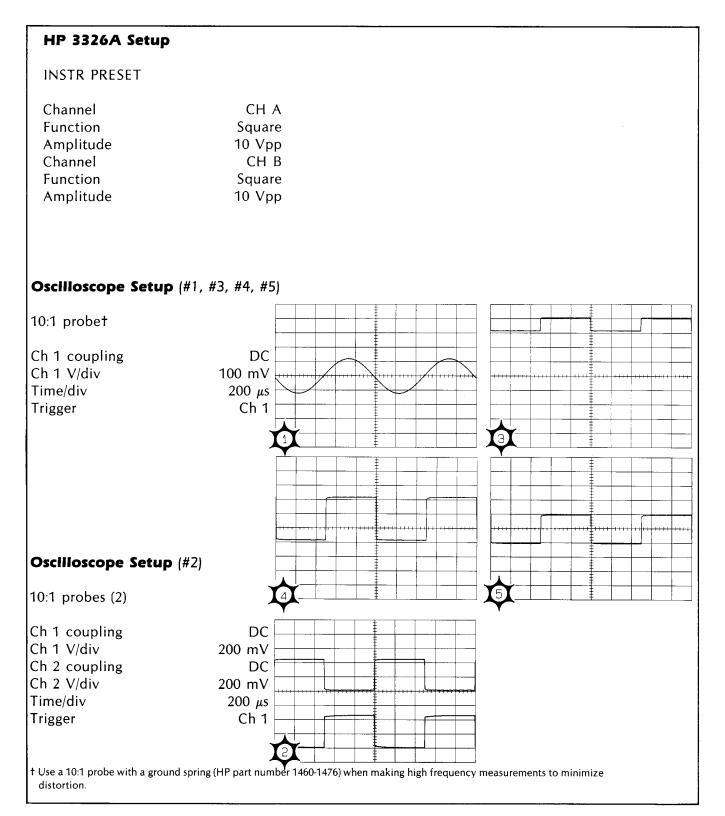
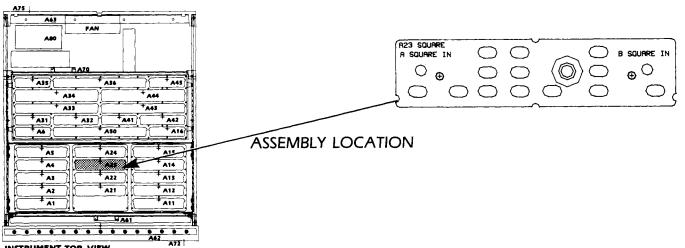
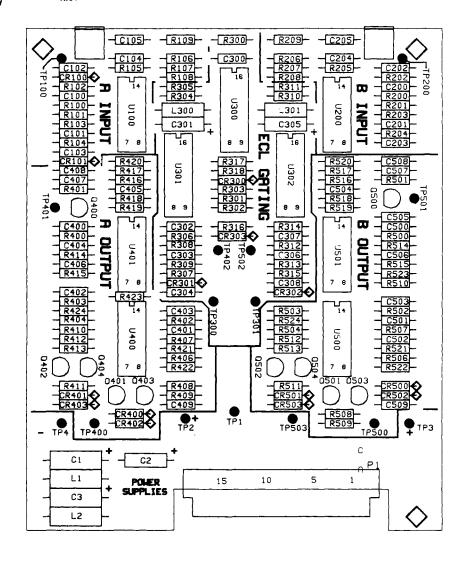
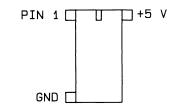
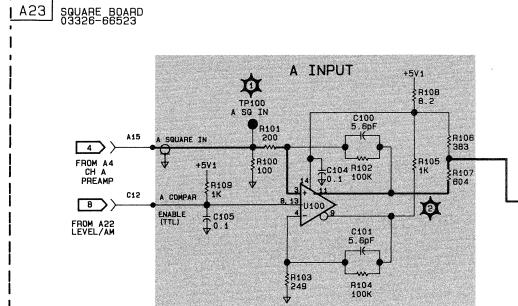




Figure 6-30. Square Board Waveforms

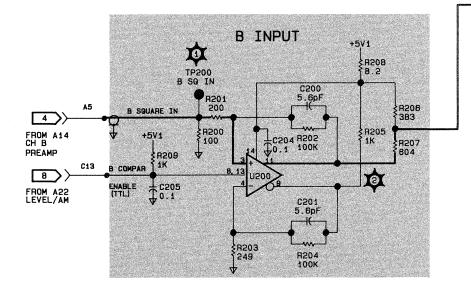
SERVICE

INSTRUMENT TOP VIEW

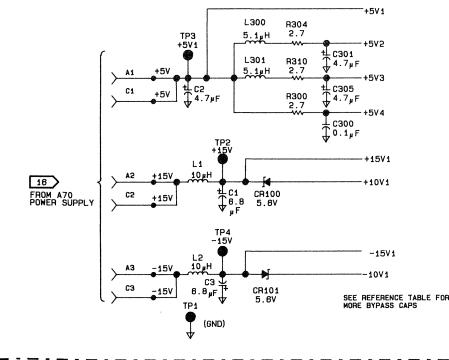

SQUARE BOARD (A23) P/N 03326-66523 **REV A**

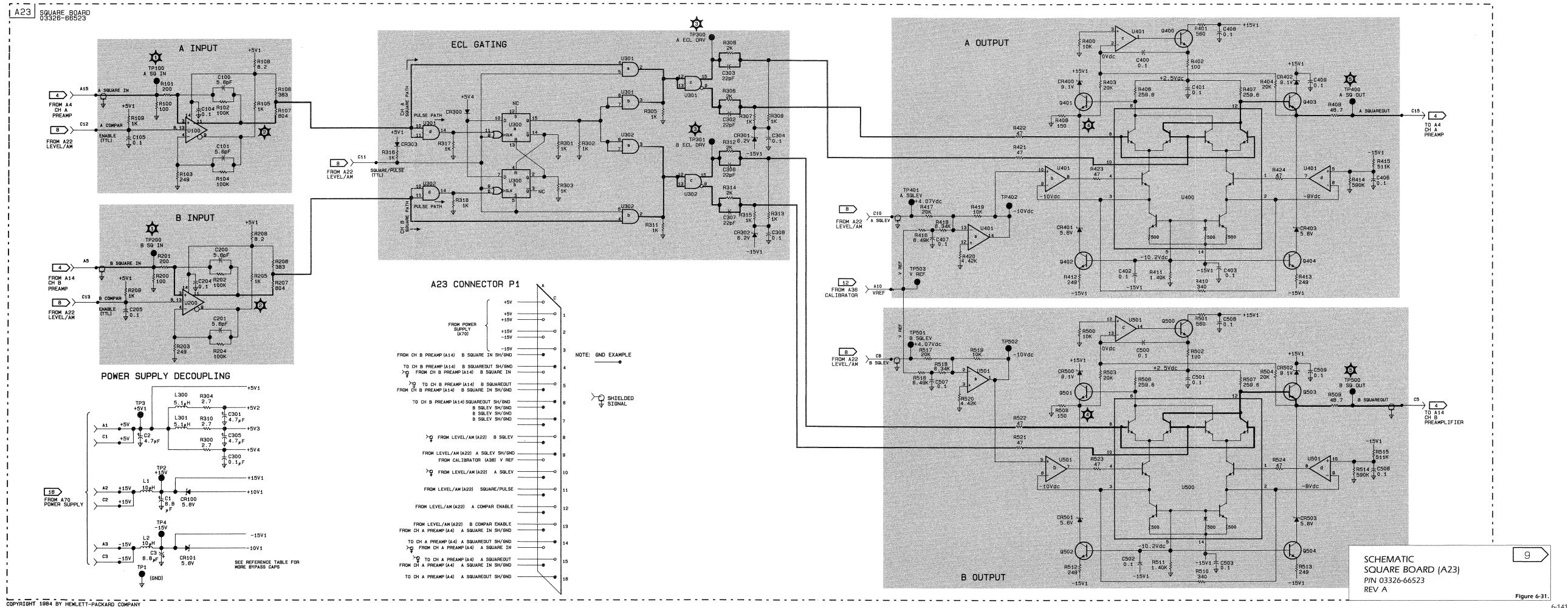

REFERENCE TABLE

										BYPASS C	APACITORS	
COMP.	+5V1	+5V2	+5V3	+5V4	+15V1	-15V1	+10V1	-10V1	GND	DESIG.	VALUE (µF)	N.C.
U100							1	8	10	C102	0.1	2, 5, 7, 12
.0500	• • • • • •						1.1.	8	10		0.1 0.1	2, 5, 7, 12
U300				(1. 1B			1		8			3, 12 10, 11, 14
0301		1, 16	1. 18	•••••			4		ğ			10, 11, 14
U300 U301 U302 U400 U401	• • • • •		1.10	•••••		14	•••••		<u></u>	C403 C404	0.1	10, 11, 14
				[4	11				C405	0.1	
0500				[1.14				C503 C504		7.9.11.13
0301					4	11				C504 C505	0.1 0.1	


NOTES:

- 1.EMITTER COUPLED LOGIC (ECL) AND TTL DEVICES ARE USED IN THIS CIRCUIT.
- 2.ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN, REGARDLESS OF THE TOTAL PIN COUNT (e.g., FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16).





POWER SUPPLY DECOUPLING

6-29 RF SWITCH, A24

The information in this section should be used to isolate defective sub-blocks when servicing the HP 3326A. All procedures assume Fault Isolation to the Board Level has been used to determine which functional block (board) has failed.

WARNING

Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltages and energy available at many points can, if contacted, result in personal injury.

CAUTION

Be sure that the power switch is in the STBY position before inserting or removing any circuit board. Power transients caused by insertion or removal may damage the circuit boards.

Theory of Operation

The RF switch board is used to change the instrument's configuration between the twochannel and two-phase modes. The HP 3326A has two local oscillators (LOs) and two mixers. In the two-channel mode, the LOs are fed into separate mixers which mix them with a 20 MHz source, resulting in independent frequency control for each channel. In the two-phase mode, the channel A LO drives the local oscillator inputs of both mixers and the channel B LO drives the reference port of the channel B mixer (at 20 MHz). The reference port of the channel A mixer is driven by the reference board (A50). In this mode, the output frequencies of the two mixers are equal. The phase between them is controlled by changing the phase of the channel B LO. In the two-tone and pulse modes, the HP 3326A configuration is as described for the two-phase mode.

The RF switch board operates as four single pole, single throw switches used in combination to form a double pole, double throw switch. The inputs to the board are B 20MHz from the reference board (A50) and A LO2 and B LO2 from the VCO \div 2 boards (A35 and A45). The switch outputs (LOBSW and B CARRIER) drive the channel B mixer (A15). LOBSW is connected directly to LO port of the channel B mixer. B CARRIER is routed to the reference port of the mixer after it goes to the modulator board (A16). In the twochannel mode (shown in Figure 6-8), the 20 MHz signal from the reference board (B 20MHz) is sent to the reference port of the channel B mixer and the channel B LO signal (B LO2) is connected to the channel B mixer LO port. In the two-phase mode, B LO2 is routed to the B mixer reference port and A LO2 signal is connected to the B mixer LO port. See Figure 6-8 in the overall theory of operation. The switch controller sub-block turns the switch blocks either on or off to change instrument modes. Switch configuration is specified by the logic state of internal bus line IBUS0 when the RF SWITCH STROBE line is pulsed. When IBUS0 is low and the strobe pulse arrives, the switch is set to the two-channel mode. When IBUS0 is high and the strobe pulse arrives, the switch is set to the two-phase mode. The sub-block outputs are INH BREF and ENABLE LO2. INH BREF goes to the reference board to turn off the B 20MHz signal (not used in the two-phase mode). ENABLE LO2 goes to the channel A VCO \div 2 board to turn off the A LO2 signal (not used in the two-channel mode). Turning these signals off at the source and in the RF switch keeps crosstalk very low.

Each switch block consists of a diode tee followed by a two-transistor buffer. The diodes perform the actual switching. When a negative bias is applied to their common junction by the control block, the in-line diodes are reverse biased and the diode to ground is forward biased, which effectively disconnects the through path and, further, connects it to ground. When the control block allows the diode junction to float, the in-line diodes become forward biased and the diode to ground is reversed, allowing the signal to pass.

Since only one of the two switches feeding the summing blocks is on at any point in time, the term "sum" is not meant to imply that two signals are combined. The summing blocks are used as a common connection point for the outputs of two switches. In the process, they also convert the signal to ECL levels. When the control block turns a switch off, that switch's companion input to the summing block is also pulled low to enable the other summing input amplifier to function properly. This is accomplished with resistors R16, R17, R46, and R47. The output of the sum 1 block is a signal relative to ground. The output of sum 2 is a differential output.

Troubleshooting

Before beginning troubleshooting, check the control lines ENABLE LO2 and INH BREF, comparing them to the values listed in Table 6-32. Similarly, verify that these lines have disabled the appropriate input signals (A LO2 and B 20MHz, depending on the mode). Discrepancies in any of these signals could indicate a defective latch (U5), a defective reference board (A50), or a defective channel A VCO \div 2 board (A35).

	Signal Description											
Mode	ENABLE LO2	A LO2	INH BREF	B 20MHz								
2 CHANNEL	TTL high	X	TTL low	20 MHz square, AC coupled, ECL level								
2 PHASE	TTL low	20 to 33 MHz, square wave, AC coupled, ECL level	TTL high	X								

Table	6-32.	RF	Switch	Control	Lines	and	Inputs
-------	-------	----	--------	---------	-------	-----	--------

X = Signal inhibited

Next, probe TP4 (LOBSW) and TP5 (B CARRIER). If either signal is present in one mode but not in others, then a switch sub-block is probably defective. Refer to the block diagram on the schematic to determine the signal path for a given instrument mode. Note that the two-tone and pulse modes use the two-phase mode RF switch configuration. Figure 6-32 gives two instrument setups to test the RF switch. It also shows a table that lists the switches that are on and off in the two RF switch configurations. Use this table and the bias voltages given on the schematic to troubleshoot a defective switch. The bias voltages are the same for all switches. They are listed only once on the schematic, in the switch 1 sub-block. Both the "on" and "off" voltages are given.

If either LOBSW or B CARRIER is not present in ANY mode, one of the summer sub-blocks is probably defective. Use the bias voltages given on the schematic in the sum 1 sub-block to troubleshoot.

When troubleshooting the RF switch on an extender board, the instrument mode may be selected by shorting TP7 to ground (for two-channel mode) or shorting TP8 to ground (for two-phase mode).

Refer to Table 6-15 for recommended post-repair adjustments.

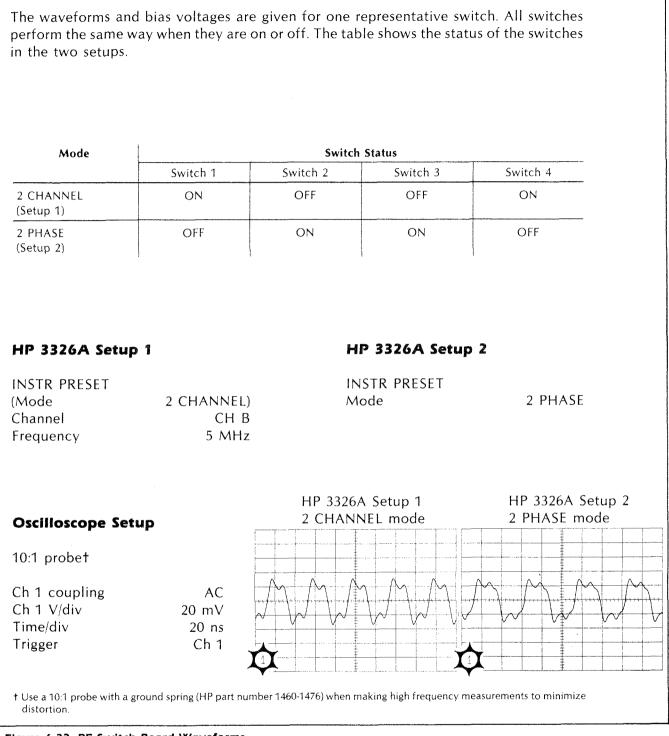
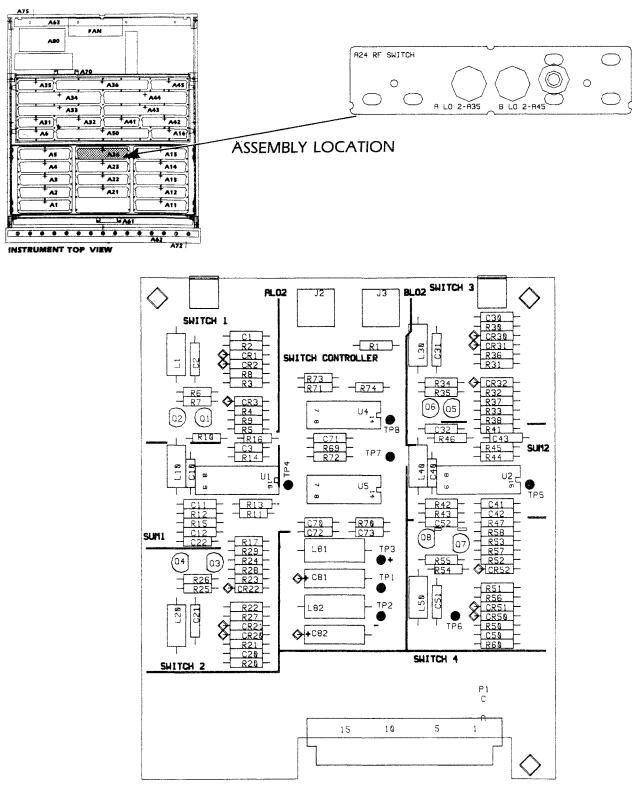
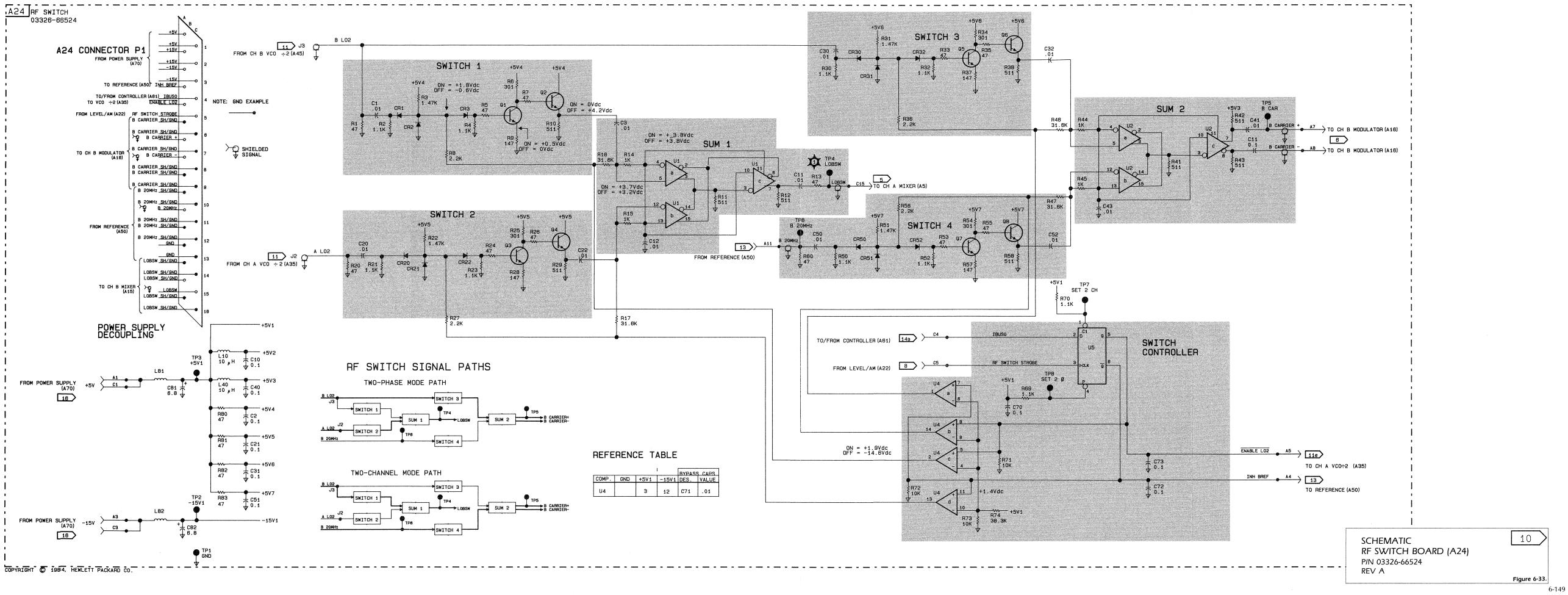
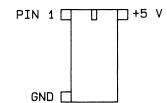




Figure 6-32. RF Switch Board Waveforms

SERVICE



RF SWITCH BOARD (A24) P/N 03326-66524 REV A

NOTES:

- 1.EMITTER COUPLED LOGIC (ECL) AND TTL DEVICES ARE USED IN THIS CIRCUIT.
- 2. ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN. AND +5 V CONNECTED TO THE UPPER RIGHT PIN, REGARDLESS OF THE TOTAL PIN COUNT (e.g., FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16)

- 3. POOR GROUND CONNECTIONS IN THE PHONO CABLES MAY CAUSE INTERMITTENT PROBLEMS THAT CAN APPEAR TO BE SUBTLE HARDWARE FAILURES (FOR EXAMPLE, POOR PHASE OR AMPLITUDE CALIBRATION ACCURACY). CRIMPING THE PHONO CONNECTORS TO IMPROVE THE GROUND CONNECTIONS IS RECOMMENDED.
- 4. THE RF SWITCH CIRCUIT (A24) HAS THREE MAIN INPUTS AND TWO MAIN OUTPUTS. DEPENDING ON THE MODE, THE CIRCUIT CHOOSES TWO OF THE INPUTS TO ROUTE TO THE MODULATOR (A6 OR A16) AND MIXER (A5 OR A15) BOARDS. THE AVAILABLE INPUTS ARE: A LO2, B LO2 AND B 20MHz SEE THE SIGNAL GLOSSARY AND THE OVERALL THEORY OF OPERATION FOR MORE INFORMATION.

6-30 FRACTIONAL-N LOCAL OSCILLATORS

This section covers boards in the fractional-N local oscillator group, including (for channels A and B) A31, A32, A33, A34, A35, P/O A36, A41, A42, A43, A44, and A45. See Table 6-33 for a cross reference between board names, reference designators, and associated channels. All examples in the text and in the figures use channel A boards. The information in this section should be used to isolate defective sub-blocks when servicing the HP 3326A. All procedures assume Fault Isolation to the Board Level has been used to determine which functional block has failed.

Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltages and energy available at many points can, if contacted, result in personal injury.

CAUTION

Be sure that the power switch is in the STBY position before inserting or removing any circuit board. Power transients caused by insertion or removal may damage the circuit boards.

Theory of Operation

The HP 3326A has two separate fractional-N local oscillators. Each local oscillator (LO) operates at a frequency equal to twice the sum of the programmed frequency and the 20 MHz reference frequency, as follows:

 $Fvco = (Fprog + 20 MHz) \times 2$

This results in an LO output signal frequency between 40 MHz and 66 MHz. The output of each LO is divided by two (by the VCO \div 2 board), resulting in an LO frequency between 20 MHz and 33 MHz. This signal is mixed with a 20 MHz reference signal, resulting in a signal at the programmed frequency. (In the two-tone mode, the channel B LO can run at 39.8 MHz to allow a 100 kHz frequency offset at the output.)

The local oscillators are configured by the controller board (A61). The fractional-N decoder board (P/O A36) synchronously programs each LO to allow phase tracking of frequency steps and sweeps between the two channels. The decoder is also used to synchronize externally triggered sweeps.

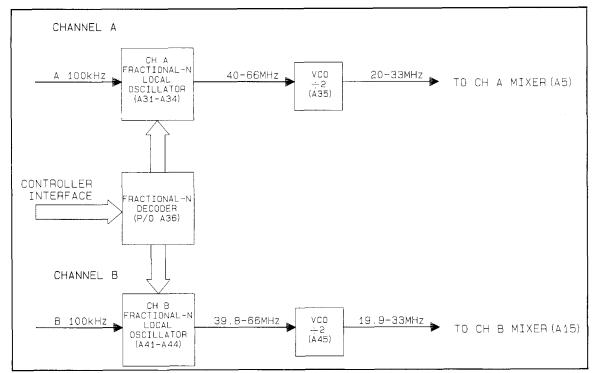


Figure 6-34. HP 3326A Fractional-N Simplified Block Diagram

Phase-locked loop basics:

The frequency of a voltage controlled oscillator (VCO) is determined by the dc voltage from the phase comparator. This voltage is proportional to the phase difference between two 100 kHz input signals. Therefore, a shift in the phase relationship of the inputs signals causes a change in the dc control voltage and results in a new VCO frequency. When the phase relationship changes, the VCO frequency changes to regain the original phase relationship.

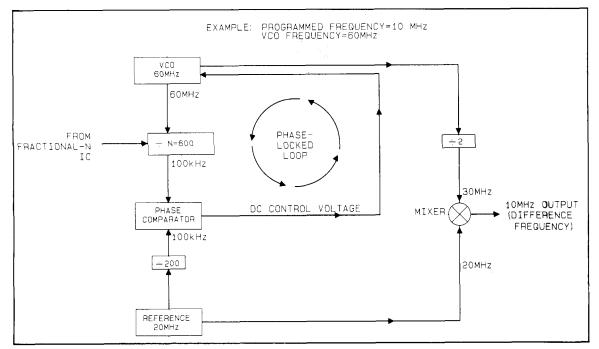


Figure 6-35. Phase-Locked Loop Block Diagram

As an example, consider a programmed output frequency (Fprog) of 10 MHz (Figure 6-35). The VCO must operate at 60 MHz (Fvco) and the divide-by number (N) must be 600 to reduce the Fvco to 100 kHz, as required by the phase comparator. When the desired output changes from 10 MHz to 13 MHz, N must change from 600 to 660. This changes the divided VCO output to approximately 91 kHz. The phase comparator (A33) detects the new phase relationship between the inputs and produces a new dc voltage (A VCO CONT), which changes Fvco to 66 MHz. This returns both phase comparator inputs to 100 kHz and locks the loop.

N is determined by the controller and the fractional-N circuitry in response to front panel or HP-IB inputs. The HP 3326A synthesizes frequencies up to 13 MHz. Consequently, the VCO tuning range must be from 40 MHz to 66 MHz. This dictates N to be between 400 and 660. The VCO tuning range is adjusted by a variable inductor (L1) on the VCO board (A31).

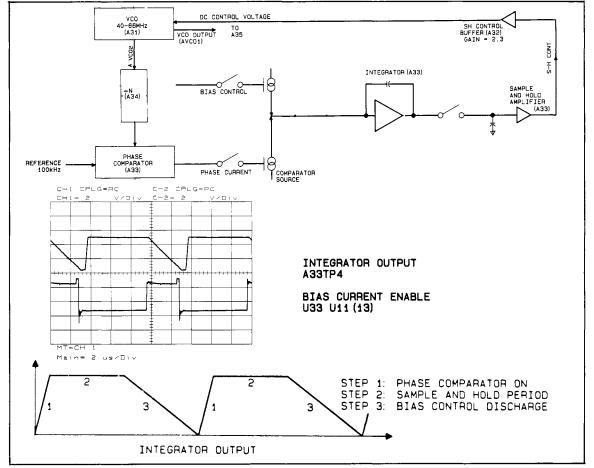


Figure 6-36. Phase-Locked Loop with Sample and Hold Block Diagram

Phase-locked loop circuit description:

The output of the phase comparator on A33 is a current source which charges the integrator capacitor for a specific amount of time. The integrator's output (A33TP4) is then transferred to the sample and hold amplifier. Here, the voltage is stored and amplified for use as the dc control voltage (A VCO CONT, A32) for the VCO (A31). After the integrator voltage has been transferred to the sample and hold amplifier, the bias control current source is turned on by the A BIAS signal to discharge the integrator capacitor; otherwise the integrator capacitor would continue to charge to the limit of the power supply. The phase comparator current source is activated at a 100 kHz rate, making the cycle time of this circuit 10 microseconds.

Fractional-N operation:

The standard phase-locked loop is useful only for three-digit integer values of N. This limits the available output frequencies. Fractional-N frequency synthesis expands the number of allowable frequencies by allowing N numbers that are NOT integers. When a frequency of 20 kHz is programmed, the VCO operates at 40.04 MHz and N changes to a threedigit integer value plus a fractional part (N = 400.4). This fractional number is referred to as N.f. Additional circuits are needed in the loop to allow this fractional number to be used. Analog phase interpolation (API) current sources and pulse-remove circuits operate the VCO at 40.04 MHz while providing a 100 kHz signal to the phase comparator (illustrated in Figure 6-37).

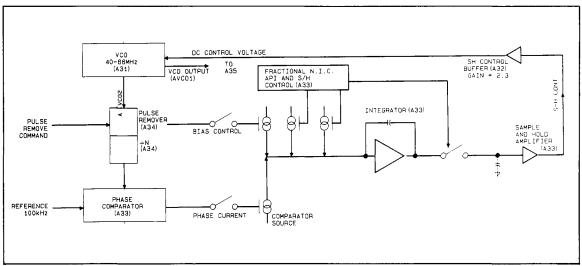


Figure 6-37. Fractional-N Phase-Locked Loop Block Diagram

When the VCO operates at 40.04 MHz, N is 400 and the divided VCO signal to the phase comparator is 100.1 kHz. When compared to the 100 kHz signal from the reference (A 100kHz), a phase difference of increasing magnitude results. Consequently, the phase comparator current source on A33 continues to increase the charge current to the integrator. To compensate for this increasing charge, the discharge current from the bias current source also increases. The desired net result is a constant integrator output voltage. The discharge current from the bias source is adjusted with the analog phase interpolation (API) current sources (on A33), which are controlled by the fractional-N integrated circuit (IC) on A34. This API circuitry is a series of five different-sized current sources. Figure 6-38 illustrates the effect of applying API to the bias current control source.

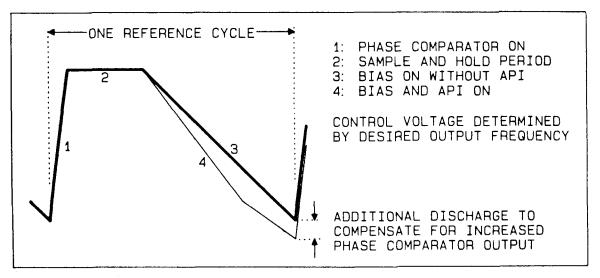


Figure 6-38. Integrator Output with API Applied

The API sources compensate for the increasing phase difference detected by the phase comparator. By using these sources, the VCO can operate at frequencies which would normally cause the loop to lose lock. Figure 6-39 illustrates the operation of the API sources for two programmed frequencies. The waveforms appear at the output of the integrator (A33TP4).

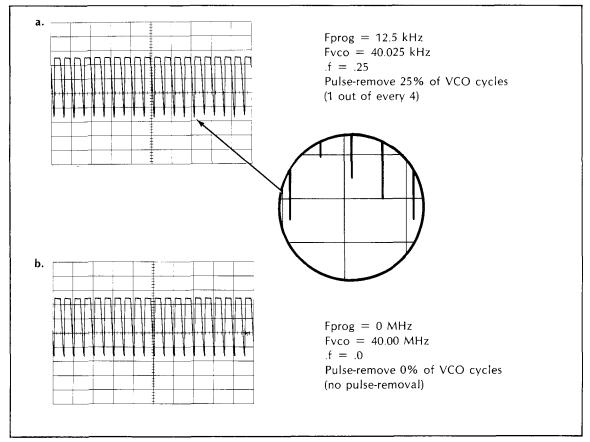


Figure 6-39. Integrator Output

The API scheme only solves part of the problem, however. The phase comparator on A33 does not have the dynamic range to lock the loop by depending solely on the API correction. To compensate for this, a pulse-remove technique is employed. The fractional-N IC on A34 accumulates the phase difference between the VCO signal (A VCO/N.F) and the reference signal (A 100kHz). When the difference becomes 360 degrees (corresponding to unity in the phase accumulation register in the fractional-N IC), the N counter on A34 divides by N+1 for one cycle, effectively removing one cycle of VCO frequency, and causing the frequency of the divided signal going to the phase comparator to average 100 kHz. This pulse-remove command is generated by the fractional-N IC whenever the accumulated phase passes through unity. The .f portion of the N.f number equals the percentage of VCO cycles during which pulse-removal is employed. When the programmed frequency (Fprog) is 45 kHz, Fvco is 40.09 and .f is .9, and pulse-removal is employed during 90% of the cycles. Figure 6-40 illustrates the relationship of the 100 kHz reference frequency, the N phase comparator input, and the phase accumulation register in the fractional-N IC.

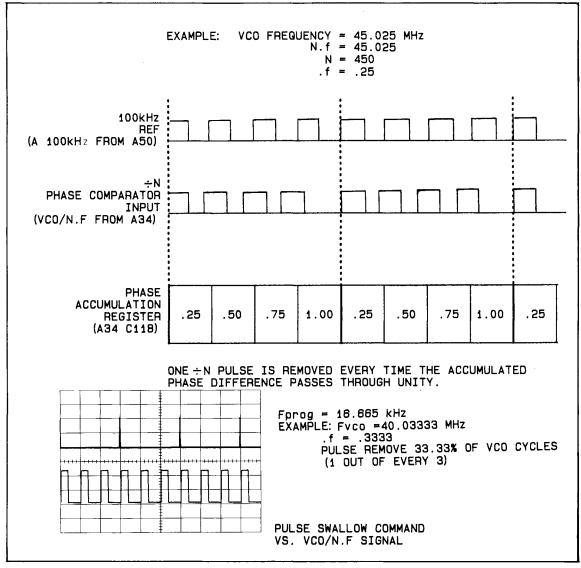


Figure 6-40. Pulse-Remove Command

To accumulate the phase difference in the fractional-N IC (A34U18), the twelve least significant digits in the frequency register are added to the twelve digits in the phase accumulator, and the sum is stored. This addition takes place every 10 microseconds — once for each cycle of the 100 kHz reference. Figure 6-41 illustrates this process. When the accumulated sum exceeds unity, a carry is generated, and a pulse swallow command is given.

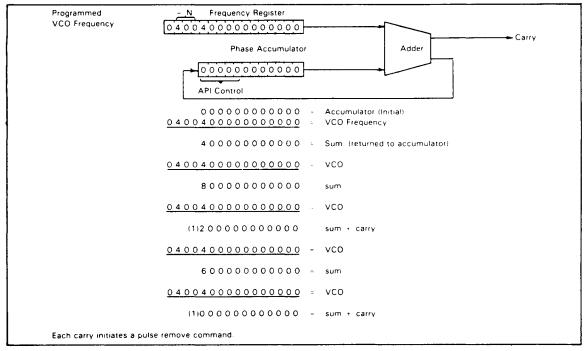


Figure 6-41. Phase Accumulation in the Fractional-N IC

÷ N circuit description:

As shown in Figure 6-42, the N counter on A34 consists of three presettable counters in series. Decade counters are used for the two most significant digits. The least significant digit is determined by a \div 5 counter preceded by a \div 2 prescaler. The prescaler momentarily converts to \div 3 when it receives a pulse-remove command. The number loaded into the counter is the 9's complement of N, the three most significant digits of the VCO frequency. To determine the 9's complement, subtract N from 999.

If 20 kHz (Fvco = 40.04 kHz) is the desired output frequency, 599 (9's complement of 400) is loaded into the N counter. The counter counts up to 999, reloads N (599), and sends a pulse to the phase comparator on A33. One pulse is produced every 400 VCO cycles (599 to 999). This pulse is synchronized to the bias current source control A BIAS (to maintain the proper timing relationship) and to the VCO, VCO \div 2, and VCO \div 10 signals (to ensure phase stability).

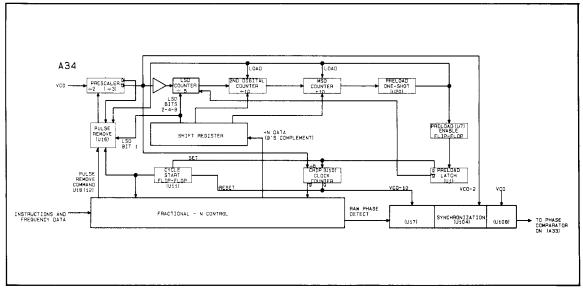


Figure 6-42. Divide-by-N Counter Block Diagram

When N is odd, an extra VCO cycle is removed because the N counter is clocked by VCO \div 2. If the extra cycle was not removed at the beginning of each fractional-N cycle, only frequencies that are even multiples of 100 kHz could be produced.

The chip clock counter output shown in Figure 6-42 is the prescaler (VCO \div 2 or VCO \div 3) output divided by five. One output is applied to the fractional-N IC to clock data in and out of the four shift registers in the IC. The other output is used to synchronize the N.f signal to the phase comparator and to clock the cycle start flip-flop.

The cycle start flip-flop is set by the preload latch and reset by the trailing edge of the next chip clock signal. A cycle start pulse occurs when the LSD counter is preset. Cycle start is used to set the pulse-remove circuit whenever N is odd.

As an example of the dividing sequence, consider a desired output frequency of 20 kHz (a VCO frequency of 40.04 MHz). The VCO frequency is divided by 400 every fractional-N cycle, and the output to the phase comparator has a frequency of 100.1 kHz. To prevent the phase comparator from forcing the VCO back to 40 MHz, pulse-removal is employed during 40% of the VCO cycles (.f = .4). To accomplish this, the fractional-N IC causes the \div 2 prescaler to divide by three for one VCO cycle whenever the phase accumulator generates a carry (for this example, two out of every five fractional-N cycles).

Isolating the Defective Fractional-N Board

When there is a failure in the fractional-N local oscillator, but you are unsure which of the boards is causing the failure, one way to isolate the defect is to interchange the five sets of identical boards, one at a time, until the defective board is found. This is effective, but takes much time. In many cases, the following short fault isolation procedure can help you find the defective board faster.

The fractional-N fault isolation tests given in Table 6-34 are listed for channel A only. Substitute channel B for channel A and vice versa when you are troubleshooting the channel B fractional-N local oscillator. See Table 6-33 for a PC board reference designator cross reference. The tests also assume that the clock signals from the reference board (8MHz FRACN CLK, A 100kHz, and B 100kHz) are present.

Table 6-33. Fractional-N LO Boards Cross Reference

Board Name	Reference Designator								
	Ch A	Ch B	Common						
VCO	A31	A41							
VCO Control	A32	A42							
Phase Detector	A33	A43							
FracN Digital	A34	A44							
$VCO \div 2$	A35	A45							
FracN Decoder			A36						

Table 6-34. Fractional-N Fault Isolation Tests

Step	HP 3326A	Test	Normal	If Abnor	nal,
	Setup	Signal	Indication	Suspect	Next Step
1	INSTR PRESET 2 PHASE mode Test jumper (J1) on A32 in test position (remove A32 from card nest to access)	A VCO2 Test at TP on A34 top cover (VCO)	40 MHz ±2 MHz, ECL level, dc coupled†	VCO Control (A32) VCO (A31) Cable from A31 to A34 (VCO2)	Interchange the two sets of boards, one set at a time. Determine defective board.
2	Same as above	A LO2 Test at connector on A35 top cover (LO 2) using 50 Ω load	20 MHz ± 1 MHz, ECL level, ac coupled	VCO ÷ 2 (A35)	Repair A35.
3	INSTR PRESET FREQ 0 MHz Test jumper (J1) on A32 in test position (remove A32 from card nest to access)	A PRELOAD Test at TP on A34 top cover (PRELOAD)	TTL level, normally high, low pulse every 10 μs	FracN Decoder (A36) FracN Digital (A34) VCO (A31) VCO Control (A32) (If signal in step 1 is present, A31 and A32 are working properly.)	Run service self tests (sub-section 6-8). If test 10‡ passes, A36 is working properly. If not, interchange A34 and A44. See if failure follows A34.
4		_	_	_	If signals in steps 1-3 are normal, suspect phase detector board (A33). Inter- change A33 and A43. See if failure follows A33.

t VCO and VCO control boards are working properly if this signal is present.

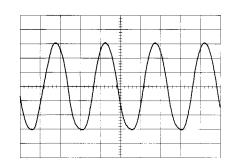
‡ Service self test 9 for channel B.

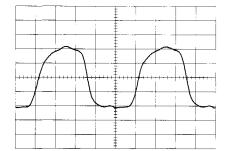
Oscilloscope Setup (A VCO2)

10:1 probet

Ch 1 coupling	AC
Ch 1 V/div	20 mV
Time/div	10 ns
Trigger	Ch 1

Oscilloscope Setup (A LO2)


Phono plug to BNC adapter cable


Ch 1 coupling	50 Ω DC
Ch 1 V/div	200 mV
Time/div	10 ns
Trigger	Ch 1

Oscilloscope Setup (A PRELOAD)

10:1 probe

Ch 1 coupling	DC
Ch 1 V/div	200 mV
Time/div	2 μs
Trigger	Ch 1

		+++++				

				+		
				ŧ		
	-	ļ		ŧ		
		-		<u> </u>		
1						

⁺ Use a 10:1 probe with a ground spring (HP part number 1460-1476) when making high frequency measurements to minimize distortion.

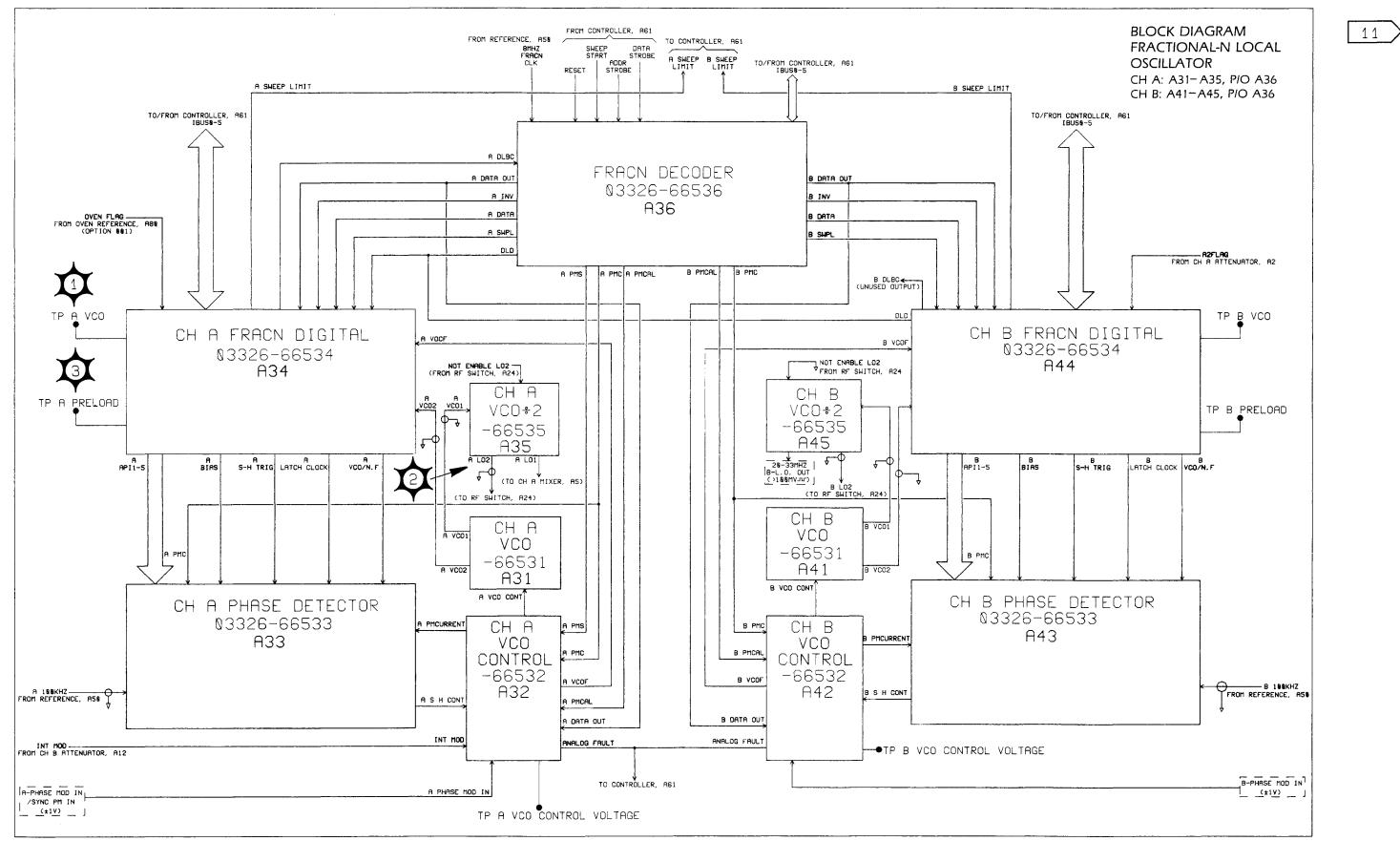


Figure 6-43. Fractional-N Block Diagram

SERVICE

VCO Board Troubleshooting

The dc voltage at test point 1 determines the operating frequency of the oscillator. See the VCO tuning graph in Figure 6-44. To test the operation of the VCO, enter a frequency and compare the voltage measured at TP1 with the tuning graph. This test insures that the fractional-N circuitry is providing the VCO with the correct control voltage for the selected frequency. A quick check may be made using the following table:

Table 6-35. VCO Tuning Range

Frequency Entered	Voltage at TP1
0 Hz	$+10$ Vdc \pm 0.3 Vdc
6 MHz	+4.5 Vdc ± 1 V
13 MHz	-1.7 Vdc \pm 2 V

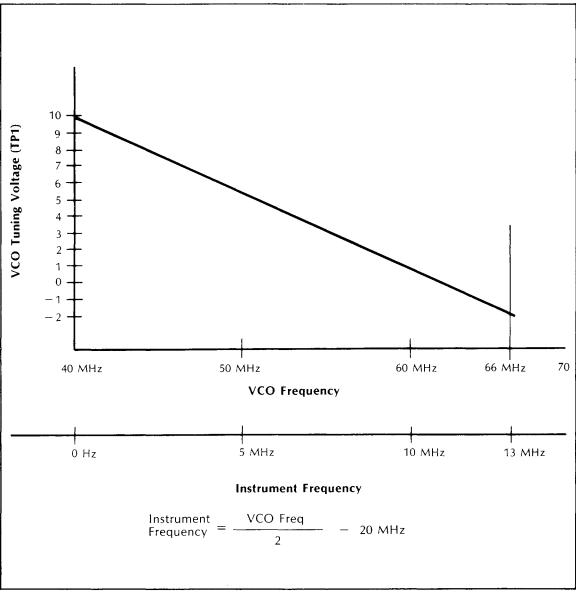


Figure 6-44. VCO Tuning Graph

This circuit may be further analyzed by putting it on an extender (be sure to turn the power off before removing the board) and comparing the oscilloscope waveforms in Figure 6-45 with those of the defective unit. The instrument configuration for these waveforms is INSTR PRESET.

Refer to Table 6-15 for recommended post-repair adjustments.

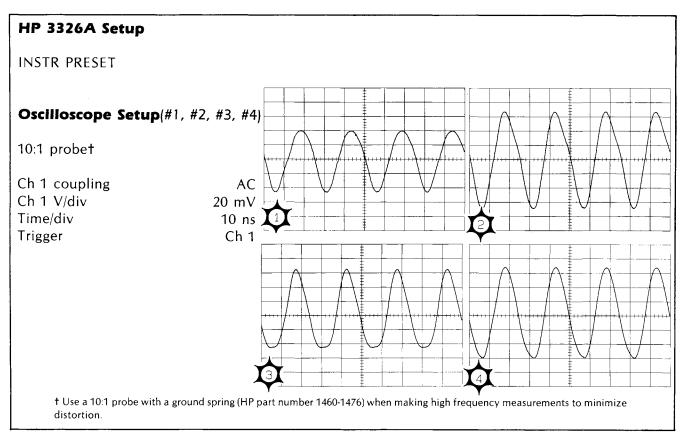
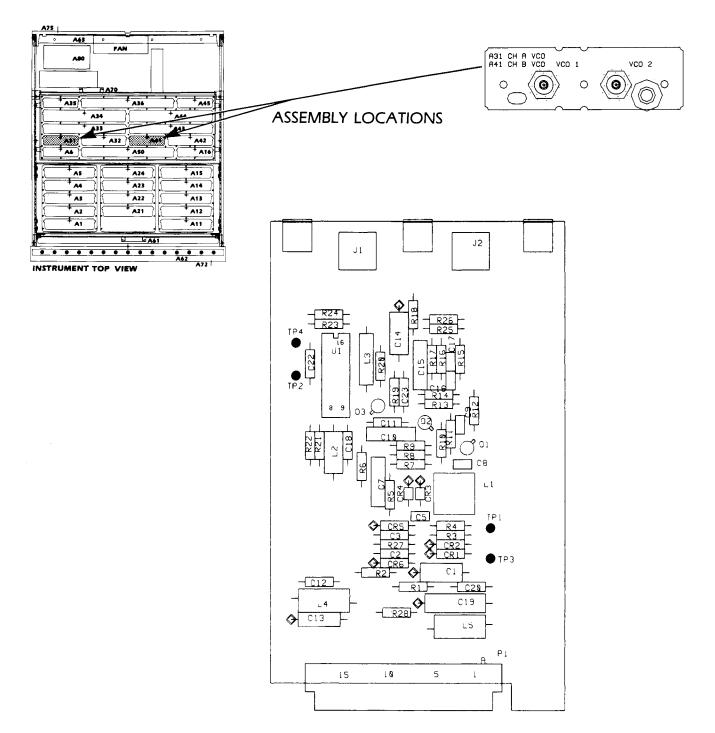
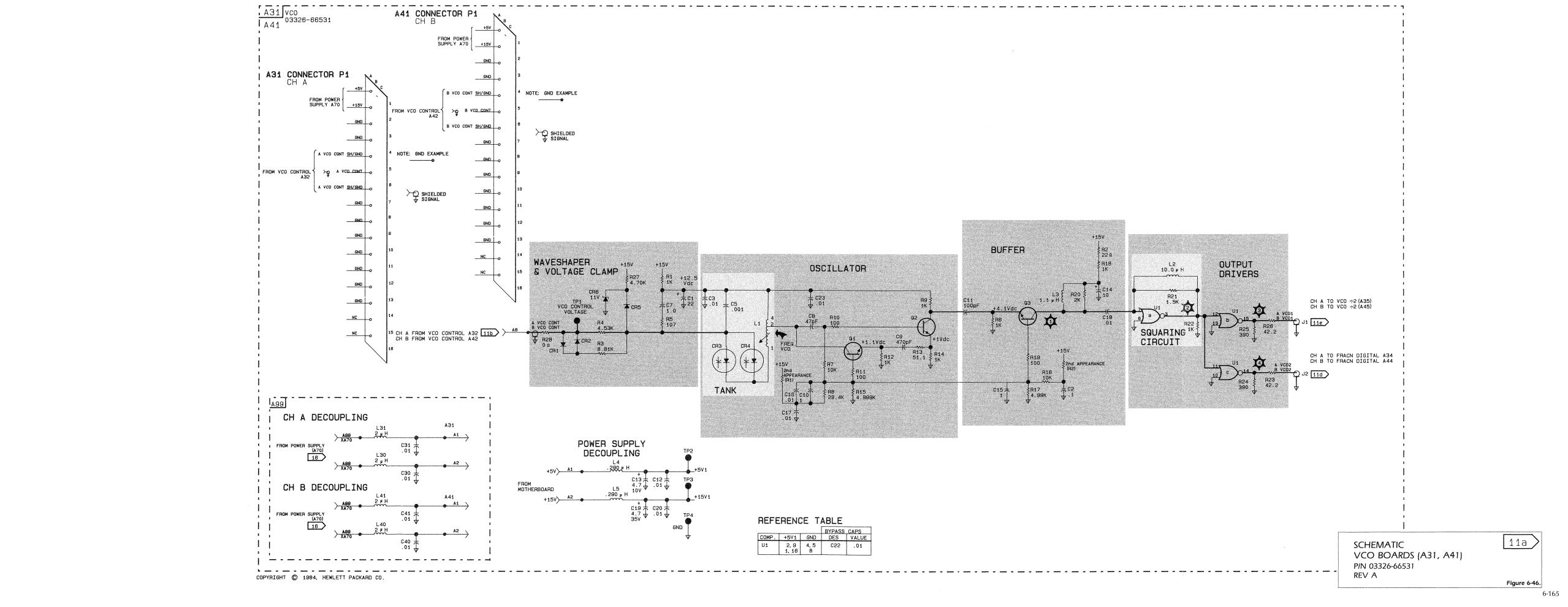
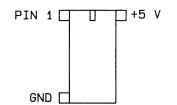
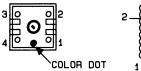




Figure 6-45. VCO Board Waveforms



VCO BOARDS (A31, A41) P/N 03326-66531 REV A



NOTES:

- 1. EMITTER COUPLED LOGIC (ECL) DEVICES ARE USED IN THIS CIRCUIT.
- 2.ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN, REGARDLESS OF THE TOTAL PIN COUNT (e.g., FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16).

- **3.**THIS BOARD IS USED TWICE IN THE INSTRUMENT ONCE FOR CHANNEL A, AND ONCE FOR CHANNEL B. THE TWO IDENTICAL BOARDS MAY BE INTERCHANGED FOR TROUBLESHOOTING, BUT MUST BE RETURNED TO THEIR ORIGINAL LOCATIONS TO AVOID RECALIBRATION OF THE INSTRUMENT.
- 4.INSTALLATION OF A31L1, A41L1: THE COLOR DOT ON THE COMPONENT PACKAGE ALIGNS WITH THE SQUARE PAD ON THE PC BOARD. 41

VCO Control Board Troubleshooting

The instrument bus circuit on the controller board (A61) and the control interface on this board can be tested using the Interface SA Test (see Tables 6-52 and 6-53 in the A61 troubleshooting sub-section 6-33). This test exercises the control lines from the controller board to determine if the controller or the control interface circuitry is defective.

The VCO control board has a red LED visible from the top of the board. When illuminated, this indicates that the VCO is unlocked. If the indicators on the VCO control boards for both channels are illuminated, the fractional-N decoder circuit (P/O A36) is probably defective.

- 1. Turn power off, place the VCO control board on an extender, then turn power on.
- 2. Test the S-H buffer sub-block using Table 6-36. Jumper J1 may be used in place of SH CONT to test the sub-block. It sets the instrument in a test state, equivalent to a 0 Hz output (as if the SH CONT signal was +5 V). Expect TP5 to be approximately 11 V when the jumper is in the "test" position.

Table 6-36. S-H Buffer Sub-block Test

Programmed Frequency	VCO Frequency	SH CONT Signal (P1 pin A11)	VCO CONT Signal (TP5)
13 MHz	66 MHz	$\begin{array}{c}\cong 0 \ \lor \\ \cong 5 \ \lor \end{array}$	≅ −1 V
0 Hz	40 MHz		≅ 11 V

- 3. The VCO unlock detector sub-block assumes the VCO is unlocked if SH CONT is < -3 V or > +7 V. (SH CONT is normally between 0 and 5 V.) When the circuit is working properly, TP1 is TTL low when the VCO is locked and TTL high when the VCO is unlocked.
- 4. Test the phase modulation sub-block by selecting PM on the front panel and checking TP6 and TP7 for the proper bias voltage and waveform (shown in Figure 6-47).

Table 6-37 shows how the relays and analog switches in the instrument control functions, with the switches in the VCO control board (U22) highlighted. U22 is a four section analog switch used to: 1) activate the phase modulation circuitry, 2) select between internal and external modulation inputs (2 switch sections are used), and 3) ground the circuit input when internal PM calibration occurs. The latter switch function is not shown in the function control table. Its control signal (pin 8) is normally high (which keeps the switch open); it goes low (closing the switch), briefly, during internal PM calibration.

Refer to Table 6-15 for recommended post-repair adjustments.

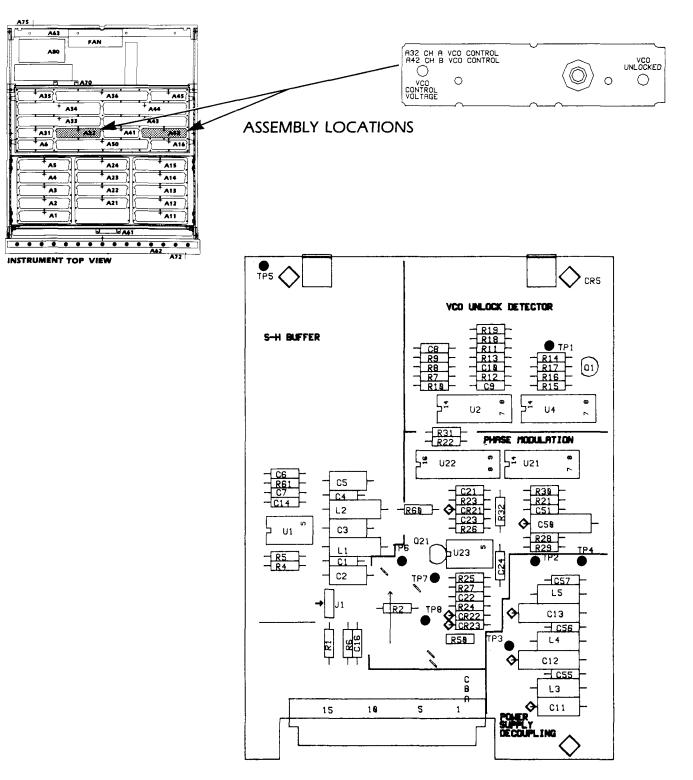
Table 6-37. Function Control

Switch Name	Reference Designator	0	ff	Si	ne	Squ	ıare	D	C	н	IV	Combined	t AM	Ext	AM	t PM	Ext	РМ	Sync PM
t	(pin no.)	A	В	A	B	A	B	A	В	A	B	<u>ē</u>	ht	A	B	Int	A	В	(AB)
Ch A Cal/Prtct	A2K107	0	X	1	X	1	X	1	x	1	x	1	1	1	Х	1	1	X	1
Ch B Cal/Prtct	A12K107	X	0	X	1	X	1	X	1	X	1	1	1	1	1	1	1	1	1
Ch A HV Option	A2K106	Х	X	X	X	X	X	X	X	1	X	X	X	X	X	x	X	X	X
Ch B HV Option	A12K106	X	X	X	X	X	X	X	X	X	1	X	X	X	X	X	X	X	X
Ch A Square	A4K101	Х	X	0	X	1	X	0	X	X	X	X	X	X	X	X	X	X	X
Ch B Square	A14K101	X	X	X	0	X	1	X	0	X	X	X	X	X	X	X	X	X	X
Ch A Offset	A21K1	Х	X	X	X	X	X	X	X	1	X	X	X	X	X	X	X	X	X
Ch B Offset	A21K21	X	X	X	X	X	X	X	X	X	1	X	X	X	X	X	X	X	Х
INT AM	A22U2(1)	Х	x	X	X	X	X	X	X	X	X	X	ON (L)	OFF (H)	X	X	X	X	X
A EXT AM	A22U2(16)	Х	X	X	X	X	x	X	X	X	x	х	OFF (H)	ON (L)	Х	X	X	X	Х
B EXT AM	A22U6(1,16) A22U6(8,9)	X	X	X	X	X	X	X	X	X	X	X	X	X	ON (L)	Х	X	Х	X
INT PM	A32U22(1)	x	X	x	X	x	X	X	X	x	X	x	X	X	X	ON (L)	OFF (H)	OFF (H)	OFF (H)
A EXT PM	A32U22(16)	X	X	x	X	X	X	X	X	x	x	x	X	X	X	OFF (H)	ON (L)	X	ON (L)
B EXT PM	A42U22(16)	x	X	x	X	X	x	X	x	X	x	x	X	x	X	x	x	ON (L)	X
Ch A PM	A32U22(9)	X	x	X	x	X	x	X	X	X	x	X	X	X	X	OFF (H)	OFF (H)	x	OFF (H)
Ch B PM	A42U22(9)	X	X	X	x	x	x	x	x	X	x	x	X	X	X	X	x	OFF (H)	X
Ch A Combiner Isolation	A2K105	X	x	X	X	x	X	x	x	x	x	1	0	X	X	0	x	x	X
Ch A Combiner	A2K104	Х	X	X	X	X	X	X	Х	X	X	1	0	Х	Х	0	X	X	X
Ch B Combiner/ INT MOD	A12K104	Х	X	X	X	x	X	X	X	X	x	1	1	Х	Х	1	x	Х	x

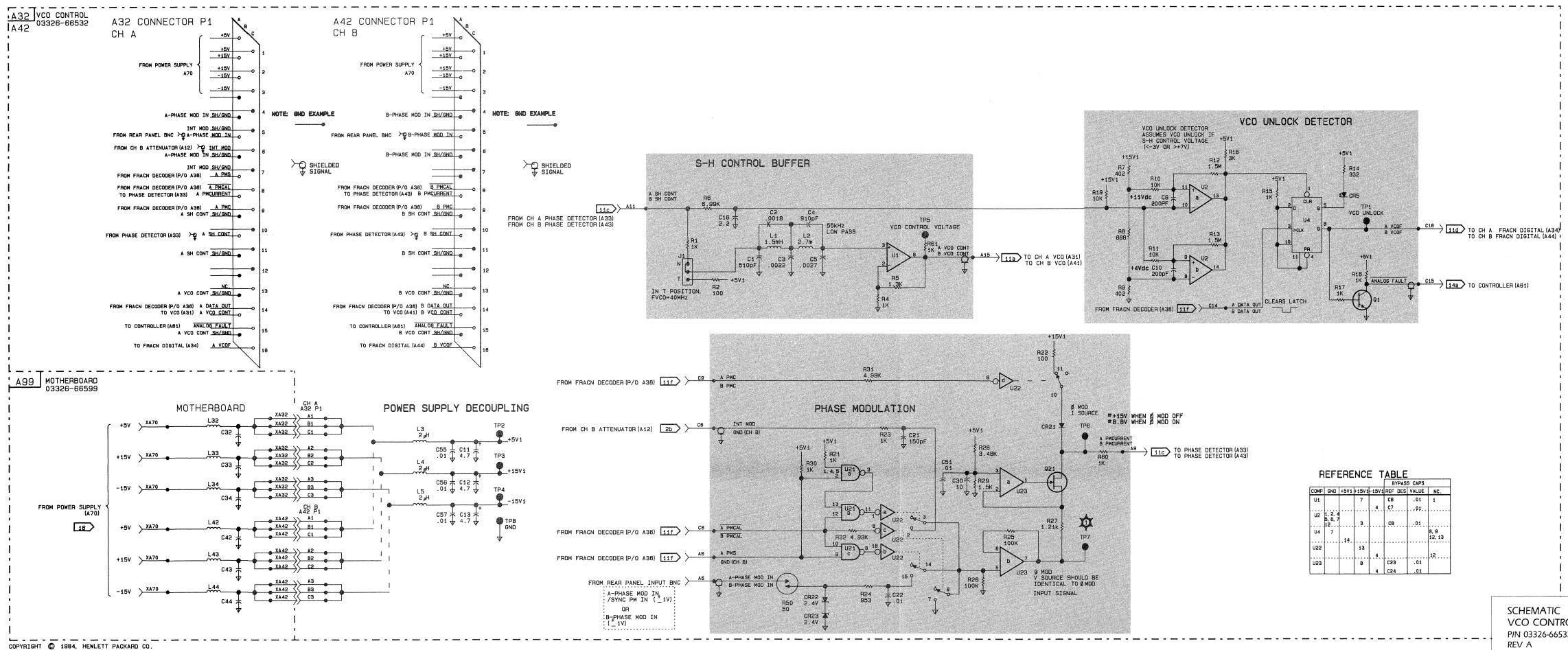
t X = Relay can be in either the de-energized or energized position in this function.

1 = Relay must be in the energized position in this function.

0 = Relay must be in the de-energized position in this function.

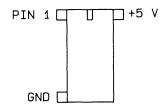

ON(L) = Control line for the switch must be TTL low in this function. This activates the switch.

OFF (H) = Control line for the switch must be TTL high in this function. This de-activates the switch.

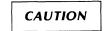

To test channel A internal phase modulation (PM) circuitry on A32, preset the HP 3326A and activate internal PM. Use rear panel external PM inputs to test the external phase modulation circuitry on A32 and A42.

Oscilloscope Setup (¥1)		-		ŧ		
10:1 probe		\wedge	Λ	-{	$\overline{\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle}$	h-	γ
Ch 1 coupling Ch 1 V/div Time/div Trigger	AC 10 mV 500 μs Ch 1						

Figure 6-47. VCO Control Board Waveforms



VCO CONTROL BOARDS (A32, A42) P/N 03326-66532 REV A



NOTES:

1.ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5. V CONNECTED TO THE UPPER RIGHT PIN, REGARDLESS OF THE TOTAL PIN COUNT (e.g., FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16).

- 2. THIS BOARD IS USED TWICE IN THE INSTRUMENT -ONCE FOR CHANNEL A, AND ONCE FOR CHANNEL B. THE TWO IDENTICAL BOARDS MAY BE INTERCHANGED FOR TROUBLESHOOTING, BUT MUST BE RETURNED TO THEIR ORIGINAL LOCATIONS TO AVOID RECALIBRATION OF THE INSTRUMENT.
- 3. THIS SCHEMATIC USES CR AS THE REFERENCE DESIGNATOR FOR AN LED.

TTL, EMITTER COUPLED LOGIC (ECL), TTL COMPATIBLE NMOS LOGIC, AND TTL COMPATIBLE CMOS LOGIC DEVICES ARE USED IN THIS INSTRUMENT.

USE THE APPROPRIATE PRECAUTIONS WHEN REMOVING, HANDLING, AND INSTALLING ALL STATIC SENSITIVE COMPONENTS TO AVOID DAMAGE.

R	EFE	ERE	NC	ΞТ	AB	LE		
					B	YPAS	S CAPS	
COMP	GND	+5V1	+15V1	-15V1	REF	DES	VALUE	NC.
U1			7		CB		.01	1
				4	C7		01	
U2	1, 2, 4		з		СВ		.01	
U4	12 7							8, 9 12, 13
025			13	4				12
U23	•••••		8		C23	••••	.01	.14
1				4	C24		.01	

11b SCHEMATIC VCO CONTROL BOARDS (A32, A42) P/N 03326-66532 Figure 6-48

6-171

Phase Detector Board Troubleshooting

The instrument bus circuit on the controller board (A61) and the control interface on this board can be tested using the Interface SA Test (see Tables 6-52 and 6-53 in the A61 troubleshooting sub-section 6-33). This test exercises the control lines from the controller board to determine if the controller or the control interface circuitry is defective.

- 1. Turn the instrument off, place the defective phase detector board on an extender. Disconnect the VCO1 cable from the VCO board and VCO ÷ 2 board of the working channel. Using a long cable (from service kit), connect the VCO1 signal from the working VCO board to the VCO2 connector on the fractional-N digital board of the defective channel.
- 2. Turn on power, preset the instrument, enter an output frequency of 0 Hz for the channel under test, and enter an output frequency of 100 Hz for the other channel.
- 3. Examine waveform 1 at TP1 (ϕ DETECT). See Figure 6-50. Expect a square wave of variable duty cycle with an amplitude of approximately 2.5 Vpk and a period of about 10 μ s. If not, troubleshoot the phase detect driver and phase detect functional subblocks.
- 4. Check the operation of the current sources sub-block by measuring the dc voltages at U15, pin 15 and U19, pin 6. These should read approximately -8.8 Vdc and +8.8 Vdc, respectively.
- 5. Check the operation of the API private supply by measuring the dc voltage at U15, pin 6. This should read +5 Vdc nominally.
- 6. Check the operation of the current summing circuit of Q31 and Q26 by measuring the voltage at U15, pin 2. This should read approximately +5 Vdc.
- 7. Check waveforms 2 and 3. Waveform 2 should be a square wave that is high ($\cong +2$ V) for 3.3 μ s and low ($\cong -1$ V) for 6.7 μ s. Waveform 3 should have the same duty cycle, but range from $\cong +2$ V to $\cong -8$ V. If these waveforms are incorrect, suspect Q15, Q16, Q17, Q18, and U11.
- 8. Short TP3 (integrator input) to ground. Waveform 4 at TP5 should now appear as shown, with a variable duty cycle. The most important characteristics of this waveform are the levels. The positive level should be approximately + 83 mV, the negative level should be approximately 540 mV, and the middle level should be approximately 0 V.

If this waveform is correct, troubleshoot the integrator and the sample and hold subblocks.

9. Use the waveforms in the timing diagram (Figure 6-52) and the levels in the VCO tuning graph (Figure 6-49) to troubleshoot further. Spurious signals due to API current sources 1 through 4 may be adjusted (see the adjustments section); number 5 has no adjustment. The following equations may be used to determine the frequencies at which API spurs occur.

 $N.f = [2(F_{out} + 20 \times 10^6)]/10^5$

Where N.f has the format: $N_2N_1N_0f_1f_2f_3$

Examples:

 $F_{out} = 51 \text{ kHz}$

 $N.f = 2(51,000 + 2 \times 10^{6})/10^{5}$

= 401.0200 where .0200 corresponds to $.f_{4}f_{2}f_{3}f_{4}$

Spurs are found at the specified frequencies for the following APIs where M indicates harmonics of the fundamental (i.e., M=1, 2, 3, ...).

API#1: $F_{out} \pm M(.f_{.1}f_{.2}f_{.3}...)$ API#2: $F_{out} \pm M(.f_{.2}f_{.3}f_{.4}...)$ API#3: $F_{out} \pm M(.f_{.3}f_{.4}f_{.5}...)$ API#4: $F_{out} \pm M(.f_{.4}f_{.5}f_{.6}...)$ API#5: $F_{out} \pm M(.f_{.5}f_{.6}f_{.7}...)$

Refer to Table 6-15 for recommended post-repair adjustments.

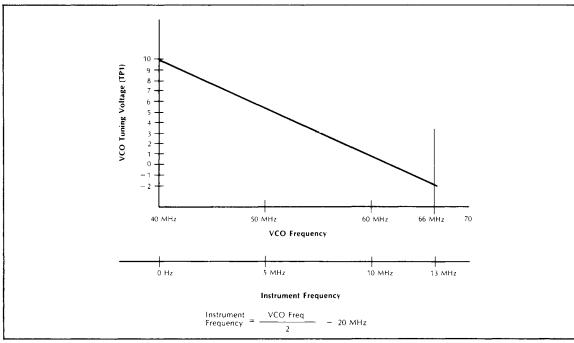
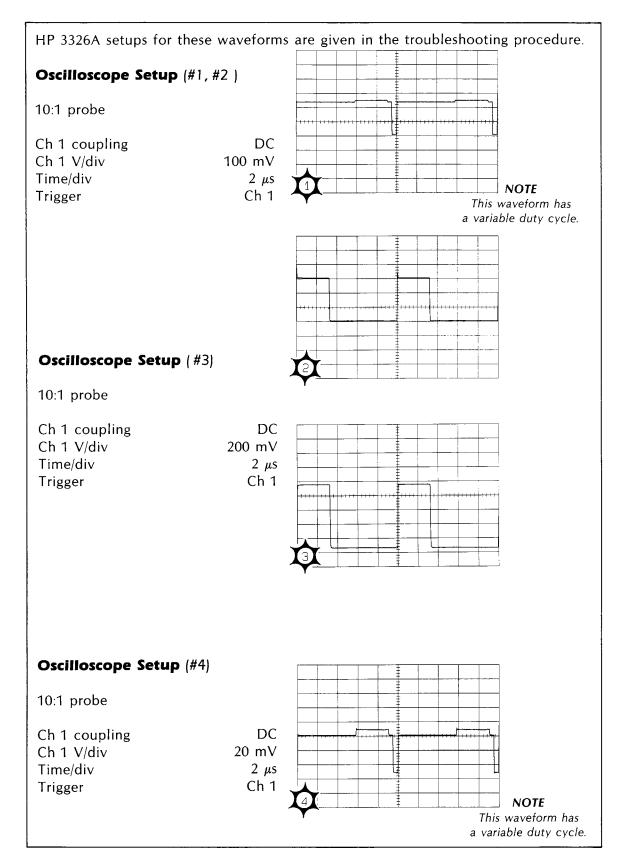
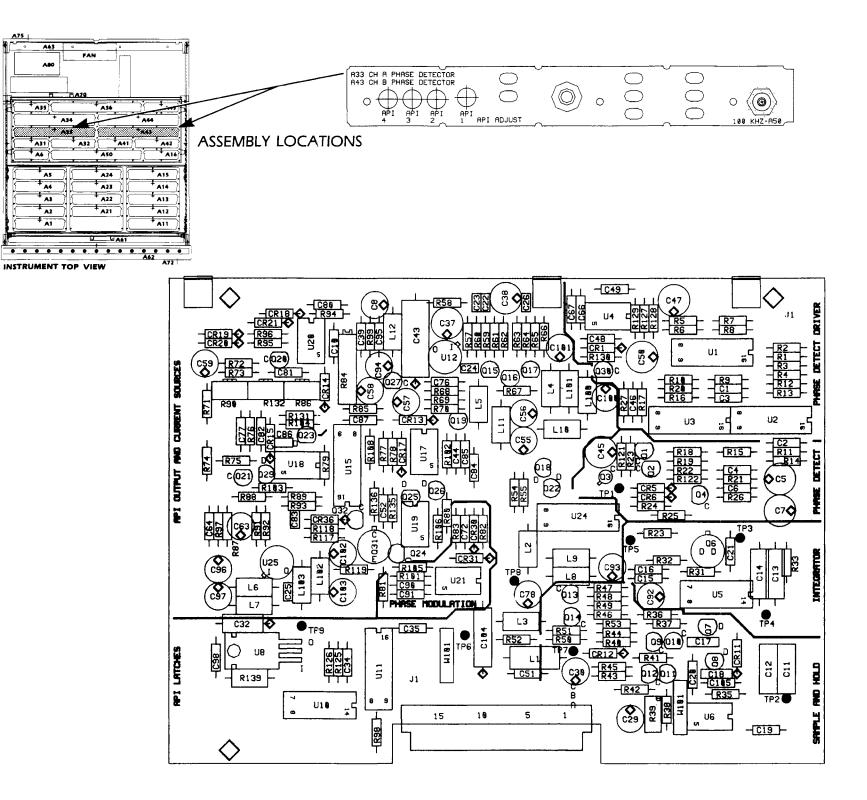
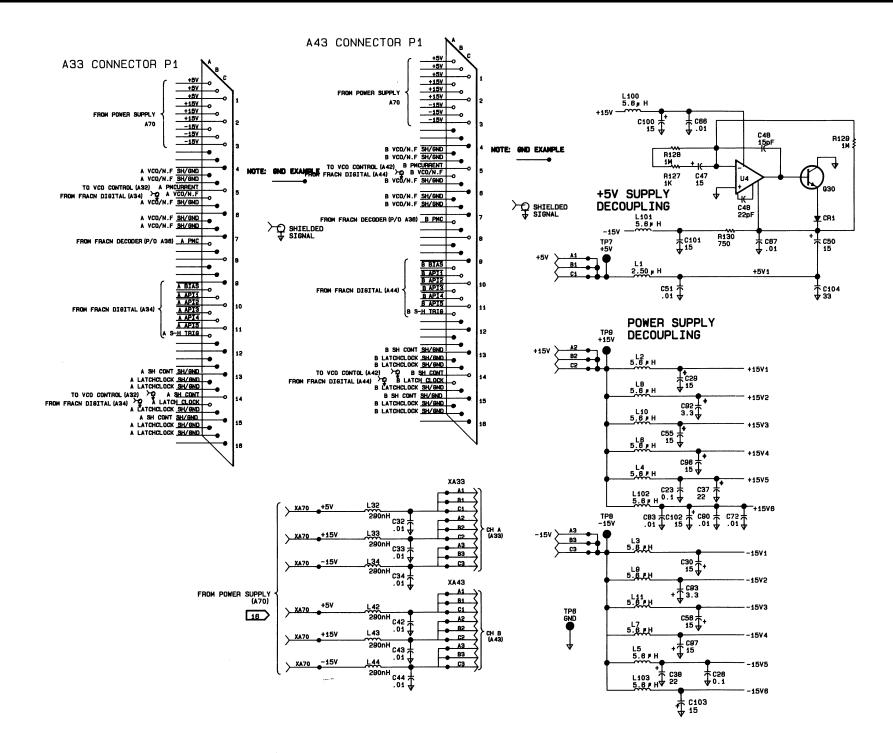


Figure 6-49. VCO Tuning Graph

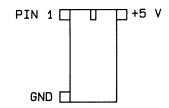




Figure 6-50. Phase Detector Board Waveforms

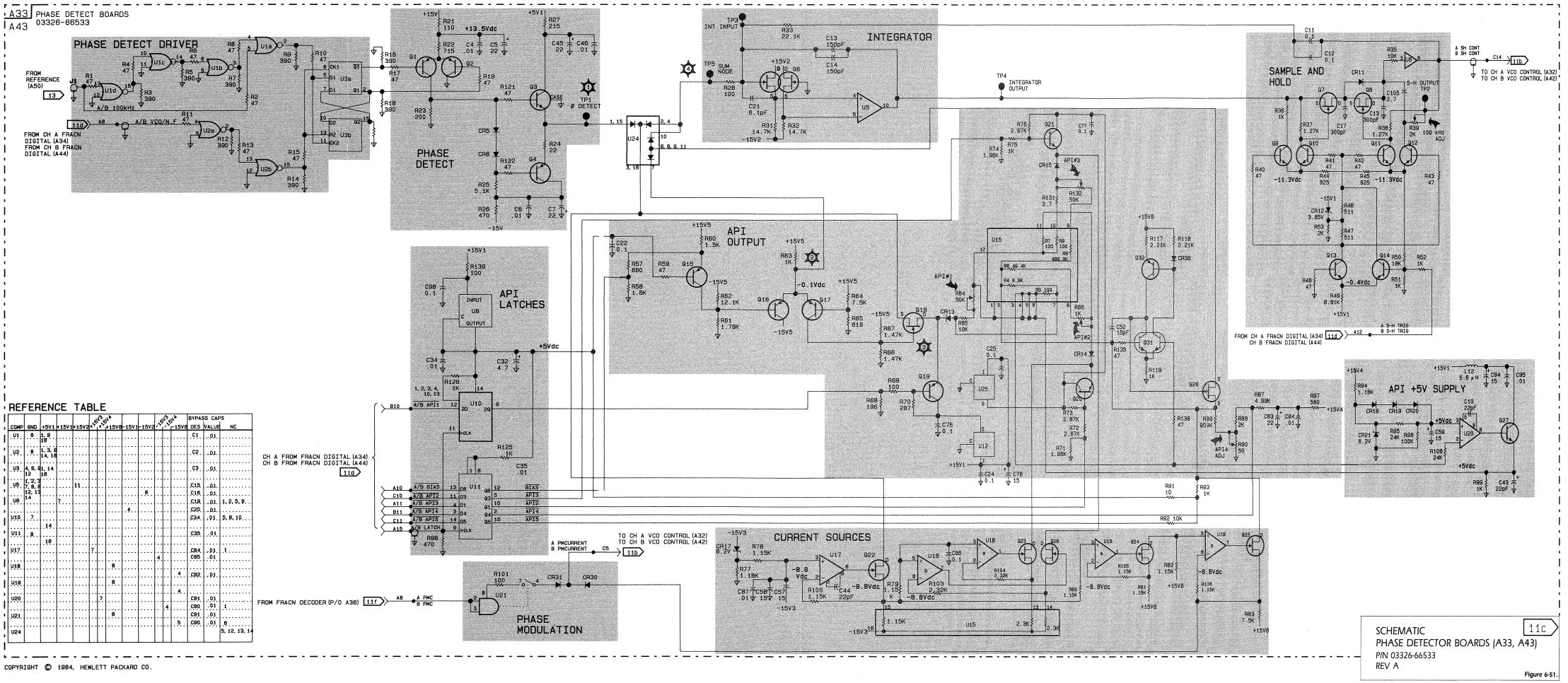
A75


PHASE DETECTOR BOARDS (A33, A43) P/N 03326-66533 REV A

MODEL 3326A


A33 PHASE DETECT BOARDS PHASE DETECT DRIV REFERENCE (A50) 13 FROM CH & FRACN DIGITAL (A34) FROM CH B FRACN DIGITAL (A44)

REFERENCE TABLE Nº 64


NOTES:

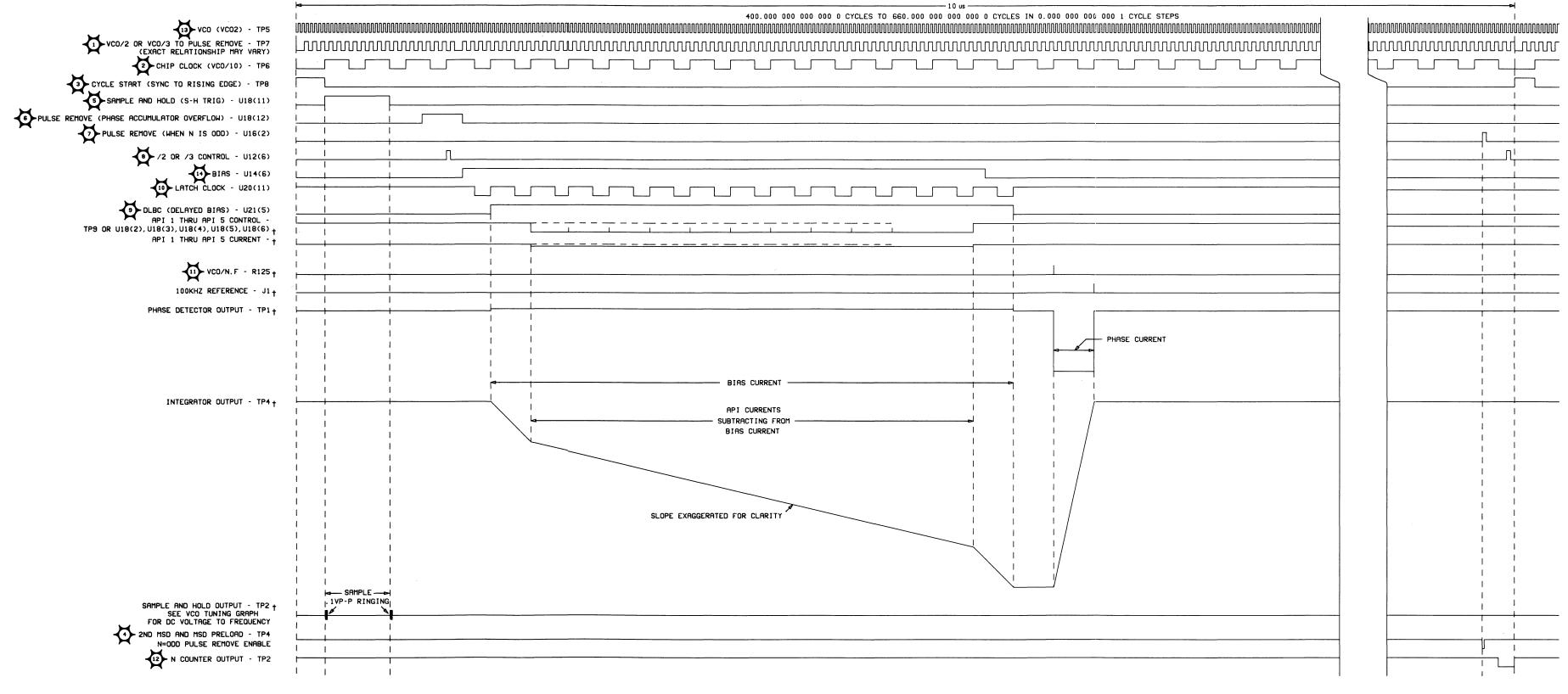
1. ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN, REGARDLESS OF THE TOTAL PIN COUNT (e.g., FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16).

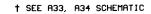
- 2.EMITTER COUPLED LOGIC (ECL) AND TTL DEVICES ARE USED IN THIS CIRCUIT.
- 3. THIS BOARD IS USED TWICE IN THE INSTRUMENT -ONCE FOR CHANNEL A, AND ONCE FOR CHANNEL B. THE TWO IDENTICAL BOARDS MAY BE INTERCHANGED FOR TROUBLESHOOTING, BUT MUST BE RETURNED TO THEIR ORIGINAL LOCATIONS TO AVOID RECALIBRATION OF THE INSTRUMENT

Qservice --- This Diagram Has been precicely scanned from the original HP manual --- Qservice

Fractional-N Digital Board Troubleshooting

The instrument bus circuit on the controller board (A61) and the control interface on this board can be tested using the Interface SA Test (see Tables 6-52 and 6-53 in the A61 troubleshooting sub-section 6-33). This test exercises the control lines from the controller board to determine if the controller or the control interface circuitry is defective.

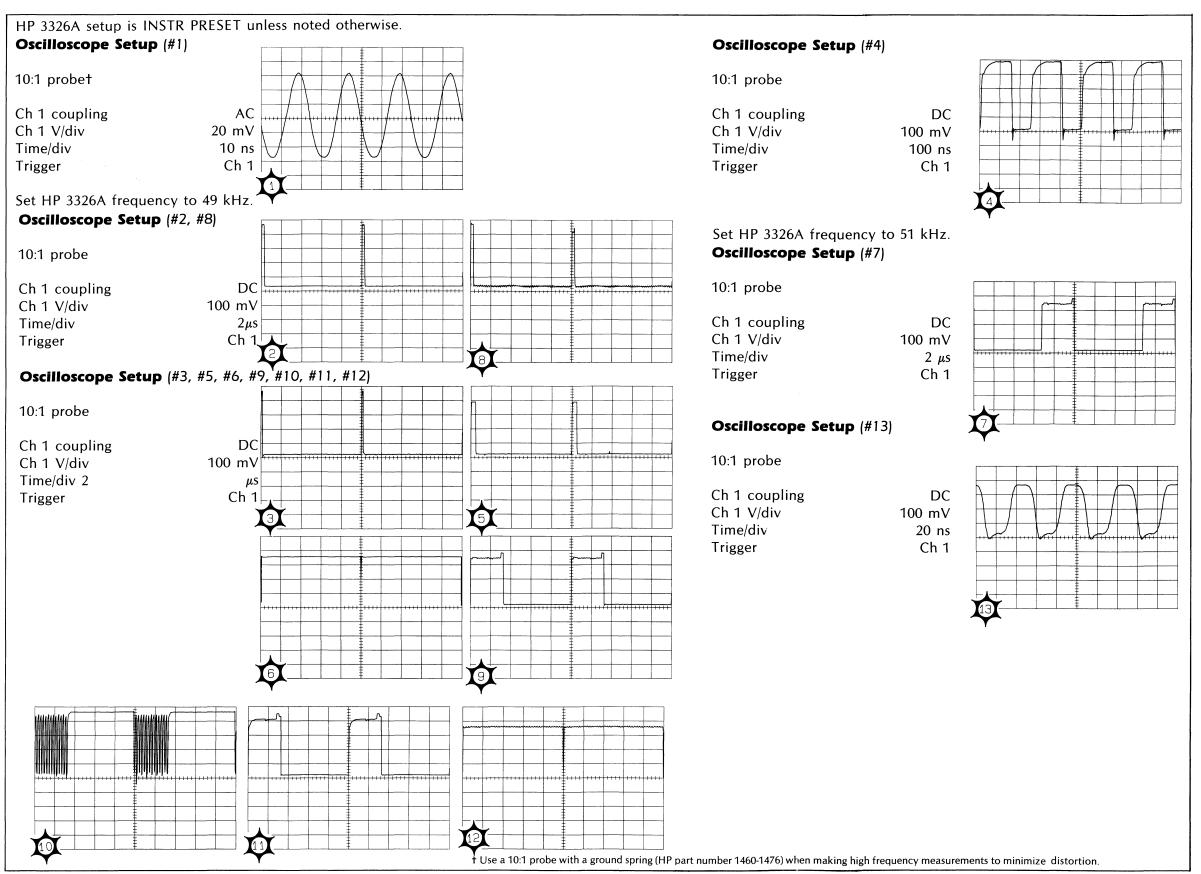

- 1. Turn power off, place the fractional-N digital board on an extender, then turn power on.
- 2. Verify that waveform 1 (VCO) in Figure 6-53 is present. This is an input to the board.
- 3. Run the service self tests by pressing the key sequence **SHIFT**, %, 6. Passing self test 9 indicates that the control interface to channel B is functional. Passing self test 10 indicates the same for channel A.
- 4. Check the performance of the fractional-N IC by comparing waveforms 2, 3, 4, 9, and
 5 in Figure 6-53 with those of the board under test. (The instrument setups for these waveforms are given in Figure 6-53.)
- 5. Check waveform 6 (PRELOAD) to determine the status of the \div N counters. This is a normally high, TTL level signal with a low level pulse at a 100 kHz (10 μ s) rate.
- 6. To test the N# latches sub-block, use the following table:

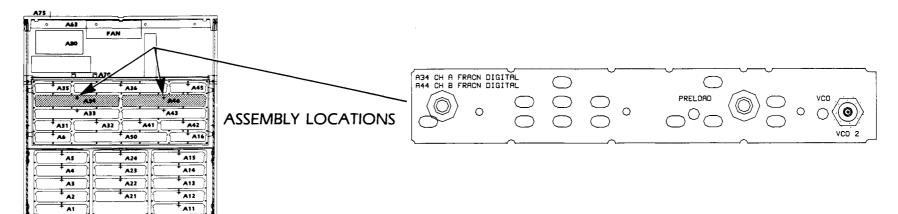

Table 6-38. N# Latch Test

Program	U3	U3	U3	U3
Frequency	Pin 5	Pin 7	Pin 10	Pin 12
100 kHz	0	1	1	1
50 kHz	1	0	0	0

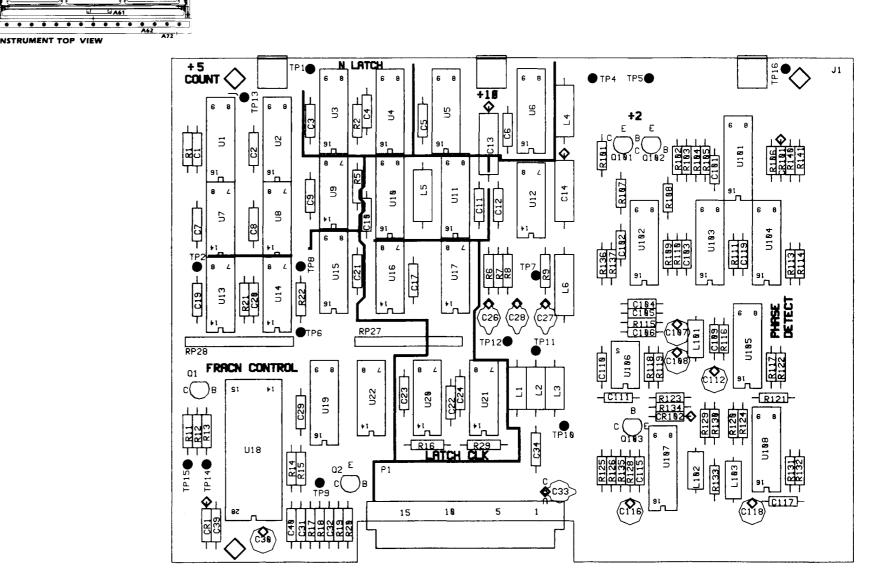
- 7. To test the LSD counter sub-block, check TP7 (sub-block input) and TP2 (sub-block output).
- 8. Use the remaining waveforms in Figure 6-53 and the waveforms in the timing diagram (Figure 6-52) to troubleshoot further.

Refer to Table 6-15 for recommended post-repair adjustments.




Figure 6-53 "Fractional-N" Board Waveforms

MODEL 3326A


NOTES

SERVICE

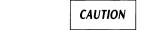
SERVICE

INSTRUMENT TOP VIEW

FRACN DIGITAL BOARDS (A34, A44) P/N 03326-66534 REV A

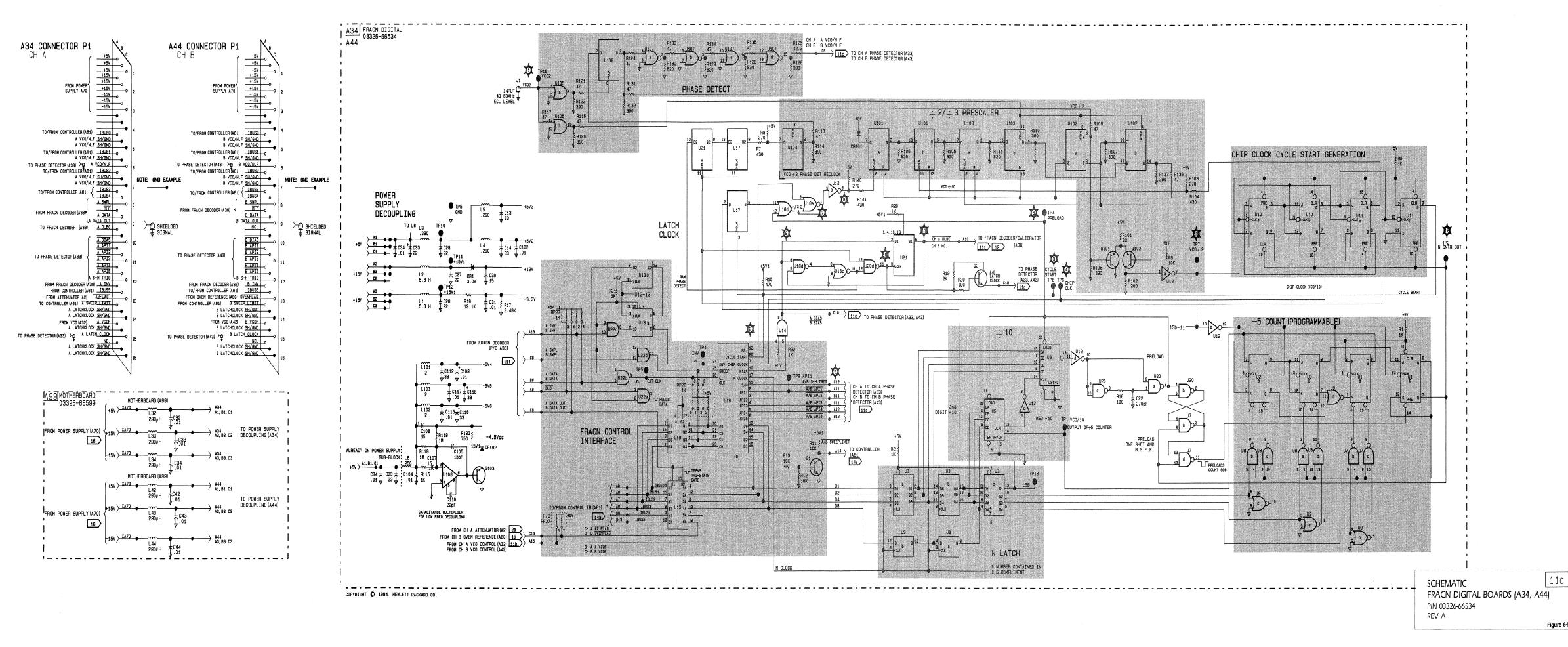
REFERENCE TABLE

			BYPASS	CAPS			
COMP	GND	+5V1	REF DES	VALUE	NC.		
U1	8	.18	Ci	.01	5		
U2	8	18	C2	.01			
U3	8		C3	.01			
 U4	 B	.18	C4	.01	•••••		
U5	8	. 16 16	C5	.01	2, 3, 8, 7, 13		
U8	 8	.10 18	 C8	.01	2, 3, 6, 7, 12		
U7	····· 7	. 10	C7	.01	••••••		
U8	7	.47.	C8	.01			
U9	7	. 14 14	C9	.01	11, 12, 13		
U10	8	.17.	C10	.01			
U11	8	. 16	C11	.*01	7		
 U12	···· 7		C12	.01	4		
U13	····· 7	. 14 . .14	C19	.01	8		
U14	8	.17.	C50	.01	1, 2, 3, 7, 9, 10, 11, 12 13		
U15	8	. <u>14</u> 16	C21	.01			
U18	7	. 14	C17	.01			
U17	 7		C18	.01	6, 8		


									BYPAS	G CAPS	
COMP	GND	+5V1	+5V3	+5V4	+5V5	+5V6	+12V	-3.3V	REF DES	VALUE	NC.
U18	8	9							C40	.01	19
							27		C39	.01	
U19	8						••••		C29	.01	2, 8, 10 14
U20	7								C23	.01	
U21	 7	14		•••••			•••••		C24	.01	6, 8
U101	5, 8 9, 12	.14.	1, 3 14, 16			••••			C101	.01	
U102	 4, 5, 8 12, 13		1, 15 16			••••					
U103	5, 8, 8 12		1, 3, 15, 10						C103	.01	
U104	4, 5, 8 10, 11 12, 13		1, 3, 14, 11 18	•••••	•••••				C119	.01	
U105	8, 9, 10, 11			1, 3, 6 7, 14 16.							
U107	8	•••••		#9	 	1, 18				1	9
U108	4, 5, 8 9, 10 11, 12				1, 3 14, 15						

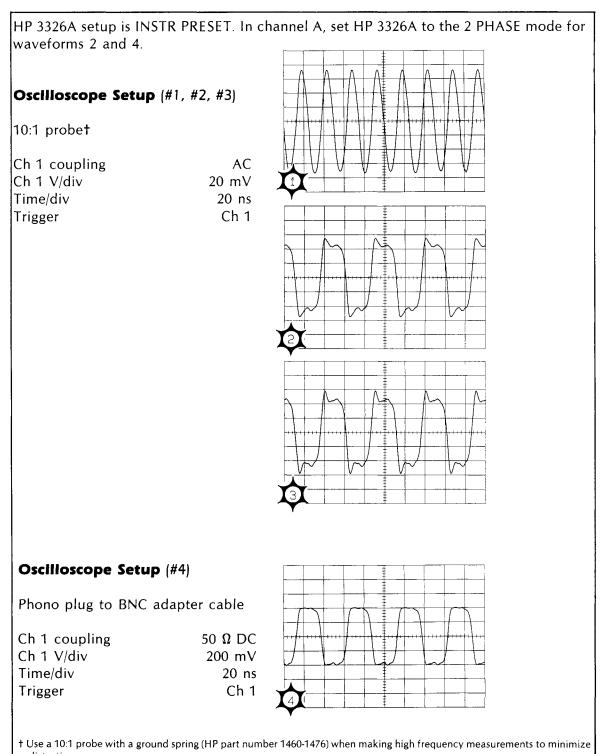
NOTES:

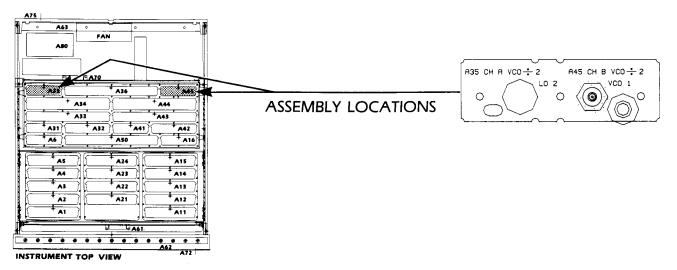
1. ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN, REGARDLESS OF THE TOTAL PIN COUNT (e.g., FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16).

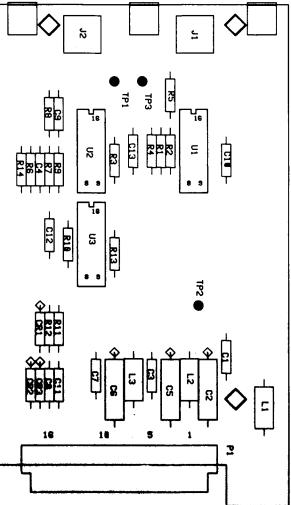


2. THIS BOARD IS USED TWICE IN THE INSTRUMENT -ONCE FOR CHANNEL A, AND ONCE FOR CHANNEL B. THE TWO IDENTICAL BOARDS MAY BE INTERCHANGED FOR TROUBLESHOOTING, BUT MUST BE RETURNED TO THEIR ORIGINAL LOCATIONS TO AVOID RECALIBRATION OF THE INSTRUMENT.

TTL, EMITTER COUPLED LOGIC (ECL), AND TTL COMPATIBLE NMOS LOGIC DEVICES (i.e., THE FRACTIONAL-N IC) ARE USED IN THIS FRACTIONAL-N DIGITAL CIRCUIT (A34 AND A44).


USE THE APPROPRIATE PRECAUTIONS WHEN REMOVING, HANDLING, AND INSTALLING ALL STATIC SENSITIVE COMPONENTS TO AVOID DAMAGE.




VCO ÷ 2 Board Troubleshooting

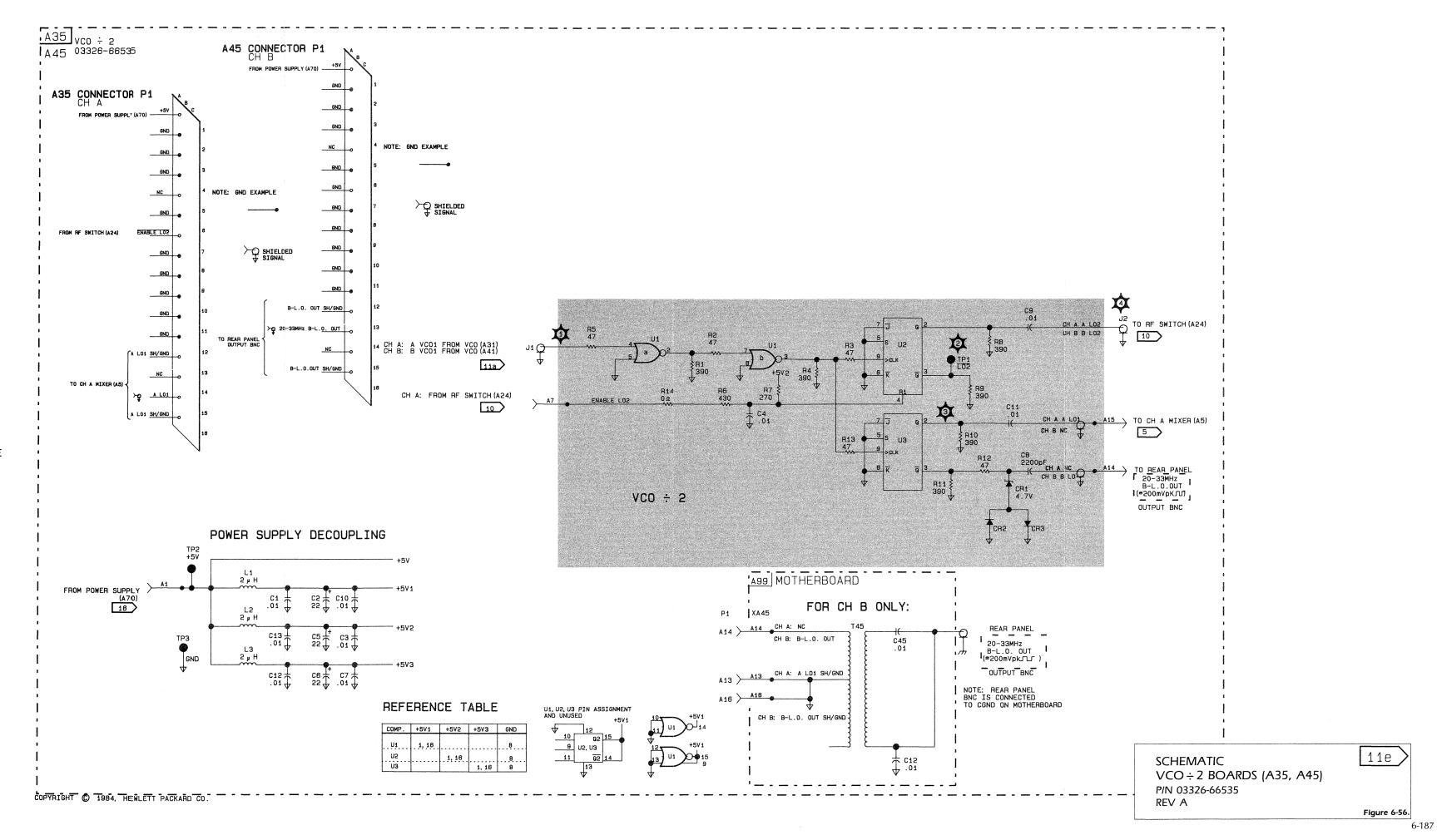
This circuit may be analyzed by putting it on an extender (be sure to turn the power off before removing the board) and comparing the oscilloscope waveforms in Figure 6-55 with those of the defective unit. Unless otherwise noted, the instrument configuration for these waveforms is INSTR PRESET.

distortion.

VCO ÷ 2 BOARDS (A35, A45) P/N 03326-66535 REV A

NOTES:

- IS RECOMMENDED.
- USED IN THIS CIRCUIT.


1. ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN, REGARDLESS OF THE TOTAL PIN COUNT (e.g., FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16).

> PIN 1 🔲 🗍 +5 V GND

2. THIS BOARD IS USED TWICE IN THE INSTRUMENT -ONCE FOR CHANNEL A, AND ONCE FOR CHANNEL B. THE TWO IDENTICAL BOARDS MAY BE INTERCHANGED FOR TROUBLESHOOTING, BUT MUST BE RETURNED TO THEIR ORIGINAL LOCATIONS TO AVOID RECALIBRATION OF THE INSTRUMENT.

3. POOR GROUND CONNECTIONS IN THE PHONO CABLES MAY CAUSE INTERMITTENT PROBLEMS THAT CAN APPEAR TO BE SUBTLE HARDWARE FAILURES (FOR EXAMPLE, POOR PHASE OR AMPLITUDE CALIBRATION ACCURACY). CRIMPING THE PHONO CONNECTORS TO IMPROVE THE GROUND CONNECTIONS

4. EMITTER COUPLED LOGIC (ECL) DEVICES ARE

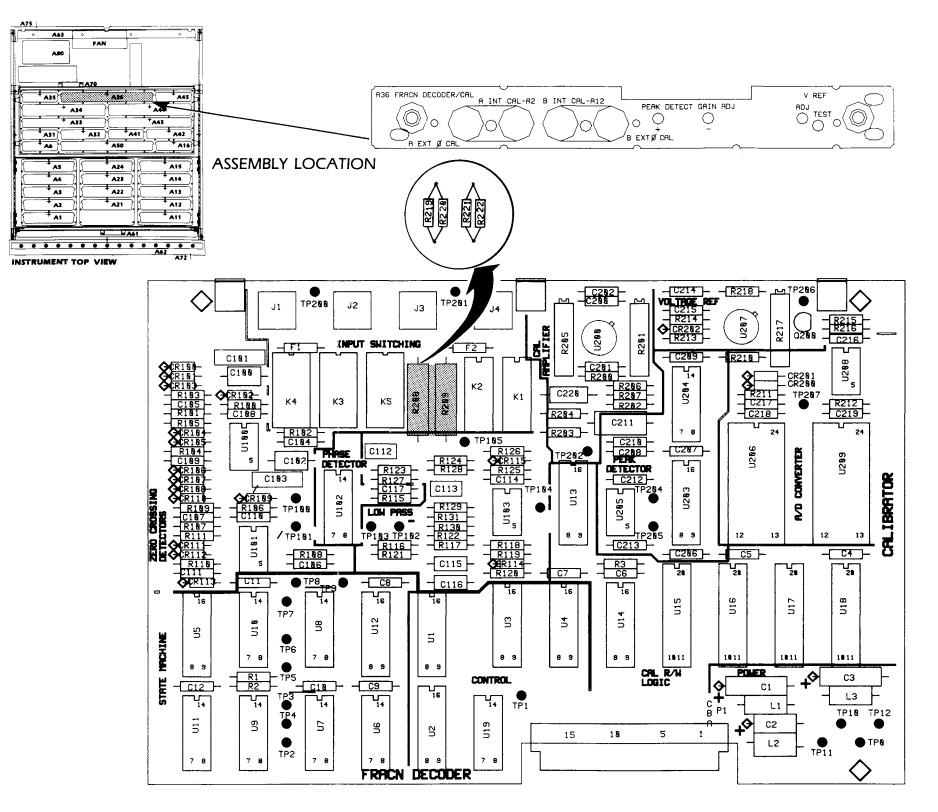
Fractional-N Decoder Board Troubleshooting

The instrument bus circuit on the controller board (A61) and the control interface on this board can be tested using the Interface SA Test (see Tables 6-52 and 6-53 in the A61 troubleshooting sub-section 6-33). This test exercises the control lines from the controller board to determine if the controller or the control interface circuitry is defective.

- 1. Turn power off, place the fractional-N decoder board on an extender, then turn power on.
- 2. Check the following circuit inputs using a logic probe (see schematic):

ADD STROBE and DATA STROBE (from A61). These signal lines should toggle when frequency is modified.

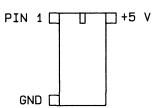
RESET (from A61). Should be TTL high.

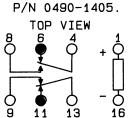

8MHZ FRACN CLK (from A50). Should be an 8 MHz, TTL level square wave.

A DLBC (from A34). Should be 100 kHz, TTL level square wave with a duty cycle of approximately 30%.

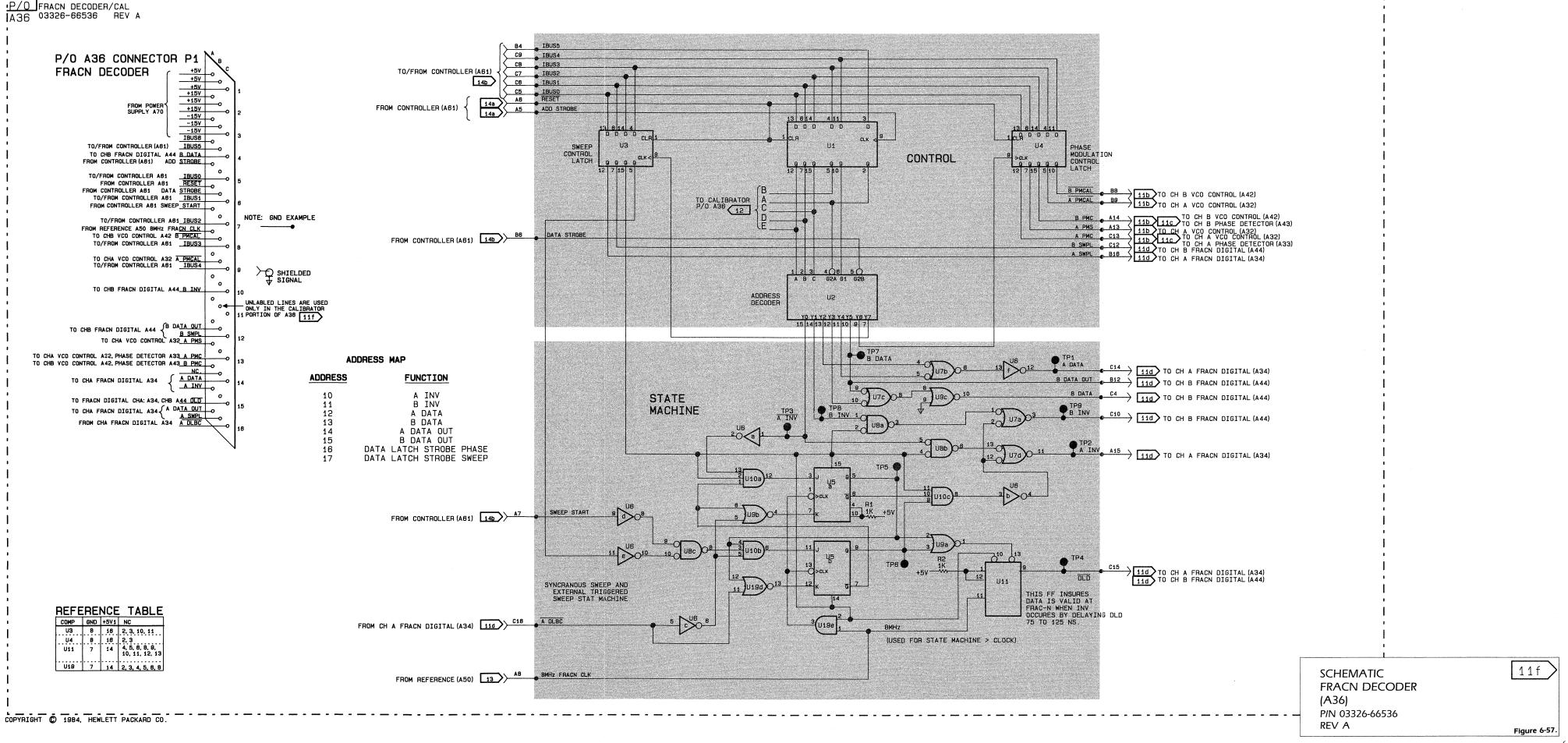
- 3. Check the outputs of U1 (latch). They should follow the inputs. If frequency is modified, they should toggle.
- 4. Check outputs of U2 (address decoder):

Pin 7 should toggle when continuous sweep (CONT) is selected. Pin 9 should toggle when phase modulation (internal or external) is selected. Pins 10 through 15 should toggle when the frequency is modified for either channel A or channel B.


- 5. Check the B DATA, B INV, A DATA, A INV, and DLD outputs for toggling signals when the frequency is modified for either channel. If this is not working as described, troubleshoot the logic gates between the outputs and the address decoder, U2.
- 6. Check the A DATA OUT and B DATA OUT outputs for a low signal at the beginning of a sweep. If this is not working as described, troubleshoot the logic gates between the outputs and the address decoder, U2.


FRACN DECODER/CALIBRATOR BOARD (A36) P/N 03326-66536 REV A

1. ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN. AND +5 V CONNECTED TO THE UPPER RIGHT PIN, REGARDLESS OF THE TOTAL PIN COUNT (e.g., FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16)



2.TTL DEVICES ARE USED IN THIS CIRCUIT. 3. RELAYS ARE SHOWN IN THE DE-ENERGIZED STATE.

- 4. POOR GROUND CONNECTIONS IN THE PHONO CABLES MAY CAUSE INTERMITTENT PROBLEMS THAT CAN'APPEAR TO BE SUBTLE HARDWARE FAILURES (FOR EXAMPLE, POOR PHASE OR AMPLITUDE CALIBRATION ACCURACY). CRIMPING THE PHONO CONNECTORS TO IMPROVE THE GROUND CONNECTIONS IS RECOMMENDED.
- **5.** PHASE CALIBRATION IS VERY SENSITIVE TO BAD GROUND CONTACTS. IF THE HP 3326A HAS POOR PHASE CALIBRATION ACCURACY, CHECK TO MAKE SURE THAT (1) ALL OF THE TOP COVER SCREWS ARE FIRMLY IN PLACE, (2) ALL OF THE MOTHERBOARD SCREWS ARE FIRMLY IN PLACE. (3) ALL OF THE CABLE CONNECTIONS ARE TIGHT (PARTICULARLY THE GROUND CONTACTS)
- 6.BE SURE TO USE THE PROPER CABLES FOR A INT CAL AND B INT CAL SIGNALS THAT RUN FROM THE CHANNEL A AND CHANNEL B ATTENUATORS (A2 AND A12) TO THE CALIBRATOR BOARD (P/O A36) . DO NOT SUBSTITUTE ANY OTHER CABLES. THE PRECISION 12 INCH ELECTRICAL LENGTH CABLES ARE REQUIRED FOR INTERNAL CALIBRATION.

TO PREVENT SERVICING PROBLEMS, PRECISION LENGTH CABLES HAVE BEEN USED FOR THE REST OF THE 12 INCH CABLES IN THE INSTRUMENT, EVEN THOUGH THIS LEVEL OF PRECISION IS NOT REQUIRED FOR THEIR APPLICATIONS. SEE THE REPLACEABLE PARTS LIST FOR MORE INFORMATION.

6-31 CALIBRATOR, P/O A36

The information in this section should be used to isolate defective sub-blocks when servicing the HP 3326A. All procedures assume Fault Isolation to the Board Level has been used to determine which functional block (board) has failed.

Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltages and energy available at many points can, if contacted, result in personal injury.

CAUTION

Be sure that the power switch is in the STBY position before inserting or removing any circuit board. Power transients caused by insertion or removal may damage the circuit boards.

Theory of Operation

The A36 board circuits fall into two groups; calibrator and fractional-N decoder. This theory covers the operation of the calibrator.

The calibrator circuits act as a peak detecting voltmeter. They can be configured to measure signals at either of the INT CAL jacks or the points OFFTEST and LEVTEST. The information gathered is sent to the instrument microprocessor through the cal R/W logic sub-block. The A INT CAL jack is connected through a cable to the cal port on the channel A attenuator board (A2). The B INT CAL jack (J3) is similarly connected to the channel B attenuator board (A12). The signals available at these jacks for calibration are the same signals that appear at the CH A and CH B front panel outputs.

The calibrator group is broken into five distinct parts for service self tests, listed below. Figure 6-58 shows the board's three main signal paths.

- 1. Voltage reference
- 2. Amplitude/Offset calibration path
- 3. Levtest/Offtest path
- 4. Phase calibration path
- 5. Calibration read/write logic

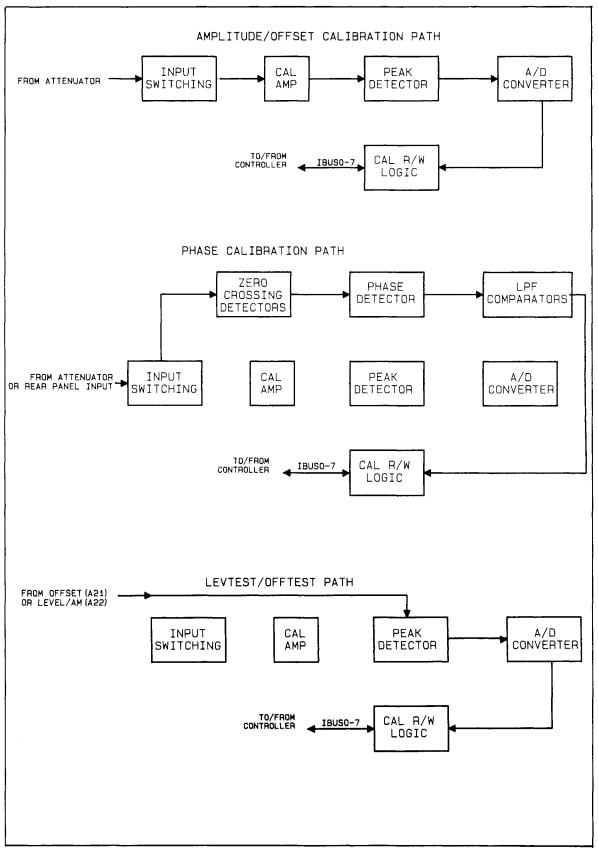


Figure 6-58. Calibrator Board Signal Paths

1. Voltage reference:

The voltage reference is a \pm 10.240 Vdc signal (V REF) used by the offset, level, and square boards to insure amplitude accuracy. A 6.2 V zener is the basis of the circuit. That reference voltage is connected to the non-inverting input of an operational amplifier (op amp) which drives a discreet transistor. The transistor provides a large current source with a low output impedance. The output of the circuit is at the emitter of the transistor, as shown on the schematic. A potentiometer in the feedback circuit allows adjustment of the reference to \pm 0.010 Vdc.

2. Amplitude/Offset cal path:

The amplitude calibration path consists of five parts. These are:

- a. Input switching
- b. Calibration amplifier (cal amp)
- c. Peak detector
- d. A/D converter
- a. The input switching sub-block is used to select the calibration input and to reverse the inputs. Reversing the inputs has the effect of reversing the polarity of the input signal. To obtain peak-to-peak and dc information at the INT CAL jacks, both positive and negative peaks must be measured. The peak detector block detects positive peaks, only. Negative peaks are detected by switching the inputs, which effectively configures the cal amplifier for a gain of -1. Table 6-39 shows the configuration of the relays for the various input measurements.

		Calibration							
Switch	Reference	Self	Test	Inter	External				
Name†	Designator	LEVTEST	OFFTEST	Amp/Offset	Phase	Phase			
CAL ISOLATION	A2K108, A12K108	X	X	0	0	1			
CAL/PRTCT	A2K107, A12K107	X	X	0	0	1			
CAL AMP +	A36K1	Х	Х	X	0	0			
CAL AMP -	A36K2	Х	Х	X	0	0			
AMP CAL	A36K3	Х	Х	X	X	X			
PHASE CAL	A36K4	X	X	0	1	1			
INT CAL	A36K5	Х	X	0	0	1			
PEAK DETECTOR	A36U203(1)	OFF (H)	ON (L)	OFF (H)	X	X			
INPUT	A36U203(9)	ON (L)	OFF (H)	OFF (H)	Х	X			
	A36U203(16)	OFF (H)	OFF (H)	OFF (H)	Х	X			
	A36U203(8)	OFF (H)	OFF (H)	ON (L)	Х	X			

Table 6-39. Calibration Control

 $\dagger 0$ = Relay must be in the de-energized position for the calibration to take place.

1 = Relay must be in the energized position for the calibration to take place.

X = Relay can be in either the de-energized or energized position for the calibration to take place.

ON(L) = Control line for the switch must be TTL low for this calibration. This activates the switch.

 $OFF_{(H)} = Control line for the switch must be TTL high for this calibration. This de-activates the switch.$

- b. The calibration amplifier (U200) is a wideband, high gain op amp. Note that C220 bandlimits the input signal to about 135 kHz to prevent output overshoot when using a square wave input. Also, R206 connects V REF to this circuit, causing the cal amp to have a built-in positive offset voltage of about 40 mV. This allows the calibrator to measure voltages at, and slightly below, ground with a positive-only peak detector. The cal amp output is connected to the peak detector input through an analog switch, U203.
- c. U204 is a monolithic peak detector configured for a gain of +1. The microprocessor controls its operation through the cal R/W logic sub-block. Depending on the state of its DET and RST inputs, it can reset its output to ground, detect a positive peak, or hold the detected peak. Table 6-40 shows the state of these lines for the three functions. Table 6-39 shows the state of the analog switch control lines when the phase, amplitude, LEVTEST, and OFFTEST inputs are selected.

Detector	Control Line State					
Function	RST	DET				
Reset	1	1				
Detect peak	0	0				
Hold	0	1				

Table 6-40. Detector Function vs. Control Line State

d. The A/D converter block is made up of a successive approximation register (SAR, U209), a D/A converter (DAC, U206), and a comparator (U208). Converter operation is as follows: V REF sets up a current internal to the DAC which is a function of the digital code present. This current flows into the DAC from its output pin. The voltage at the V IN input sets up a current which adds to the reference current at the output pin. Current then flows out of the DAC if V IN is greater than V REF times the code and into the DAC if V IN is less. This current is clamped at the comparator input; the comparator output gives the greater-than or less-than indication. Full scale is 5.12 V. Upon receipt of a negative transition on the S input, the SAR alternately outputs digital codes to the DAC and tests the comparator output, initially testing the most significant bit and working its way to the least significant bit.

The SAR clock input (A DLBC) is a 100 kHz TTL pulse waveform generated by the channel A fractional-N circuitry.

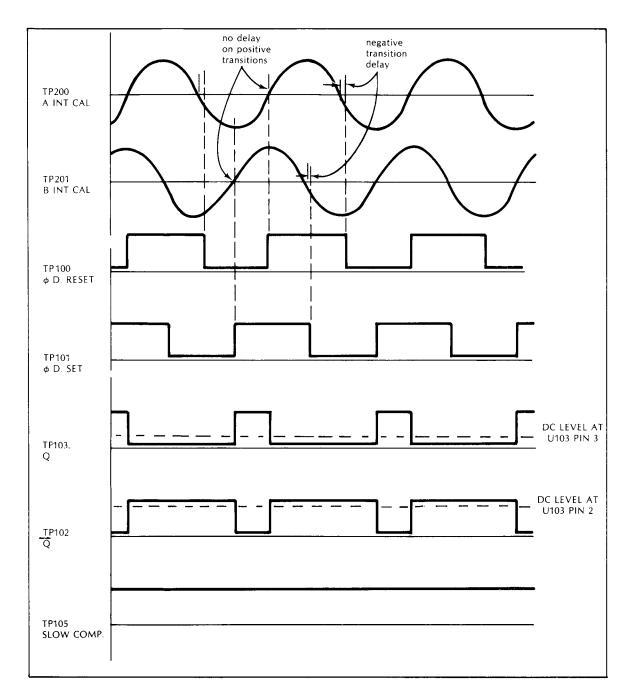
The sequence of events for an amplitude/offset calibration is:

- The input switching relays and the analog switch are configured for the desired input.
- The peak detector output is reset to ground.
- The peak detector is set to detect a peak for several milliseconds.
- The peak detector is set to hold the detected peak.
- The S input to the SAR is strobed to initiate a conversion.
- The results are read over the cal R/W logic sub-block.

3. Levtest/Offtest Path:

The LEVTEST and OFFTEST signal paths have high impedance inputs and are used during the service self tests to bypass the cal amp to verify operation of the DACs on the offset and level/AM boards, A21 and A22. They are switched directly into the peak detector by the analog switch. Only positive voltages can be measured at these points. A INT CAL and B INT CAL are 50 ohm inputs. See sub-section 6-8, "Self Test Error Codes."

4. Phase calibration path:


The phase detector circuit consists of four main parts. These are:

- a. Input switching
- b. Zero crossing detectors
- c. Phase detector
- d. Low pass filter/comparators
- a. The input switching sub-block used for phase calibration is the same as that used by the amplitude calibration path. In this circuit, a relay changes polarity by reversing the inputs. The phase detector is either configured normally or has its inputs reversed. By calibrating both ways and averaging, systematic errors are eliminated.
- b. The zero crossing detector function takes an analog waveform and converts it to a digital waveform whose transitions reflect the timing of the analog zero crossings. They are optimized for speed, noise rejection, and insensitivity to amplitude and dc offset of input signals.

When the input signal is below the comparator threshold, the inverting output is high, which forward biases the first two diodes in the feedback path and reverse biases the diode nearest the input. This causes the inverting input to be at ground potential and the switching threshold to be zero volts for signals crossing in the positive direction. When the input crosses this threshold, the inverting output goes low and the diodes formerly on are now off, causing the diode near the input to turn off and the inverting input to be biased at -80 mV.

Figure 6-59 shows that the zero crossing detectors output timing is accurate for positive transitions and has a slight delay for the negative transitions. This inaccuracy is eliminated by taking a second measurement with opposite input polarity and averaging the two measurements.

c. Two interconnected flip-flops form the phase detector, which is driven by the two zero crossing detector outputs. Refer to the waveforms in Figure 6-59 for the following discussion.

Figure 6-59. Timing Diagram for the Phase Cal Path

The output of zero crossing detector U101 (ϕ D.SET) acts to set the phase detector. The output of U100 (ϕ D.RESET) resets the output. The phase detector output is a square wave whose duty cycle is determined by the timing of its ϕ D.SET and ϕ D.RESET inputs and is an indication of the phase between the two original input signals. An input phase difference of 180° produces a 50% duty cycle in the phase detector output. The timing diagram in Figure 6-60a shows these signals for two sine wave inputs of arbitrary phase. In the case shown, channel B leads A by 90°. The zero crossing detector's negative hysteresis voltage is shown exaggerated for clarity.

d. The two low pass filter/comparators signal the controller when the phase of the input signals passes through 180°. The two circuits described here are identical except for filter cutoff frequencies.

The low pass filters act differentially on the phase detectors true and complementary outputs, removing their ac components and sending their dc components to the comparator inputs. As the phase between the input signals varies between 0° and 360°, the phase detector's true output varies from 0% duty cycle to 100%. This causes its dc component to vary from TTL low to high, with the complement output varying in exactly the opposite manner as the input phase changes (as the duty cycle goes from 100% to 0%, the dc component goes high to low). The two dc components cross each other when the input signal passes through 180°, which causes the comparator output to change state, signaling the controller. This relationship is shown in Figure 6-60b. Two filters are used because low frequency inputs require a filter with a slower response time (and corresponding lower cutoff frequency), while high frequency inputs can save time by using the "fast" filter.

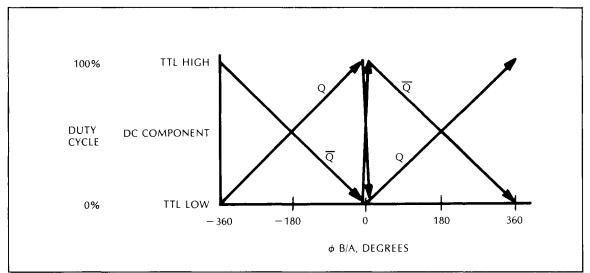
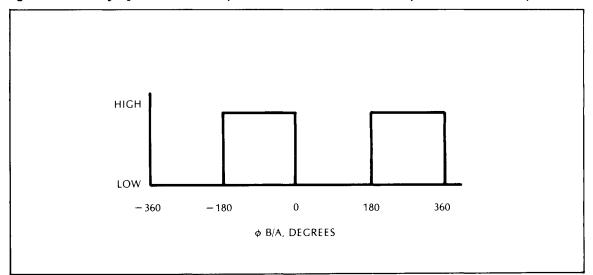



Figure 6-60a. Duty Cycle and DC Components of Phase Detector Outputs vs. Phase of Inputs

The sequence of events for a phase calibration follows. ϕ B denotes channel B phase; ϕ B/A denotes the phase of B with respect to A.

- The A and B output signals are connected to the phase detector circuit through relays
- The controller increments ϕB until the phase detector indicates that $\phi B/A$ is between 0 and 180°
- ϕ B is incremented until ϕ B/A just exceeds 180°
- ϕ B is incremented until ϕ B/A is just less than 180°
- Steps 3 and 4 are repeated with the phase increments growing smaller
- The final value of ϕB is stored
- The inputs of the phase detector are reversed with a relay
- Steps 3 through 5 are repeated
- The second final value of ϕB is averaged with the first value, resulting in defining $\phi B/A$ to be 180°
- ϕ B is updated to reflect ϕ B/A which the user has entered (if 0° is entered, ϕ B is incremented 180°)
- The output signals are disconnected from the phase detector

5. Calibration read/write logic:

The circuits in the cal R/W logic sub-block form a digital interface used to control the configuration of the calibrator board and to retrieve measurement information from its output circuits.

Troubleshooting the Amplitude/Offset Cal Path

The instrument bus circuit on the controller board (A61) and the control interface on this board can be tested using the Interface SA Test (see Tables 6-52 and 6-53 in the A61 troubleshooting sub-section 6-33). This test exercises the control lines from the controller board to determine if the controller or the control interface circuitry is defective.

1. Probe TP206 to check V REF. This voltage should be 10.240 Vdc \pm 10 mV.

- 2. Connect a 1 kHz, 10 Vpp sine wave source to J2, A INT CAL. If one of the channels is operational, it can be used.
- 3. Set the calibrator to detect and display a negative peak measurement by pressing the key sequence **SHIFT**, %, 4. This configures the input relays to connect J2 to the calibration amplifier (cal amp) inverting input and grounds the non-inverting input. The controller then takes repetitive measurements with the peak detector and A/D converter and displays the results on the front panel. With an input of 10 Vpp, the display should read approximately -5 V. This configuration may be used to troubleshoot the cal amp, peak detector and A/D converter sub-blocks.
- 4. Check the input waveform at TP200 with a scope and compare it with the cal amp output at TP202. The frequency and amplitude of the two waveforms should appear identical and there should be a 180° phase offset between them. This setup shows the input and output signals of the cal amp sub-block.

5. Set up the calibrator to detect and display a positive peak by pressing the key sequence **SHIFT**, %, 5 (display should read approximately +5 V), and check the waveforms at TP 200 and TP202 again. The input and output waveforms should appear identical (in phase, as well).

If the output waveforms are incorrect in steps 4 or 5, then troubleshoot the cal R/W logic sub-block, the relays, and the cal amplifier.

- 6. Probe TP204 and TP202. The waveforms should appear identical. If not, troubleshoot the analog switch or the cal R/W logic sub-block. Note that the service self tests use the LEVTEST and OFFTEST inputs which bypass the relays and cal amplifier (they are switched into the peak detector directly through U203).
- 7. Probe the waveform at the peak detector output (TP205). It should periodically reset to ground, detect a positive peak, hold it, and repeat the process. If not, troubleshoot the peak detector circuitry or the cal R/W logic.
- 8. To test for general operation of the A/D converter, probe the various digital lines with a logic probe. All are TTL and should show activity, including TP207 (comparator output), the twelve data lines on the DAC, and the S input on the SAR. The SAR clock input is 100 kHz, TTL level pulse waveform which must be present for circuit operation.

To test A/D accuracy, connect a dc source of 5 V or less to J2, and press the key sequence **SHIFT**, %, **5** to display a positive peak on the front panel. The value displayed should equal the voltage measured at TP200 and the reading should be repeatable (within 3 mV) unless there is noise on the dc source. The same should be true for a negative dc source after pressing the key sequence **SHIFT**, %, **4**. If the voltages displayed differ from those measured by more than 10 mV, troubleshoot the A/D converter sub-block.

Table 6-41 shows the state of the digital control lines which drive the relays and the analog switches during positive or negative peak detection.

The timing diagram in Figure 6-61 shows the peak detector output and the control signals which drive the peak detector and the A/D converter. The digital logic should be checked before replacing any analog ICs. Check the signals by pressing either the key sequence **SHIFT**, %, 4 or **SHIFT**, %, **5**. Make sure the channel A and channel B signals are sine waves and the internal calibration cables (A INT CAL and B INT CAL) are connected to A36. Check the signals one at a time. If the signals are not present, troubleshoot the A/D converter sub-block.

Refer to Table 6-15 for recommended post-repair adjustments.

Instrument		U13, pin:						U15, pin:				
State	10	11	12	13	14	9	19	12	6			
PRESET	1 V	15 V	15 V	15 V	15 V	ні	ні_	LO	H1			
PHASE CAL	15 V	1 V	X	15 V	15 V	X	X	X	X			
SHIFT % 4	15 V	15 V	1 V	1 V	15 V	HI	HI	LO	н			
SHIFT % 5	15 V	15 V	15 V	15 V	1 V	HI	ні	LO	н			
	· H1 :	= TTL hig	h	LO = TT	L low	X =	don't care	9 J	I			

Table 6-41. Relay and Analog Switch Configurations for Internal Phase Calibration Control and Peak Detection

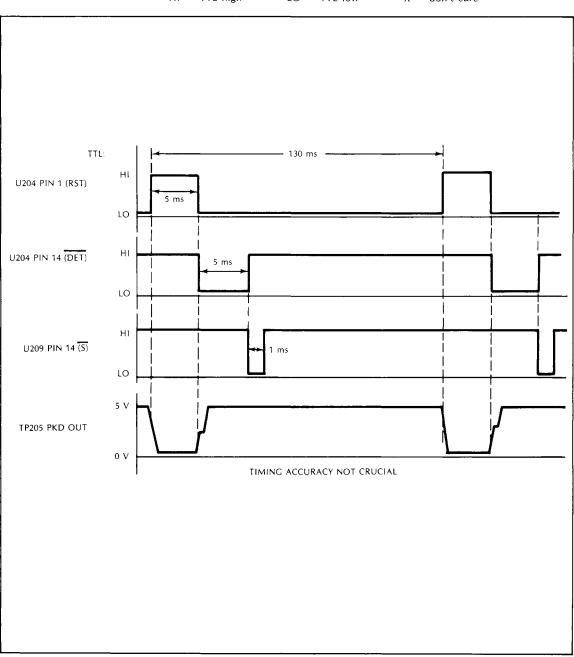


Figure 6-61. Peak Detector and DAC Timing Diagram

Troubleshooting the Phase Calibration Path

If phase calibration has failed catastrophically, the problem is usually easy to locate. If the problem is a slight phase cal inaccuracy, the problem may be difficult to locate. Keep in mind that system grounding is very important to phase performance. In particular, tightness of the top cover and motherboard screws and integrity of cable connections have a definite effect on phase calibration accuracy. Both the inner and outer conductors of all phono cables must make good contact. The outer "fingers" of the phono plugs can be crimped slightly and the inner contact bent slightly to insure good connections. A good measure of contact quality is the torque required to turn the plug when it is inserted. It should be fairly stiff to turn by hand.

NOTE

Phase calibration is very sensitive to bad ground contacts. When the HP 3326A has poor phase calibration accuracy, check that (1) all of the top cover screws are firmly in place, (2) all of the motherboard screws are firmly in place, and (3) all of the cable connections are tight, particularly the ground contacts.

The instrument bus circuit on the controller board (A61) and the control interface on this board can be tested using the Interface SA Test (see Tables 6-52 and 6-53 in the A61 troubleshooting sub-section 6-33). This test exercises the control lines from the controller board to determine if the controller or the control interface circuitry is defective.

- 1. This repair section assumes that the two output paths are operational and that signals are available to test the phase cal path. If internal phase cal works but external does not, the protection fuses F1 and F2 (on the A36 board) should be checked for continuity.
- 2. Press the INSTR PRESET key. Configure the scope to display signals present at probe TP200 and TP201 (A INT CAL and B INT CAL) with a scope. No signals should be present.

Press the MODE key to enter 2 PHASE mode and initiate a phase calibration cycle. During the calibration, two 1 kHz, 3.2 Vpp sine waves should be present at the test points and channel B should change phase with respect to A (scope triggered on channel A, TP200). If this does not occur, the problem exists before the phase cal path.

3. Move the scope probes to the zero crossing detector outputs at TP100 and TP101. Press the MODE key four times to reenter the 2 PHASE mode and initiate another phase calibration cycle. The two signals should be TTL level square waves whose phase corresponds to the phase between the inputs at TP200 and TP201. Problems here indicate that either the input signals are not reaching the zero crossing detectors (due to a relay or cal R/W logic problem) or that the zero crossing detectors are defective. The waveforms for this step appear only during phase calibration.

- 4. Probe the Q output of the phase detector (TP103; TTL) and initiate another phase cal cycle. The duty cycle of Q should be changing during the cal cycle (particularly in the beginning of the cycle) as the phase of channel B changes with respect to channel A. Note the rising edge of the signal at TP101 sets the Q output and the rising edge of the signal at TP100 resets the Q output.
- 5. Probe the comparator outputs (TP104 and TP105). Both outputs should be changing state during the cal cycle. This is due to the following: The low pass filters remove the ac components from the Q and Q signals. For frequencies below 10 kHz, the "slow" comparator (see theory for definition) is read by the controller. As channel B changes phase with respect to A, the duty cycle (and the dc component) of Q and Q also changes. The TTL level comparator outputs change state when the Q and Q duty cycles pass through 50%. The comparator outputs are read by the controller through U17.
- 6. Table 6-41 shows the state of the lines which drive the relays both before and during a phase cal cycle. Remember that a phase calibration cycle must be initiated by pressing the MODE key until the 2 PHASE LED illuminates. The lines shown in Table 6-41 remain in the phase cal state for only a short time, so testing must be done by cycling through modes once for every control line measured.

Refer to Table 6-15 for recommended post-repair adjustments.

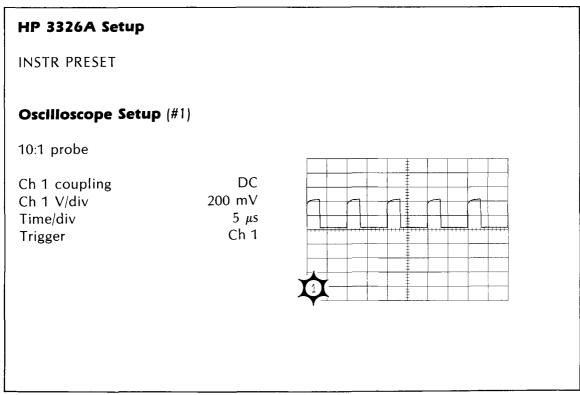
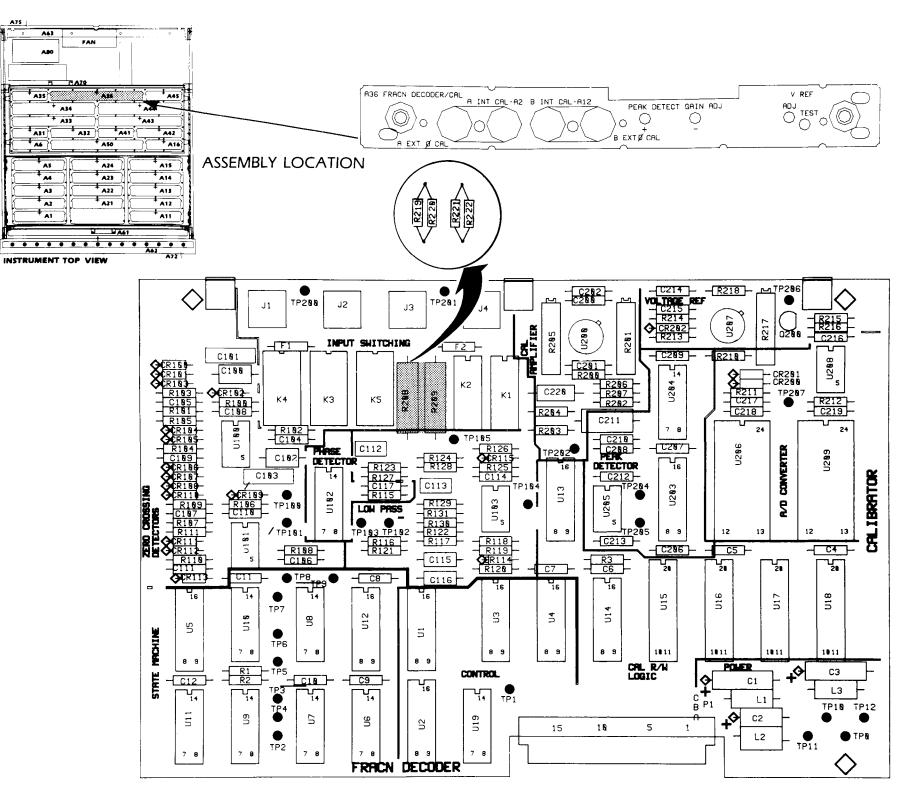
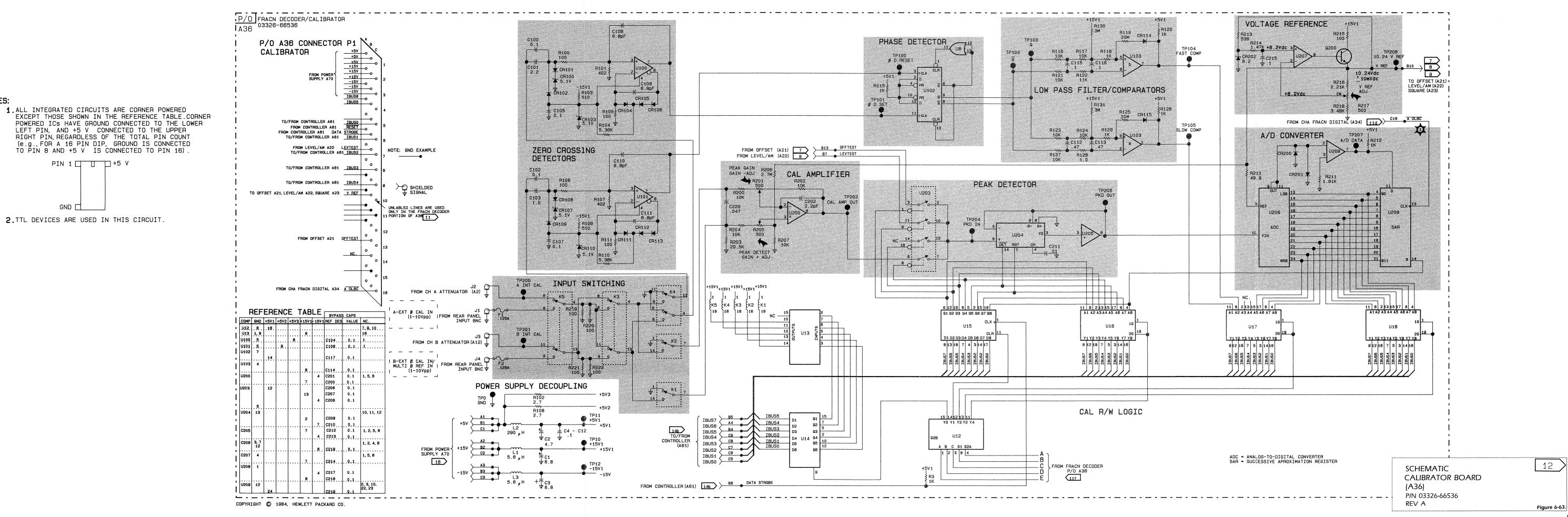




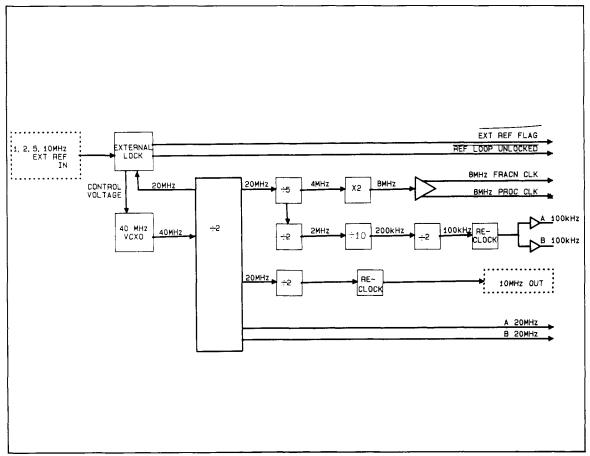
Figure 6-62. Calibrator Board Waveforms

NOTES

FRACN DECODER/CALIBRATOR BOARD (A36) P/N 03326-66536 REV A

NOTES:

6-32 REFERENCE, A50


The information in this section should be used to isolate defective sub-blocks when servicing the HP 3326A. All procedures assume Fault Isolation to the Board Level has been used to determine which functional block (board) has failed.

Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltages and energy available at many points can, if contacted, result in personal injury.

CAUTION

Be sure that the power switch is in the STBY position before inserting or removing any circuit board. Power transients caused by insertion or removal may damage the circuit boards.

Figure 6-64. Reference Board Block Diagram

Theory of Operation

Oscillator:

The main oscillator is a voltage controlled crystal oscillator (VCXO) operating at 40 MHz. The frequency can vary \pm 20 ppm (800 Hz) to allow the instrument to lock onto an external frequency reference.

Q100 is configured as an emitter follower. It serves as a voltage source to drive the series admittance of CR100 and Y100, which is resistive at the resonant frequency. Oscillations from the series combination of CR100 and Y100 are amplified by the common base stage (Q103), which drives a 40 MHz tank circuit. The signal from the tank is tapped off of the capacitive voltage divider and fed back to the base of Q103, completing the loop.

The output of the VCXO comes from the collector of Q100. This signal is buffered and amplified by Q101 in a common base configuration. The output of this stage is converted to emitter coupled logic (ECL) levels by C105, R111 and R112.

Varying the voltage across CR100 varies the output frequency of the VCXO. Varying R115 changes the dc voltage on the anode of CR100 and sets the center frequency of the oscillator. The voltage applied to the cathode of CR100 (from the external reference locking circuitry) is a function of the frequency of the external reference input and the frequency of the VCXO. When no external reference is connected to the back panel input, this voltage is approximately 0 V. A positive voltage at TP3 causes the VCXO output to rise in frequency; a negative voltage causes the frequency to decrease.

The circuitry around Q104 shapes the response of the VCXO control signal going to the varactor diode, CR100. When there is either no external reference present or the VCXO is locked to the external reference, the cathode of CR103 is at +5 Vdc which turns on Q104. This adds a lag/lead circuit to the control voltage output to reduce the response of the control signal at high frequencies. When an external reference signal is present and the reference is not locked to it, the voltage at the cathode of CR103 is switched to -15 V. This turns Q104 off, which removes the lag/lead circuit and allows the control voltage to respond faster and the VCXO to lock rapidly.

Frequency dividers and buffers:

U100 divides the 40 MHz signal produced by the VCXO by 2, resulting in a 20 MHz square wave. This signal is used to drive five buffers in U101 and U102. Of these buffers, one drives the external reference lock circuitry, one drives the frequency dividers, one reclocks some of the output signals and two supply 20 MHz signals to the channel A modulator (A6) and the RF switch (A24).

The B 20 MHz signal is used only in two-channel mode. When the instrument is in any other mode, the B 20 MHz signal is turned off to reduce crosstalk. To turn this output off, the processor sets INH BREF high, turning on Q102. This shorts the reference voltage at U102 pin 9 to ground, which inhibits the buffer from switching.

The 20 MHz signal from U101 pin 3 goes to U203 which divides the frequency by 5, yielding 4 MHz, and by 10, yielding 2 MHz. U202 divides the 2 MHz by 2, yielding 200 kHz. This 200 kHz is again divided by 2 in U201 to yield 100 kHz. The second D flip-flop in U201 reclocks this 100 kHz signal, reducing phase noise. The resultant signal is buffered by U200 and routed to the fractional-N phase detectors in both channels (A33 and A43).

The 4 MHz signal from U203 goes to a frequency doubler which produces an 8 MHz signal. This is accomplished by converting the square wave into a pulse to create harmonics, and then driving a tank circuit tuned to 8 MHz. The tank circuit couples the signal out the capacitive voltage divider to U204, whose outputs (signal names 8MHz FRACN CLK and 8MHz PROC CLK) go to the fractional-N decoder and controller boards.

In a similar manner, U300 divides the original 20 MHz by 2 to generate a 10 MHz signal which is reclocked by another D flip-flop in U300. This 10 MHz signal is ac coupled through T300 to supply a 10 MHz reference rear panel output at approximately +3 dBm.

External lock:

The external reference phase lock circuitry has two inputs and three outputs. The inputs are the rear panel external frequency reference and a comparison signal from the 20 MHz buffer U101 (pin 7). The outputs are a control voltage used to vary the frequency of the VCXO and two status signals, EXT REF FLAG and REF LOOP UNLOCKED.

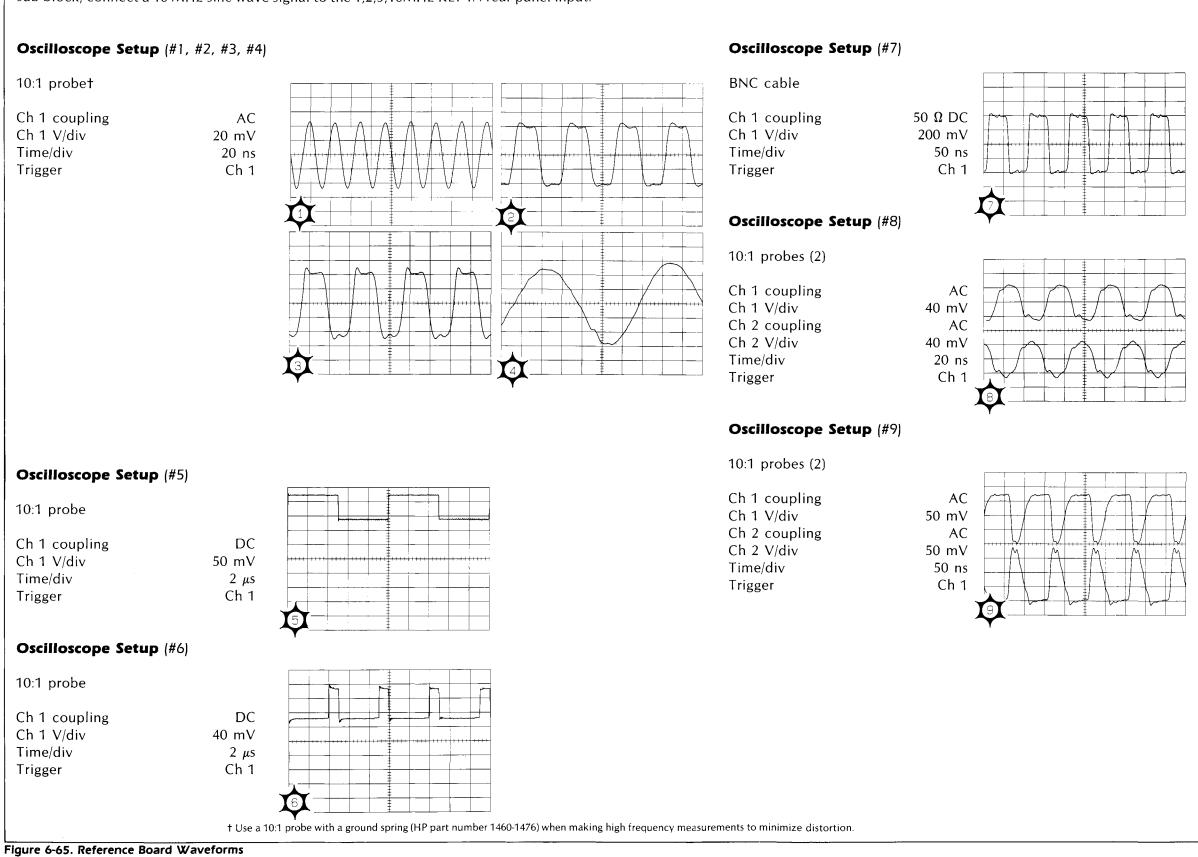
The external reference input from J1 on the rear panel may be a square or sine wave whose frequency is 1, 2, 4, 5, or 10 MHz. For best performance, this signal level should be greater than -6 dBm, although the circuit operates using signal levels less than that. To prevent crosstalk problems, the level should be limited to signals no greater than +6 dBm; the damage level is above +20 dBm. This signal should be a high quality, low phase noise signal to avoid degrading performance. The instrument may indicate that it is unlocked when the reference signal has significant phase noise, even though the circuit is locked. This effect is more prevalent at the lower reference frequencies.

The external reference input is ac coupled by T100 to isolate the instrument ground (GND) from the chassis ground (CGND). The transformer secondary is terminated by R421 and clamped to ECL levels by R420, CR413 and CR414. U402 amplifies this signal, which has the effect of converting it to a square wave. This signal goes two directions from the first stage of amplification: to a circuit that detects the presence of a reference signal and to a phase comparator. The detector uses CR410, CR411 and C407 as a dc power supply. When a signal is present at the reference input, the diodes rectify the output of U402 (pin 6) and charge C407 positively. This raises the inverting input of comparator U400 above the reference voltage on CR400 and causes the comparator output to fall to the negative supply (-15 Vdc). This output has two functions: it operates a FET switch in the later stages of the lock circuitry (to be described in a later paragraph) and indicates the presence of an external reference to the processor via the EXT REF FLAG signal.

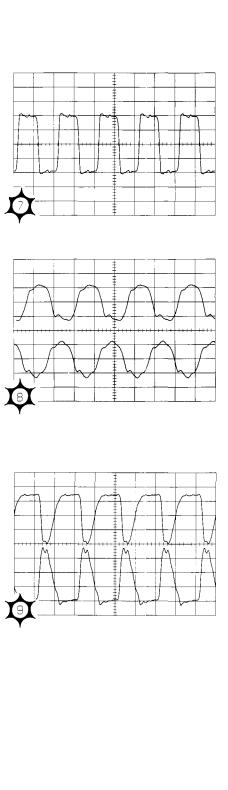
External lock, phase comparator:

The phase comparator inputs are the external reference (1,2,5,10MHz REF IN) signal and the 20 MHz signal derived from the output of the 40 MHz VCXO. The reference signal is differentiated to get a narrow pulse. This pulse is amplified by Q401, which sends a negative pulse to one side of the diode bridge and a positive pulse to the other side. The diode bridge is a gate used to sample the 20 MHz signal derived from the VCXO. When the VCXO frequency is low with respect to the reference, the sample is taken while the level is high, just before the negative transition. This causes the control voltage going to the VCXO to rise, which increases its operating frequency and counteracts the frequency difference. The inverse occurs when the VCXO frequency is high with respect to the reference frequency.

External lock, loop amplifier:

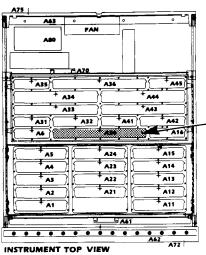

U401 amplifies the VCXO control voltage. When no external reference is present, the gate of the FET switch Q400 is high, turning it on and shorting the feedback circuit of U401. This reduces U401 to a follower amplifier with unity gain. The absence of pulses from the sampling gate causes the output of U401 to be near 0 V.

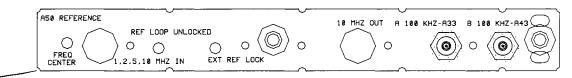
When there is an external reference, Q400 is turned off and U401 acts as an integrator. When the instrument is locked to the reference, the output of U401 is 0 V. The pulses from Q401 stay aligned with the 20 MHz signal from U101 even when the external frequency reference operates at a frequency slightly different from the VCXO unlocked center frequency.

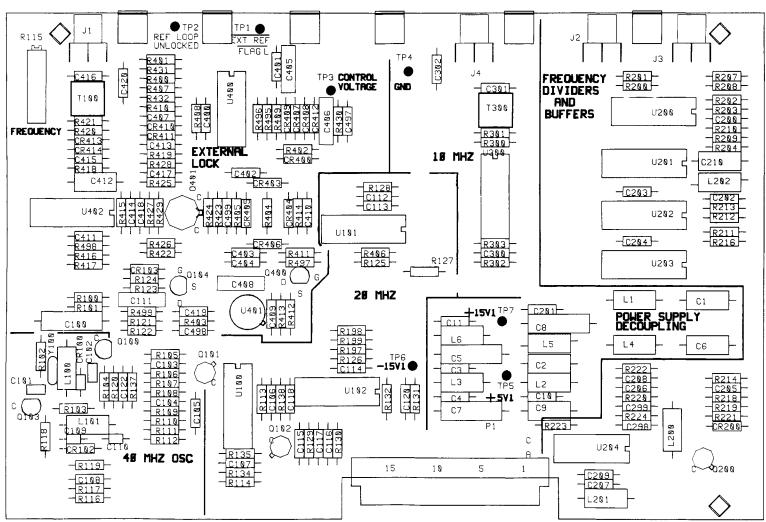

Troubleshooting

This circuit may be analyzed by putting it on an extender (be sure to turn the power off before removing the board) and comparing the oscilloscope waveforms in Figure 6-65 with those of the defective unit. Unless otherwise noted, the instrument configuration for these waveforms is INSTR PRESET.

Refer to Table 6-15 for recommended post-repair adjustments.

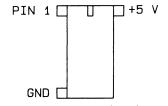



HP 3326A setup is INSTR PRESET. For voltages and waveform (#9) in the external lock sub-block, connect a 10 MHz sine wave signal to the 1,2,5,10MHz REF IN rear panel input.

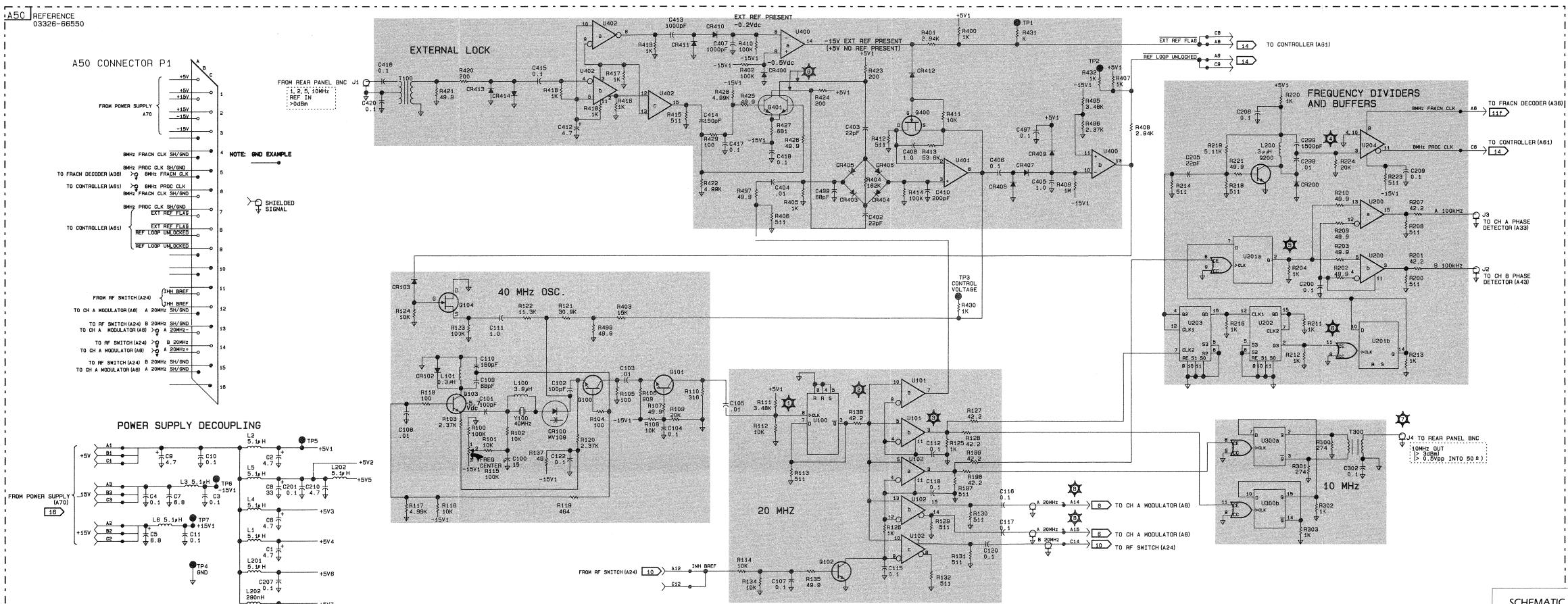

SERVICE

SERVICE

ASSEMBLY LOCATION


REFERENCE BOARD (A50) P/N 03326-66550 REV A

MODEL 3326A


	·	· · · · · ·								BYPASS		T
COMP	GND	+5V1	+5V2	+5V3	+574	+575	+5V6	+15V1	-15V1	REF DES	VALUE	NC.
U100	10, 11 12, 13	14, 15								C106	0.1	
U101	8, 13	1, 16 14, 15								C113	0.1	2, 6
U102	8											
	B, 10	1.16								C114		5
	B, 10	1,6 7,16										2, 14
U201	8					1, 16				C202	0.1	3, 15
N505	8											
		1.16								C203	0.1	3, 4, 13, 14
0203	8	1, 16								C204	0.1	2, 3, 13, 14
U204							14					2, 5, 7, 8, 12, 13,
U300	8			1, 16						С300	0.1	
	+ • • • •	+		1.10			+	+ • • • •	••••	C400	0.1	
U400					З				1, 2, 4, 5, 6, 7	6400	0.1	
		1							12	C401	0.1	
U401								7	4	C419	0.1	5
U402	8	+ • • • •	••••	••••	••••	• • • •	+ • • • •	+	. .		• • • • • • •	1 ⁴
0402					1. 16					C411	0.1	7, 14

NOTES:

1. ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN, REGARDLESS OF THE TOTAL PIN COUNT (e.g., FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16).

- 2.EMITTER COUPLED LOGIC (ECL) AND TTL DEVICES ARE USED IN THIS CIRCUIT.
- **3.** POOR GROUND CONNECTIONS IN THE PHONO CABLES MAY CAUSE INTERMITTENT PROBLEMS THAT CAN APPEAR TO BE SUBTLE HARDWARE FAILURES (FOR EXAMPLE, POOR PHASE OR AMPLITUDE CALIBRATION ACCURACY). CRIMPING THE PHONO CONNECTORS TO IMPROVE THE GROUND CONNECTIONS IS RECOMMENDED.

C210 4.7

Qservice --- This Diagram Has been precicely scanned from the original HP manual --- Qservice

SCHEMATIC REFERENCE BOARD (A50) P/N 03326-66550 REV A 13

Figure 6-66.

6-33 CONTROLLER AND HP-IB SUPPORT, A61 AND A63

The information in this section should be used to isolate defective sub-blocks when servicing the HP 3326A. All procedures assume Fault Isolation to the Board Level has been used to determine which functional block (board) has failed.

WARNING

Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltages and energy available at many points can, if contacted, result in personal injury.

CAUTION

Be sure that the power switch is in the STBY position before inserting or removing any circuit board. Power transients caused by insertion or removal may damage the circuit boards.

Theory of Operation

The controller board requires the +5V, +15V, -15V, +5V HPIB, GND, and CGND lines from the power supply and the 8 MHz clock from the reference board (A50) to function. See the signal glossary for definitions.

Microprocessor:

The microprocessor is a Motorola 68B09 running at a clock speed of 8 MHz. The 8 MHz, TTL level clock is generated on the frequency reference board (A50) and buffered on the controller board with a hex inverter (see clock and memory stretch sub-block).

Digital signature analysis (SA) is accessed by using jumper W101 and switch S1. When W101 is in the SA test position, the data buffer driver is disabled and the microprocessor counts through memory addresses from beginning to end, repetitively. The programmed SA test is run by operating switch one on S1, as shown at the end of this discussion. An X-drive troubleshooting test is initiated by using switch 2. All the SA pins are assembled together on W303 to make SA easier to use. The ROM and RAM START and STOP pins are connected to the respective chip select lines. The HPIB and DISP (display) pins are decoded memory data. The SA CLK (clock) pin is the valid memory address (VMA) line, the logical NOR of the E and Q signals.

The microprocessor has three interrupts: \overline{NMI} (non-maskable interrupt), \overline{FIRQ} (fast interrupt request), and \overline{IRQ} (interrupt request). The fastest interrupt, \overline{NMI} , is used for the interrupts that require the least amount of delay: the sweep limit signal and the external trigger signal. These are combined in the interrupt multiplexer block, which is enabled by a line from the hardware control block (U412). This allows the instrument to mask the otherwise non-maskable processor interrupt. A SWEEP LIMIT, B SWEEP LIMIT, and EXT TRIG IN have their own enable lines and provisions for reading their status in the flag register. FIRQ is used for the 1 ms display timer. The timer produces a 1 μ s pulse every 1 ms. This sets 1MS INTFLAG low. IRQ serves the HP-IB chip (U215).

The power-up reset circuit uses charging capacitors and CMOS buffers to give a delay of approximately 200 ms between power-up and microprocessor operation. A low-power reset consisting of U117, CR103, and C102 protects the CMOS RAM from the processor when the power fails. When the +5V supply drops below approximately 4.5 V, the open collector output on the comparator drives the voltage on C102 to ground, resetting the instrument. In approximately 100 ms the reset line goes high, assuming the power comes on again immediately.

The address decoding for memory selection and I/O interface is accomplished with four 3-to-8 decoders. Two of the decoders are enabled by the reset line to delay access to them for a small period of time after power on.

The clock and memory stretch circuit makes a special provision for I/O addresses which require a timing delay different from that of other memory. This input is fed to MRDY on the processor, effectively "stretching" the E and Q processor output signals.

Battery backup is provided for the CMOS RAM to preserve the machine state and status when power is off. When power is removed, a lithium battery holds the CMOS RAM supply line at about 2.6 V, which is high enough to retain data in RAM. The two transistors and associated hardware are for the +5 V battery switching. This circuit isolates the CMOS supply from the rest of the circuitry so that the battery is only connected to the CMOS RAM when power is off. While power is applied to the instrument, the +5 V provides a back bias to the battery diode and no battery current is drawn. When the power to the instrument is turned off, the diode is forward biased and the battery supplies the CMOS RAM. See "Adjustments," Section III, for a battery check procedure.

To insure that the processor does not corrupt the RAM during power transitions, a CMOS inverter is tied to the reset line and the RAM chip select. While the reset line is low (and the processor is inactive) and the chip select is high, no data can be read from the RAM. After the processor is enabled, the reset line is high and the information in the memory can be read.

Keyboard interface:

The display for the HP 3326A is based on one large serial information loop. Data to the display (FP DATA) is first written to U107, a parallel in-serial out shift register located in the keyboard interface circuit. Then data is read by the processor from the clock start location to start the automatic display clock (DISPLCLK). This clock produces eight shift clocks to shift the data (KB DATA) to the keyboard (A62), without involving the processor. Data is then put into the display registers by strobing the display STROBE line.

The timer chip (U401) generates a 1 ms interrupt signal used for display updating. The required output is a square wave of a time period equal to 1 ms for the half cycle. The output of the chip is run into a D flip-flop and an exclusive OR gate to produce a 1 μ s wide pulse during every transition. This pulse sets the RS flip-flop that drives the FIRQ interrupt signal.

The status input circuit contains a flag register and a switch register. The flag register (address 0300) is the processor's access to the LATCHSWPLMT, LATCHSWPLMT, EXT TRIG IN, ANALOG FAULT, HPIBINT, SWEEP START, SYNC OVLD, EXT REF FLAG, and REF LOOP UNLOCKED status lines. The switch register is used for SA tests and the SAVE option. Also, the high voltage option status line (HVFLAG) is sent to the high order bit of this register to indicate if the high voltage boards are in the instrument.

HP-IB circuits:

The HP-IB and HP-IB support circuits work in a relatively straightfoward manner. Be careful to note, however, that the LSB of the processor data bus is connected to bit 7 of the HP-IB chip (U215). This convention does not hold for the HP-IB bus; DIO1 from U215 is also called DIO1 on the data bus. RSO is the LSB of the register select. Also note that the interrupt line (HPIBINT) is open-collector. If a problem occurs with powering U215, the chip has to be hard reset, which is difficult to do with isolation. For this purpose, bit 6 in the hardware control register is used as the HP-IB reset line. This output is driven low during initialization by software. Note that this same bit is used as the external reference test bit.

Pulse transformers provide isolation between the HP-IB bus and the rest of the instrument. The primary winding of the transformer is connected through a damping circuit to the output of a bus driver buffer. The secondary winding center tap is biased at 2.5 V and the secondary output is connected to the inputs of an RS flip-flop. Thus, the flip-flop inputs are 2.5 V (logic high) when there is no bus activity.

Logic levels are transported across the transformer interface during buffer output voltage transitions, only. If the output of the bus driver buffer changes from a low to a high, a positive voltage develops on the transformer primary, which induces a positive voltage on the secondary. Since the center tap of the secondary is held at 2.5 V, one end of the secondary winding rises to a logical high state and the other end falls to a logic level low state, setting the flip-flop. A high-to-low transition of the buffer output induces the opposite voltages, setting the flip-flop in the opposite state. The D flip-flops on the buffer inputs and the latch on the address lines guard against any transient signals on the input lines of the output buffers which would cause the output to switch.

The Z-BLANK OUT, MARKER OUT, and X-DRIVE OUT rear panel outputs are generated on this board. For a description of these lines, see the signal glossary. The Z-BLANK and MARKER lines are set by bits in the hardware control register. The X-DRIVE output is generated by a 12 bit DAC (U418) that is driven by a 12 bit counter (U415-7). The counter is set by bits in the hardware control register (U412), and has up/down control. U420 makes it possible to stop the counter at zero when the counter is counting down.

The clock source for the X-drive counters, U401 in the timer circuit, is set according to Table 6-42:

Timer #2 Count Number	Mode
$(1000 \times \text{Sweep Time}) - 1$	Internal Clock External Clock

Table 6-42. Counter Clock Source Timing

Timer #3 of U401 (O3, pin 6) is in the internal clock mode and always counts to 99. It serves only as the prescaler for timer #2 (O2, pin 3). The outputs of timer #2 and timer #1 (O1, pin 27) are each fed to a D flip-flop and an exclusive OR gate. The output of the timer circuit that is used to clock the X-drive counters is a 1 μ s pulse every transition of the output of timer #2. The formula in Table 6-42 requires a count to 1000 for the X-drive, therefore the reference to the DAC is set up for less than full scale (full scale is 1024 counts on the DAC), giving 10.3 V out.

The EXT TRIG IN rear panel input signal is an external means of simulating the HP-IB group execute trigger (GET). It also starts the fractional-N local oscillator SWEEP START signal. (See the signal glossary.) EXT TRIG is a latched signal run to the NMI interrupt line. It is cleared by a bit in the hardware control register.

Instrument bus:

The instrument bus (IBUS0-7) is the microprocessor's communication link to the rest of the instrument. To communicate with another board, the processor first puts the address of the latch to be written to on the bus, using the memory location for the address strobe. Then the data is written into the memory location. To read from the bus the processor puts the address of the latch on the bus and data is read from the data-read address. When the bus is not being used by the processor, it is pulled low by buffer U203. See the instrument bus timing diagram in Figure 6-67.

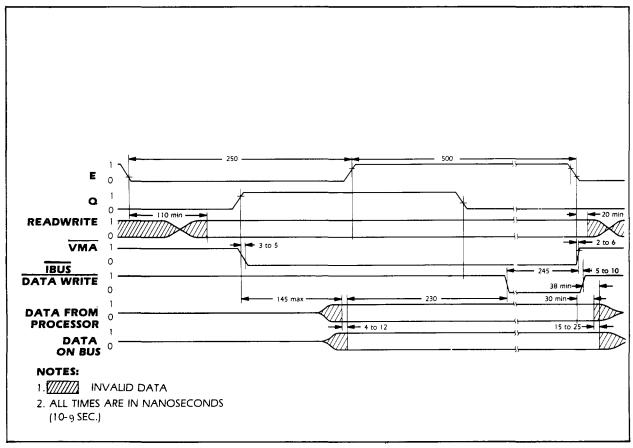


Figure 6-67. Instrument Bus Timing Diagram

S1 switches on the controller board are for the following:

- 1. Interface SA Test, normally closed
- 2. X-Drive Test, normally closed
- 3. SAVE option, normally open (user-selected)
- 4. Unused

Troubleshooting

For troubleshooting, the controller circuits are divided into four groups. These are:

- 1. Microprocessor and memory
- 2. HP-IB circuitry (including HP-IB support board, A63)
- 3. Keyboard interface circuitry (incuding keyboard, A62)
- 4. Instrument bus interface (including control interface sub-blocks on other boards)

Group 3 is discussed in keyboard troubleshooting (sub-section 6-34).

1. Microprocessor and memory:

Analyze the microprocessor circuitry using the Free Run SA Test and the Interface SA Test, which follow.

- 2. HP-IB circuitry:
 - a. Connect TP28 to TP25. This connects the chassis ground to analog ground so that voltage measurements can be made in either circuit without moving the reference of the voltmeter.
 - b. Check TP29 for $+5 \text{ V} \pm 0.25 \text{ V} (+5 \text{V} \text{ HPIB supply})$.
 - c. Check TP13 for a 4 MHz clock (TTL levels).
 - d. Check TP32 (HPIBRST) for TTL high (normally). This signal is low for a short time after power on.
 - e. Check U215, pin 9 (HP-IB interrupt; an output) for a signal that goes low periodically during data transfers. If this line is low, check TP1 (the interrupt request line at the processor). It should be low, too. If not, there is a fault in the isolation circuitry for this line.
 - f. Run the Interface SA Test to test signatures in the HP-IB circuits (see Table 6-51).
- 3. Keyboard interface circuitry:

See the troubleshooting section for the keyboard (sub-section 6-34).

4. Instrument bus interface:

There are two types of internal bus failures: either one board cannot communicate with the controller or all boards cannot communicate with the controller. In the first case, the problem probably exists in the bus circuitry of the problem board. In the latter case, the problem could be either on the bus circuitry on the controller board or on one of the other boards on the bus. An individual board could fail such that it forces a fixed state on the bus. Pulling all boards and reinstalling them one at a time is recommended for the latter case.

To exercise a board, make front panel entries that change the configuration of the board. The attenuator board is exercised by changing the amplitude; for the fractional-N group, change the instrument output frequency; for the square board and level/AM, select a square wave output; for the calibration circuitry (on A36), press the MANUAL key in the calibration section; for the RF switch, change between the two-channel mode and the two-phase mode.

The instrument bus circuit on the controller board and the control interfaces on the other boards in the instrument can be tested using the Interface SA Test (see Tables 6-52 and 6-53). This test exercises the control lines from the controller board to determine if the controller or the control interface circuitry is defective.

Refer to Table 6-15 for recommended post-repair adjustments.

Signature Analysis Tests

There are two digital signature analysis (SA) tests built into the HP 3326A for troubleshooting digital circuits, the Free Run SA Test and the Interface SA Test. The Free Run SA Test exercises the instrument bus address lines. The Interface SA Test exercises the the RAM circuits, the keyboard, the HP-IB data path, the X-DRIVE control register, the instrument bus (data), the flag and shift registers, and the controller interface circuits on the boards on the instrument bus.

There are two separate ground systems in the instrument, GND and CGND. To assure the correct signatures, connect these together by connecting A61TP25 to A61TP28.

For both SA tests, connect the signature analyzer ground pin to the A61W303 GND pin. When connecting the clock, start, and stop probes, refer to the letters H and L for the proper configuration. L indicates that the signal should be set to trigger on a high-to-low transition and an H indicates that the signal should be set to trigger on a low-to-high transition.

Free Run SA Test

This test does not execute a program in ROM. It lets the processor "free run" only. It is implemented by connecting A61TP25 and A61TP28, moving A61W101 to the "test" position, and resetting the microprocessor (by cycling power or momentarily shorting pins 1 and 2 of A61W105 together), as shown in Figure 6-68. This causes the microprocessor to access memory continuously, from beginning to end (i.e., count up). This sequential counting of the memory addresses continues until A61W101 is returned to the "normal" position and the processor is reset.

NOTE

Moving A61W101 to the "test" position inhibits normal operation of the instrument. Expect a blank display. Be sure to return it to the "normal" position when troubleshooting is complete.

The first time power is turned on after running the SA tests, the error message "ERROR 160 CRPT" appears. All instrument states stored in non-volatile memory are deleted.

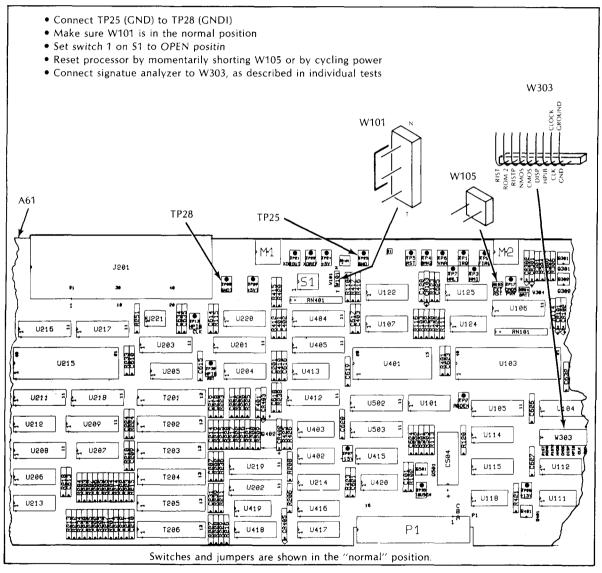


Figure 6-68. Free Run SA Test Setup

Testing address lines:

This test may be used to check microprocessor address lines and address buffers (A61U104 and A61U105). If an incorrect signature is found on the buffer output, check the corresponding pin on the buffer input. The signature should be the same at the input and output.

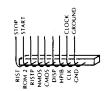
Connections to the SA connector, A61W303:

Clock to CLK (L) Start to **R1ST** (L) Stop to **R1STP** (L)

Probe	+5V;	signature	should	read	0003
-------	------	-----------	--------	------	------

Signal Name	Schematic Number	A61 IC (pin)	Signature
A15	14a	U104 (18)	0001
A14	14a	U104 (3)	9UP1
A13	14a	U104 (16)	4868
A12	14a	U104 (5)	4FCA
A11	14a	U104 (14)	6U28
A10	14a	U104 (7)	37C5
A9	14a	U104 (12)	6321
A8	14a	U104 (9)	7791
A7	14a	U105 (9)	6F9A
A6	14a	U105 (12)	U759
A5	14a	U105 (7)	O356
A4	14a	U105 (14)	1U5P
A3	14a	U105 (5)	P763
A2	14a	U105 (16)	8484
A1	14a	U105 (3)	FFFF
AO	14a	U105 (18)	υυυυ

Table 6-43. Address Line Signatures


Testing ROMs:

These tests check the contents of the instrument ROM ICs. Since the address lines are changing in a stable manner, the ROM outputs are predictable. The pins given in Tables 6-44 and Table 6-45 are for these ROM outputs. The same signatures should appear on the corresponding lines of the buffer A61U304.

ROM1 signatures:

Connections to the SA connector, A61W303:

Clock to CLK (H) Start to ROM2 (L) Stop to R1ST (H) Probe + 5V; signature should read **5804**

Table 6-44. ROM1 Signatures

Signal Name	Schematic Number	A61 IC (pin)	Signature
PD7	14a	U305 (19)	5U28
PD6	14a	U305 (18)	CCAU
PD5	14a	U305 (17)	3A45
PD4	14a	U305 (16)	C038
PD3	14a	U305 (15)	0396
PD2	14a	U305 (13)	HHFH
PD1	14a	U305 (12)	PA2P
PD0	14a	U305 (11)	A8UO

ROM2 signatures:

Connections to the SA connector, A61W303:

Clock to CLK (H) Start to R1ST (H) Stop to R1STP (L) Probe + 5V; signature should read 0001

Table 6-45. ROM2 Signatures

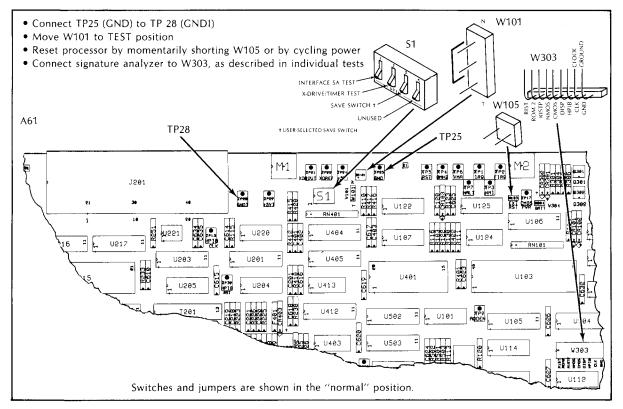
Signal Name	Schematic Number	A61 IC (pin)	Signature
PD7	14a	U306 (19)	0363
PD6	14a	U306 (18)	HH1A
PD5	14a	U306 (17)	F993
PD4	14a	U306 (16)	38U9
PD3	14a	U306 (15)	A85P
PD2	14a	U306 (13)	APF9
PD1	14a	U306 (12)	615C
PD0	14a	U306 (11)	568U

I/O enable signatures:

Connections to the SA connector, A61W303:

Clock to CLK (H) Start to R1ST (L) Stop to R1STP (L) Probe + 5V; signature should read 0003

Signal Name	Schematic Number	A61 IC (pin)	Signature
ROM1	14a	U305 (20)	0002
ROM2	14a	U306 (20)	COOA
CMOS RAM	14a	U302 (20)	2F1U
NMOS RAM	14a	U303 (20)	PF63
MEMENABLE	14a	U304 (19)	7077
TIMER SELECT	14a	U114 (7)	C158
X-DRIVE CONTROL	14a	U114 (9)	4AA2
	14a	U114 (10)	7627
	14a	U114 (11)	3888
IBUS ACTIVE	14a	U102 (6)	4549
IBUS DATA READ	14a	U114 (12)	0CP6
X-DRIVEFS	14a	U114 (13)	P1C5
	14a	U114 (14)	C835
HPIBSTSP	14a	U114 (15)	P29P
CLEARMSFLG	14a	U115 (7)	A837
READFLAGS	14a	U115 (9)	C4U3
READSWITCHES	14a	U115 (10)	U9A8
HPIBWRITE	14a	U115 (11)	3328
HPIBREAD	14a	U115 (12)	457U
DISPSTB	14a	U115 (13)	0352
	14a	U111 (12)	0351
	14a	U115 (14)	F91C
	14a	U115 (15)	2FA8
data strobe	14b	U118 (1)	0CP6
	14c	U208 (1)	5682
	14c	U213 (7)	5682
	14c	U213 (13)	457F

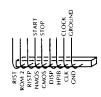

Table 6-46. I/O Enable Signatures

Interface SA Test

This test executes a program in memory that exercises all important input and output registers. It is implemented by connecting TP25 and TP28, setting switch 1 on A61S1 to the OPEN position, and resetting the microprocessor (by cycling power or momentarily shorting pins 1 and 2 of A61W105 together), as shown in Figure 6-69.

NOTE

The first time power is turned on after running the SA tests, the error message "ERROR 160 CRPT" appears. All instrument states stored in non-volatile memory are deleted.


Figure 6-69. Interface SA Test Setup

NMOS RAM signatures:

These signatures are shown in the table as being taken on the main processor IC. They also appear on the corresponding lines of A61U106, the data bus buffer, and A61U304.

Connections to the SA connector, A61W303:

Clock to CLK (H) Start to NMOS (L) Stop to CMOS (L) Probe + 5V; signature should read 4824 Table 6-47. NMOS RAM Signatures

Signal Name	Schematic Number	A61 IC (pin)	Signature
PD7	14a	U103 (24)	9CUF
PD6	14a	U103 (25)	6CPH
PD5	14a	U103 (26)	A225
PD4	14a	U103 (27)	4CU9
PD3	14a	U103 (28)	9A36
PD2	14a	U103 (29)	PFA4
PD1	14a	U103 (30)	AAA6
PD0	14a	U103 (31)	9H5H

CMOS RAM signatures:

These signatures are shown in the table as being taken on the main processor IC. They also appear on the corresponding lines of A61U106, the data bus buffer, and A61U304.

Connections to the SA connector, A61W303:

Clock to CLK (H) Start to CMOS (L) Stop to DISP (L) Probe + 5V; signature should read 4824

Table 6-48. CMOS RAM Signatures

Signal Name	Schematic Number	A61 IC (pin)	Signature
PD7	14a	U103 (24)	9CF3
PD6	14a	U103 (25)	6CFF
PD5	14a	U103 (26)	A239
PD4	14a	U103 (27)	58H0
PD3	14a	U103 (28)	76H6
PD2	14a	U103 (29)	PFCC
PD1	14a	U103 (30)	AACA
PD0	14a	U103 (31)	9H60

Keyboard shift register signatures:

Connections to the SA connector, A61W303:

Clock to CLK (H)

Start to **DISP** (L)

Stop to **HPIB** (L)

Probe +5V; signature should read A245

The signatures shown in Table 6-49 represent the serial signals going to and coming from the keyboard (A62). KB DATA is data from the keyboard to the controller board. FP DATA is data from the controller board to the keyboard. Pressing any key or turning the knob changes the KB DATA signature. A key that is stuck does not cause a signature change. If the KB DATA signature is wrong and the FP DATA signature is correct, the keyboard is probably defective.

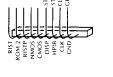
 Table 6-49. Keyboard Signatures From the Controller Board

Signal	Schematic	A61	Signature
Name	Number	IC (pin)	
KB DATA	14a	U108 (11)	UFH2
FP DATA	14a	U107 (9)	4H68

The signatures in Table 6-50 may be taken on the keyboard (A62). The connections to A61W303 are the same as previously described. These signatures do not test A61U108. If these signatures are correct (as well as the signature on A61U115 (14) described in the I/O enable tests), and the display works, but keypresses are not recognized by the instrument, suspect that A61U108 is defective.

To access the keyboard, turn off the power and remove the screws that hold it in place from the top and bottom of the instrument frame. Pull gently on the CH A and CH B connectors to separate the keyboard and dress panel from the instrument. Access the test points and IC pins from the circuit side of the board. All ICs have square pads on pin 1 to help you locate the test pin locations.

Table 6-50. Keyboard Signatures


Signal Name	Schematic Number	A62 IC (pin)	Signature
FP DATA	15	U1 (2)	4H68
	15	U3 (2)	PHC9
	15	U2 (2)	UAF3
	15	U4 (2)	PF82
	15	U5 (2)	H61U
	15	U7 (11)	FA3U

HP-IB signatures:

These signature tests check the HP-IB IC and the isolation circuitry. Before performing these tests, remove all external HP-IB cable connections from the rear panel.

Connections to the SA connector, A61W303:

Clock to CLK (H) Start to DISP (H) Stop to HPIB (H) Probe +5V; signature should read A245

Table 6-51. HP-IB Signatures

Signal Name	Schematic Number	A61 IC (pin)	Signature
HPIBRST	14c	U215 (19)	1564
RSO	14c	U215 (6)	H292†
RS1	14c	U215 (7)	4322†
RS2	14c	U215 (8)	CU78†
H7	14c	U215 (17)	P483
H6	14c	U215 (16)	118U
H5	14c	U215 (15)	5263
H4	14c	U215 (14)	1HAU
H3	14c	U215 (13)	C023
H2	14c	U215 (12)	85F7
H1	14c	U215 (11)	761C
HO	14c	U215 (10)	2189

† If any of these signatures are incorrect, check for the same signature at U220 (7, 5, 2).

Instrument bus:

Connections to the SA connector, A61W303:

Clock to CLK (H) Start to DISP (L) Stop to HPIB (L) Probe + 5V; signature should read A245

Table 6-52. Instrument Bus Signatures

Signal Name	Schematic Number	A61 IC (pin)	Signature
A1	14b	U502 (2)	5FAF
A2	14b	U502 (3)	H858
A3	14b	U502 (4)	A7PH
A4	14b	U502 (5)	C3UA
A5	14b	U502 (6)	10HA
A6	14b	U502 (7)	8HH2
A7	14b	U502 (8)	U0C6
A8	14b	U502 (9)	6C07

Boards on the instrument bus which have write latches may be tested using this SA test. The information in Table 6-53 may be used to troubleshoot the digital portions of boards identified by the service self tests as potentially defective. This helps determine if the control signal from the controller board is defective or if the controller interface circuitry on the suspect board is defective. Begin taking signatures on the suspect board; if the signatures are incorrect, work back through the circuit toward the controller, taking signatures, until good signatures are found. Use the schematics and the following table.

Table 6-53. Signatures for Boards on the Instrument Bus

	Board	Signal	Schematic	Test Location	
Number	Name	Name	Number	IC (pin)	Signature
A2	Channel A	10dB	2a	U100 (3)	F168
/	Attenuator	20dB	20	U100 (1)	C8H8
	Attenuator	40dB		U100 (2)	06F6
		4000		0100 (2)	0010
ĺ		COMBINER (A + B)		U100 (4)	U021
ļ		HI-VOLTAGE			002.
		OPTION		U100 (6)	244H
		CAL/PRTCT		U100 (7)	5369
ļ		A PROTECTCLEAR		U102 (13)	34H4
					······································
A12	Channel B	10dB	2b	U100 (3)	2PFF
	Attenuator	20dB		U100 (1)	1UF7
ĺ		40dB		U100 (2)	4C4C
				1100 (4)	
		COMBINER (A + B)		U100 (4)	U7A5
		HI-VOLTAGE OPTION		1100 (6)	
				U100 (6) U100 (7)	A4A4
		CAL/PRTCT			A1HP
		B PROTECTCLEAR		U102 (13)	1971
A3	Channel A	A PRE10dB	3	P1 (13C)	95CF
/15	Output Amp	AT RETOUD	5	11(130)	5561
A13	Channel B	B PRE10dB	3	P1 (13C)	A324
	Output Amp				. <u> </u>
A4	Channel A	A SIN	4	TP2	8687
Ì	Preamp				
A14	Channel B	BSIN	4	TP2	0811
A14	Output Amp	D SIN	4	IF 2	0011
A21	Offset	D0	7	U3 (12)	FP34
Í		D1		U3 (11)	12F7
		D2		U3 (10)	1FC0
		D3		U3 (9)	C7C3
l					
		D4		U3 (8)	HH19
Į		D5		U3 (7)	UP03
		D6		U3 (6)	C1FC
		D7		U3 (5)	3FH8
					2001
		D8		U3 (4)	2CP1
		D9		U3 (3)	A7AC
		D10		U3 (2)	1088
		D11		U3 (1)	83P5
		A OFFSET DRIVE		U5 (2)	0H01
		D0		U23 (12)	4259
		D1		U23 (11)	1F49
		D2		U23 (10)	P5HP
		D3		U23 (9)	1F20
		D4		U23 (8)	CC9P
		D5		U23 (7)	C1C7
		D6		U23 (6)	HUC5
		D7		U23 (5)	786P

Board		Signal		Test Location	
Number	Name	Name	Number	IC (pin)	Signature
		D8		U23 (4)	28C1
		D9		U23 (3)	8H3C
		D10		U23(2)	2052
		D11		U23 (1)	6AUA
		B OFFSET DRIVE		U5 (1)	5UAC
		A 10dB		U45 (16)	F168
		A 20dB		U45 (2)	C8H8
		A 40dB		U45 (5)	06F6
		A CAL		U45 (6)	5369
					0505
		A PRE10dB		U45 (12)	95CF
		A HI-VOLT		U45 (19)	244H
1		<u>A A + B</u>		U45 (9)	U021
		A PROTECTCLEAR		U45 (15)	34H4
		B 10dB		U46 (16)	2PFF
		B 20dB		U46 (2)	1UF7
		B 40 dB		U46 (5)	4C4C
		B CAL		U46 (6)	A1HP
		B PRE10dB		U46 (12)	A324
		B HI-VOLT		U46 (19)	A4A4
		BA + B/MOD		U46 (9)	U7A5
		B PROTECTCLEAR		U46 (15)	1971
A22	Level/AM	D0	8	U4 (12)	9618
		D1		U4 (11)	H3CH
		D2		U4 (10)	C1AF
		D3		U4 (9)	4134
		D4		U4 (8)	7A88
		D5		U4 (7)	CCF6
		D6		U4 (6)	13U6
		D7		U4 (5)	P45F
		D8		U4 (4)	F611
		D9		U4 (3)	32A0
		D10		U4 (2)	АННН
c.		D11		U4 (1)	58CA
				U11 (2)	8687
		A COMPAR			
		ENABLE		U5 (8)	6066
		(A EXT AM)		U2 (16)	PA25
		(A INT AM)		U2 (1)	FFAC
		(A AM)		U2 (8)	PA25
		D0		U8 (12)	UF5P
		D1		U8 (11)	75A1
		D2		U8 (10)	HH83
		D3		U8 (9)	A6A9

Table 6-53. Signatures for Boards on the Instrument Bus (Cont'd)

Table 6-53. Signatures for Boards on the Instrument Bus (cont'd)

	Board	Signal	Schematic	Test Location		
Number	Name	Name	Number	IC (pin)	Signature	
		D4		U8 (8)	8737	
		D5		U8 (7)	68UU	
		D6		U8 (6)	0C44	
		D7		U8 (5)	H59F	
		D8		U8 (4)	HFP8	
		D9		U8 (3)	985U	
		D10		U8 (2)	UP4P	
		D11		U8 (1)	P457	
		B SIN B COMPAR		U10 (2)	0811	
		ENABLE		U9 (8)	2F00	
		(BAM)		U6 (1)	F902	
		SQUARE/PULSE		U10 (9)	02HA	
A32	Channel A	A PMC	11b	U22 (9)	UHU7	
	VCO Control	A PMCAL		U22 (8)	FPFF	
		A PMS		U21 (9)	PH10	
A42	Channel B	B PMC	11b	U22 (9)	F8HF	
	VCO Control	B PMCAL		U22 (8)	75P7	
A33	Channel A	a pmc	11c	U21 (2)	UCPP	
	Phase					
	Detector				····	
A43	Channel B	в рмс	11c	U21 (2)	HU55	
	Phase Detector					
A34	Channel A	DATA3	11d	U19 (3)	C3UA	
	FracN Digital	DATA2		U19 (13)	A7PH	
		DATA1		U19 (11)	H858	
		DATA0		U19 (5)	5FAF	
A44	Channel B	DATA3	11d	U19 (3)	C3UA	
	FracN Digital	DATA2		U19 (13)	A7PH	
		DATA1		U19 (11)	H858	
		DATA0		U19 (5)	5FAF	
A36	FracN		1-1			
	Decoder	A PMC	11f	U4 (12)	UCPP	
		B PMC		U4 (15)	HU55	
		<u>A PMS</u>		U4 (7)	PH10	
		A PMCAL		U4 (5)	9H99	
		B PMCAL		U4 (10)	3689	
		A SWPL		U3 (12)	P557	
		B SWPL		U3 (7)	C92P	
		HSSE		U3 (15)	PCC9	
		HETE		U3 (5)	542H	

E	loard	Signal	Schematic	Test Location	
Number	Name	Name	Number	IC (pin)	Signature
A36	Calibrator	K1 DRIVER	12	U13 (3)	2119
		K2 DRIVER		U13 (4)	C751
		K3 DRIVER		U13 (5)	A6U4
		K4 DRIVER		U13 (6)	5930
		K5 DRIVER		U13 (7)	F7FU
				U16 (4)	C5HP
				U16 (6)	9FU3
		-		U16 (17)	82C9
				U16 (15)	UFCP
				U16 (13)	6061
				U16 (2)	6F06
				U16 (8)	7645
				U16 (11)	2483

T	Class at such as	1	Deerde er		In	D	
Table 6-53.	Signatures for	or i	Boaras oi	1 the	instrument	Bus	ιςοπτ αι

X-Drive Test

This test executes a program in memory that exercises the X-Drive sub-block on the controller board. It is implemented by setting switch 2 on A61S1 to the OPEN position and resetting the microprocessor (by cycling power or momentarily shorting pins 1 and 2 of A61W105 together), as shown in Figure 6-70.

NOTE

The first time power is turned on after running the SA tests, the error message "ERROR 160 CRPT" appears. All instrument states stored in non-volatile memory are deleted.

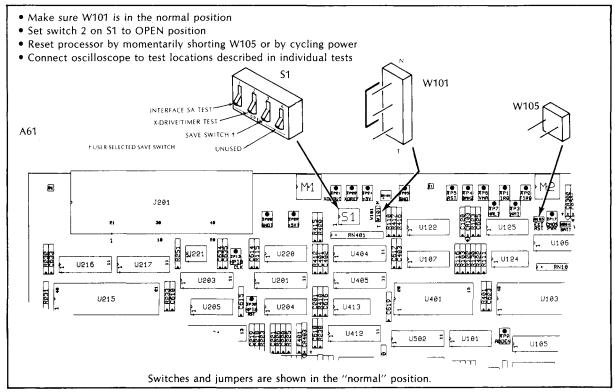


Figure 6-70. X-Drive Test Setup

The X-Drive sub-block is enabled to ramp from 0 to 10 V and reset without requiring a sweep flag from the local oscillators. This allows the X-Drive circuit to be exercised for troubleshooting. Connect the oscilloscope to A61TP21 (XDROUT). The waveform should match Figure 6-71.

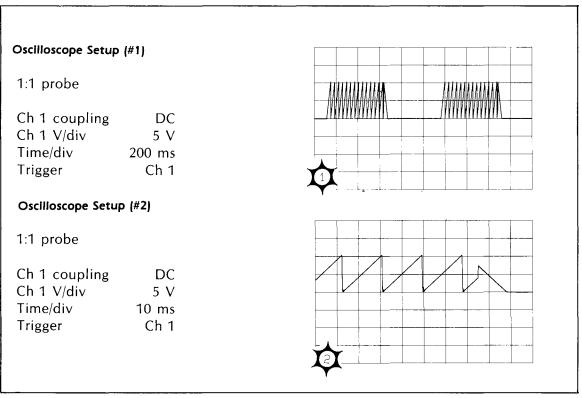


Figure 6-71. X-Drive Test Waveforms

Glossary of Internal Signal Names

1MS INTFLAG (1 MS INTerrupt FLAG) from the timer and display interrupt. Active low.

ADDCLK (ADDress CLocK) latches in A0, A1, and A2 for the HP-IB circuits

ADDEN (ADDress ENable) TP9.

ADDRESS BUS Microprocessor address lines A0 through A15.

A LATCHSWPLMT (Channel A LATCHed SWeeP LiMiT flag) The latched version of A SWEEP LIMIT. See signal glossary.

B LATCHSWPLMT (Channel B LATCHed SWeeP LiMiT flag. The latched version of B SWEEP LIMIT. See signal glossary.

CLEARMSFLG (CLEAR 1 MS timer FLaG) When the millisecond timer interrupts the microprocessor, it also sets an SR flip-flop. This flip-flop can be polled to verify that the millisecond timer generated the interrupt.

CLR A SWEEPLIMIT (CLeaR channel A SWEEP LIMIT flag) A low TTL signal; clears and disables the channel A sweep limit flag to the microprocessor.

CLR B SWEEPLIMIT (CLeaR channel B SWEEP LIMIT flag) A low TTL signal clears and disables the channel B sweep limit flag to the microprocessor.

CLREXTTRIG (CLeaR EXTernal TRIGger) A low TTL signal clears and enables the external trigger input. Located in X-DRIVE control register.

CLR X-DRIVE (CLeaR X-DRIVE) Sets the X-DRIVE counter to zero. Set by X-DRIVE control register.

CMOS RAM (CMOS RAM chip select) This signal selects the nonvolatile CMOS memory that occupies the address space 1000H to 17FFH.

DISPLCLK (DISPLay shift CLocK) Started by memory access. TP10.

DISPSTB (DISPlay STroBe) See STROBE in the signal glossary. TP11.

E (E clock) Signal is generated by the microprocessor and used to time all internal events. The signal is also used for the internal timing of the timer chip (U401).

ENABLE COUNT (Enables the counting of the X-drive counter) Also controls Z-BLANK.

FIRQ (Fast Interrupt ReQuest) Used for the 1 ms display timer. The timer sends out a 1 μ s pulse every 1 ms. This pulse sets the 1MS INTFLAG line low. TP2.

HPIBCLK (HP-IB CLocK) 4 MHz clock for the HP-IB chip (U215). Derived from the 8MHz PROC CLK signal from the reference board (A50). TP13.

HPIBINT (Interrupt line from HP-IB chip U125) Set low on HP-IB operation interrupts.

HPIBREAD (HP-IB READ) A high TTL signal allows a read from the HP-IB chip.

HPIB RESET This signal supplies a harware reset signal to the HP-IB chip (U215).

HPIBSTSP (HP-IB STart STop) Used in SA test 1. Enables NMIs. Toggles the working LED.

HPIBWRITE (HP-IB WRITE) A low TTL signal allows a write to the HP-IB chip.

IBUS ACTIVE (Instrument BUS ACTIVE) A low signal enables the instrument bus.

IBUS DATA READ (Instrument BUS DATA READ) A low pulse allows a read from the instrument bus.

IBUS DATA WRITE (Instrument BUS DATA WRITE) A low pulse allows a write to the instrument bus.

IRQ (Interrupt ReQuest) Used to signal the processor when the HP-IB chip needs to talk. TP1.

MEMENABLE (MEMory ENABLE) Enables the ROM and RAM buffer.

NMI (Non-Maskable Interrupt) Fastest processor interrupt. Used for channel A and channel B sweep limit signals (A SWEEP LIMIT and B SWEEP LIMIT) and external trigger (EXT TRIG IN). TP3

NMI ENABLE (NMI interrupt ENABLE) The hardware enable for NMI.

NMOS RAM (NMOS RAM chip select) This signal selects the NMOS memory.

PROCESSOR DATA BUS Data bus from U103 (microprocessor).

Q (Q clock) Clock signal generated by the microprocessor.

READFLAGS (READ FLAGS strobe) This signal permits the processor to read the status flags latch.

READSWITCHES (READ DIP SWITCHES strobe) This signal permits the pocessor to read the DIP.

READWRITE (READ/WRITE) Buffered version of the R/W line from the microprocessor. A logical high indicates that the processor is reading data; a logical low indicates that the processor is writing data.

RST LVL (ReSeT LeVeL) Approximately 4.5 V. Sets the power-down reset trip level. TP8.

TIMER SELECT (programmable TIMER SELECT) This signal selects the programmable timer chip (U401) to either be written to or read by the microprocessor.

X-DRIVE CONTROL (X-DRIVE CONTROL register strobe) Permits the microprocessor to write to the X-drive control register.

X-DRIVEFS (X-DRIVE Full Scale) Sets the X-drive counter to 1000 (10 V out).

XDREF (X-Drive REFerence voltage) approximately 10.3 V. TP22

XDROUT (X-DRive OUTput) 0-10 volts when sweeping. TP21

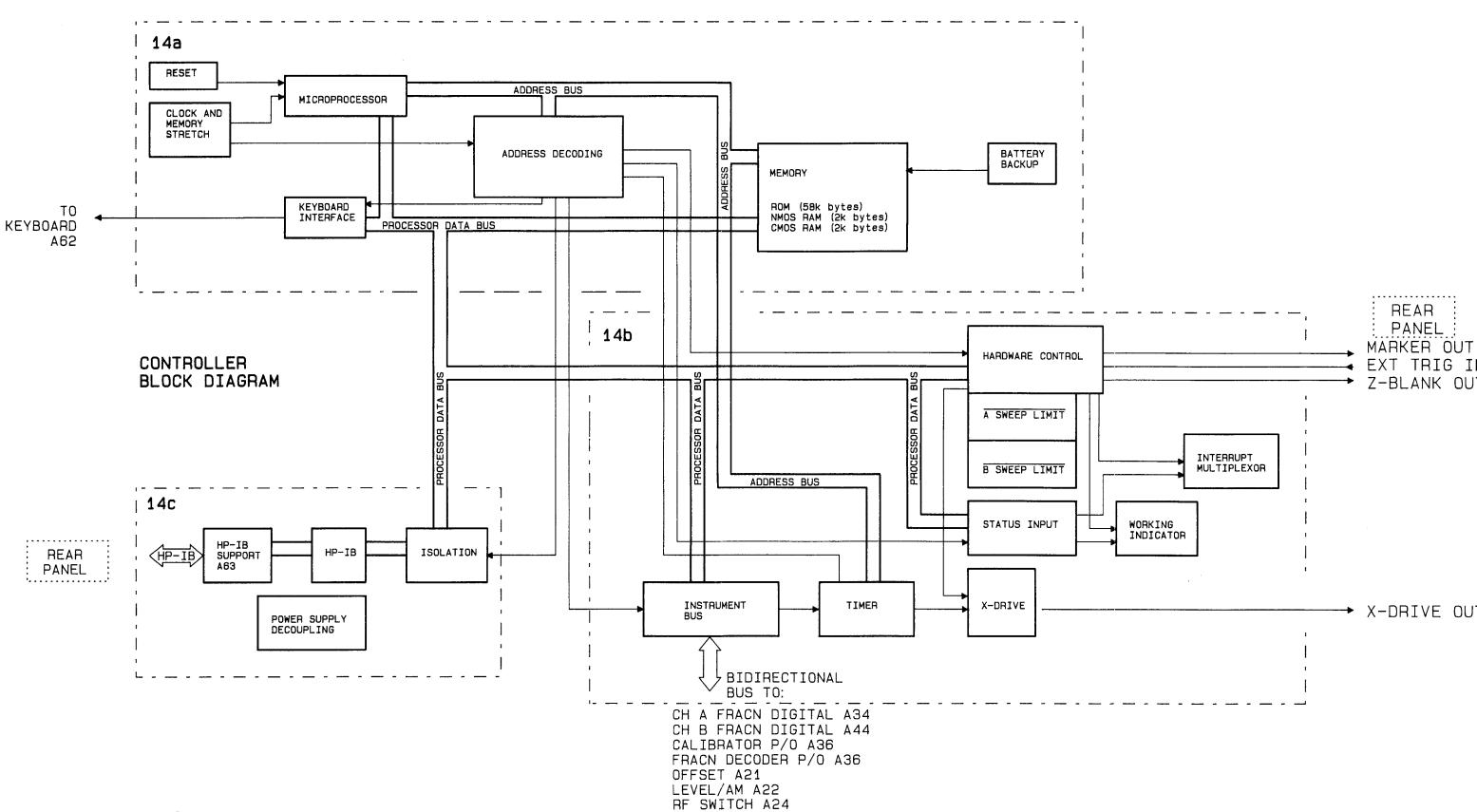
 \overline{VMA} (Valid Memory Address) The logical OR of the E and Q signals from the microprocessor. When \overline{VMA} is low, the address lines from the microprocessor are valid, and they can be used for decoding the ROM, RAM and I/O signals. TP6.

Table 6-54 HP-IB SUPPORT CONNECTION TABLE

Table 6-55 KEYBOARD CONNECTION TABLE

	J201		SUPPORT
PINS	SIGNAL NAME	то	FROM
1	Z BLANK	►	
2	MARKER	•	
3	EXT TRIG		•
4 5	X-DRIVE REN	•	
5 6	IFC		
7	NDAC		
8	NRFD	•	
9	DAV	•	
10	EOI	►	
11	ATN		◀
12 13	SRO DIO8		
14	D107		
15	DI06		
16	D105	►	•
17	D104	►	◄
18	DI03	►	
19 20	DI02 DI01	►	•
20	Z-BLANK		▲
22	MARKER	•	
23	EXT TRIG	-	•
24	X-DRIVE	►	
25	+ 15V		
26 27	+15∨ GND ↓		
28			
29	GND ↓	•	
30	GND 🕁	•	ļ
31	GND ↓	►	
32	GND ↓	►	
33 34	CGND #	►	
34	CGND /# CGND /#		
36			
37			
38	CGND #	•	
39	CGND ₼	►	
40	CGND ₼	►	

COM	J104		BOARD
PINS	SIGNAL NAME	то	FROM
1	GND ↓	►	
2		►	
3	- 15V	►	
4	GNDFP	▶	
5	STANDBY		
6	KB DATA		◀
7	DISPLCLK	►	
8	FP DATA	►	
9	EXT REF FLAG	►	
10	STROBE	►	
11	A AMPCO †		
12	+ 5VFP	►	
13	SYNC OVLD		
14	+ 15V	▶	
15	+ 5V	►	1
16	+ 5V	►	

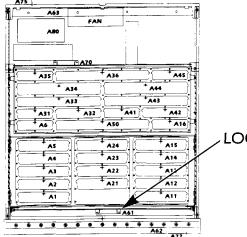

† Signal trace is shielded on the motherboard by ground traces.

CONNECTOR P501		DESTINATIO	N	SCHEMATIC NUMBER		
Pin	Signal Name	Schematic Number	Board Name	Reference Designator	То	From
A1	1BUS0	14b	OFFSET LEVEL/AM RF SWITCH CH A FRACN DIGITAL CH B FRACN DIGITAL FRACN DECODER CALIBRATOR	A21 A22 A24 A34 A44 P/O A36 P/O A36	7 ► 8 ► 10 ► 11d ► 11d ► 11f ► 12 ►	 7 8 10 11d 11d 11f 12
B1	IBUS4	14b	OFFSET LEVEL/AM CH A FRACN DIGITAL CH B FRACN DIGITAL FRACN DECODER CALIBRATOR	A21 A22 A34 A44 P/O A36 P/O A36	7 ► 8 ► 11d ► 11d ► 11f ► 12 ►	 7 8 11d 11d 11f 12
C1	IBUS7	14b	OFFSET LEVEL/AM CALIBRATOR	A21 A22 P/O A36	7 ► 8 ► 12 ►	 ▼ 7 ▼ 8 ▼ 12
A2	IBUS1	14b	OFFSET LEVEL/AM CH A FRACN DIGITAL CH B FRACN DIGITAL FRACN DECODER CALIBRATOR	A21 A22 A34 A44 P/O A36 P/O A36	7 ► 8 ► 11d ► 11d ► 11d ► 11f ► 12 ►	 7 8 11d 11d 11f 12
B2	IBUS5	14b	OFFSET LEVEL/AM CH A FRACN DIGITAL CH B FRACN DIGITAL FRACN DECODER CALIBRATOR	A21 A22 A34 A44 P/O A36 P/O A36	7 ► 8 ► 11d ► 11d ► 11d ► 11f ► 12 ►	 7 8 11d 11d 11f 12
C2	ADD STROBE	14b	OFFSET LEVEL/AM FRACN DECODER	A21 A22 P/O A36	7 ► 8 ► 11f ►	
A3	IBUS2	14b	OFFSET LEVEL/AM CH A FRACN DIGITAL CH B FRACN DIGITAL FRACN DECODER CALIBRATOR	A21 A22 A34 A44 P/O A36 P/O A36	7 ► 8 ► 11d ► 11d ► 11f ► 12 ►	 7 8 11d 11d 11f 12
B3	IBUS6	14b	OFFSET LEVEL/AM CALIBRATOR	A21 A22 P/O A36	7 ► 8 ► 12 ►	 7 8 12
C3	DATA STROBE	14b	OFFSET LEVEL/AM FRACN DECODER CALIBRATOR	A21 A22 P/O A36 P/O A36	7 ► 8 ► 11f ► 12 ►	
A4	IBUS3	14b	OFFSET LEVEL/AM CH A FRACN DIGITAL CH B FRACN DIGITAL FRACN DECODER CALIBRATOR	A21 A22 A34 A44 P/O A36 P/O A36	7 ► 8 ► 11d ► 11d ► 11f ► 12 ►	 7 8 11d 11d 11f 12

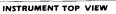
MOTHERBOARD CONNECTION TABLE (Cont'd)

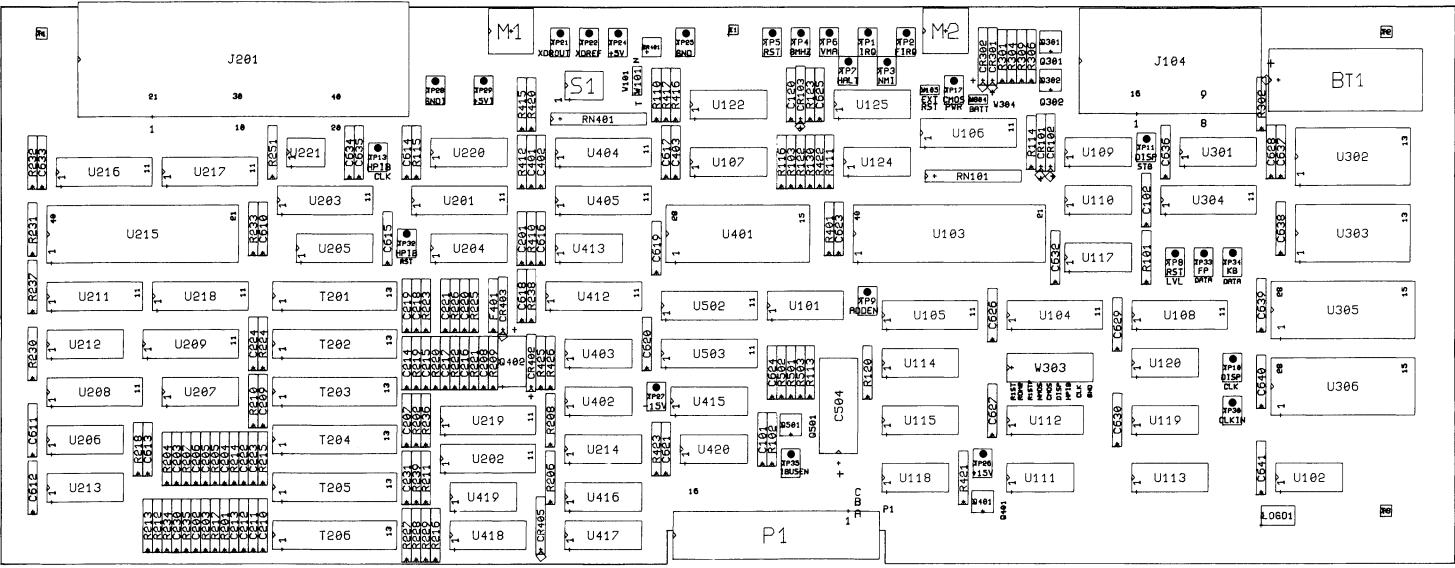
CONNECTOR P501			DESTINATION	SCHEMATIC NUMBER		
Pin	Signal Name	Schematic Number	Board Name	Reference Designator	То	From
B4	ANALOG FAULT	14b	OFFSET CH A VCO CONTROL CH B VCO CONTROL	A21 A32 A42		 7 11b 11b
C4	RESET	14b	OFFSET LEVEL/AM FRACN DECODER CALIBRATOR	A21 A22 P/O A36 P/O A36	7 ► 8 ► 11f ► 12 ►	
A5 B5	B SWEEP LIMIT GNDFP	14b 14a	CH B FRACN DIGITAL POWER SUPPLY	A44 A70		◀ 11d ◀ 16
C5	SWEEP START	14b	FRACN DECODER	P/O A36		◀ 11f
A6	REF LOOP UNLOCKED	14b	REFERENCE	A50		◀ 13
B6	NOT EXT REF FLAG	14b	REFERENCE	A50		◀ 13
C6	+ 5VFP	14c	POWER SUPPLY	A70		◀ 16
А7 В7 С7	+15V	14c	POWER SUPPLY	A70		. 16
A8 B8 C8	-15V	14c	POWER SUPPLY	A70		◀ 16
A9 B9 C9 A10 B10 C10	+ 5V	14c	POWER SUPPLY	A70		◀ 16
A11 B11 C11 A12 B12 C12	GND	14c				
A13	A SWEEP LIMIT	14b	CH A FRACN DIGITAL	A34		◀ 11d
B13 C13	+ 5V HPIB	14c	POWER SUPPLY	A70		◀ 16
A14 B14 C14	CGND	14c	POWER SUPPLY	A70		◀ 16
A15	GND	14c				
B15	A HVFLAG	14b	CH A HV AMP	A1		◀ 1
C15	STANDBY	14b	POWER SUPPLY	A70	▶ 16	
A16	8MHZ PROC CLK†	14b	REFERENCE	A50		◀ 13
B16	B HVFLAG	14b	СН В НУ АМР	A11		◄ 1
C16	A AMPDCOt	14a	OFFSET	A21		◀ 7

t Signal lead is shielded on the motherboard by ground traces.

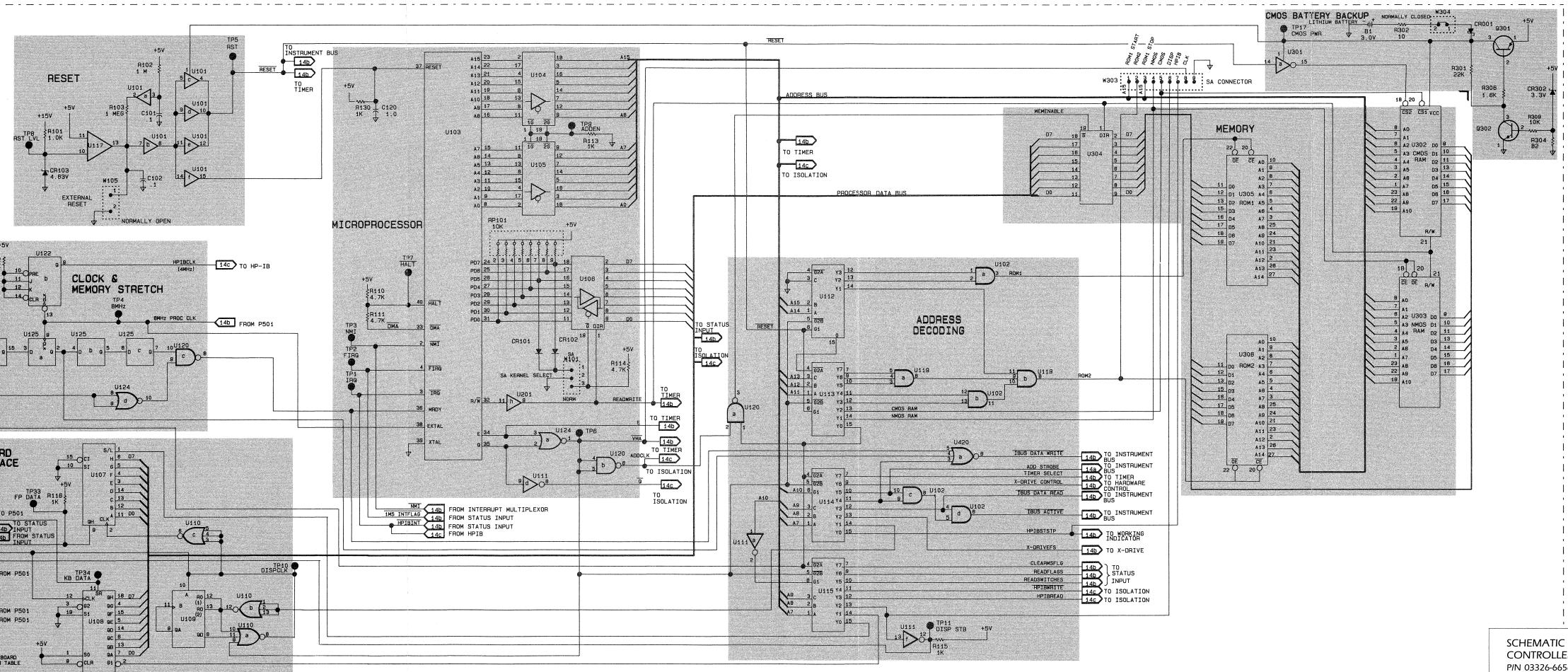


COPYRIGHT C 1984, HEWLETT PACKARD CO.

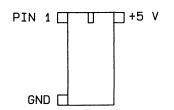

BLOCK DIAGRAM CONTROLLER/HP-IB SUPPORT (A61, A63)



SERVICE



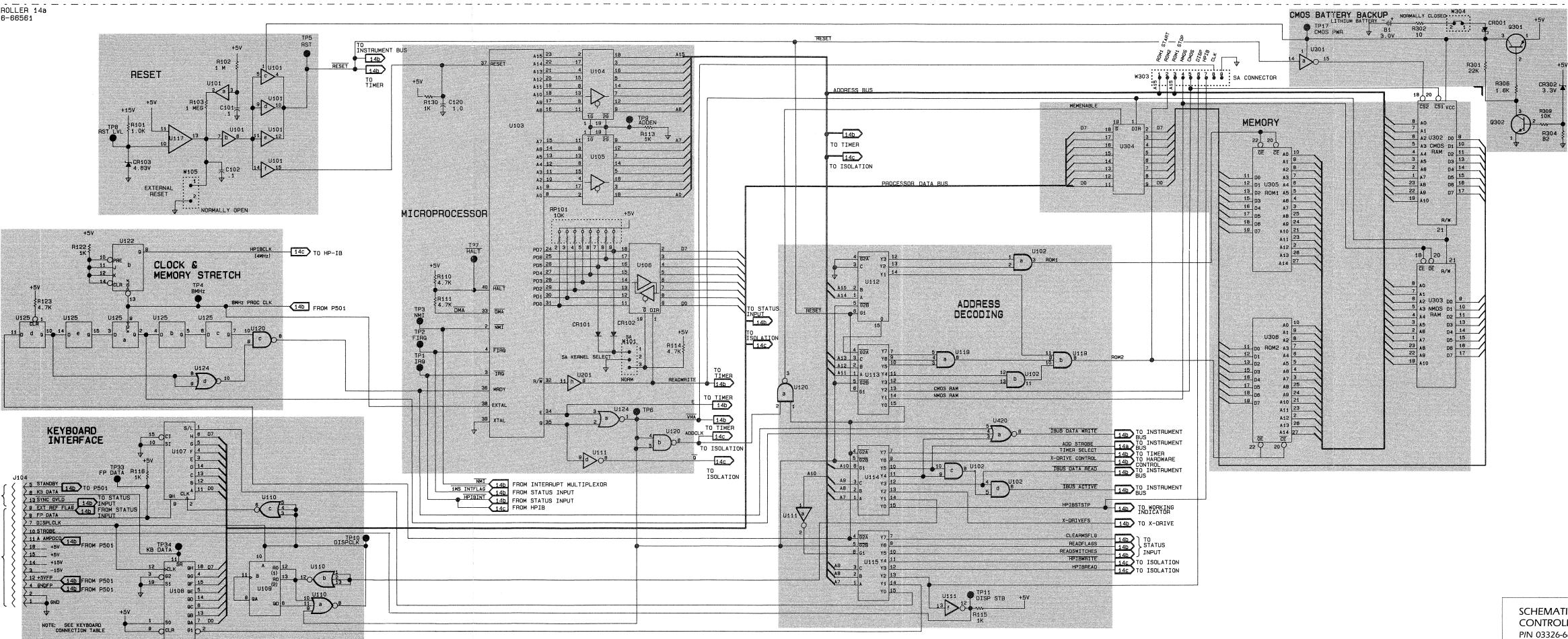
LOCATION

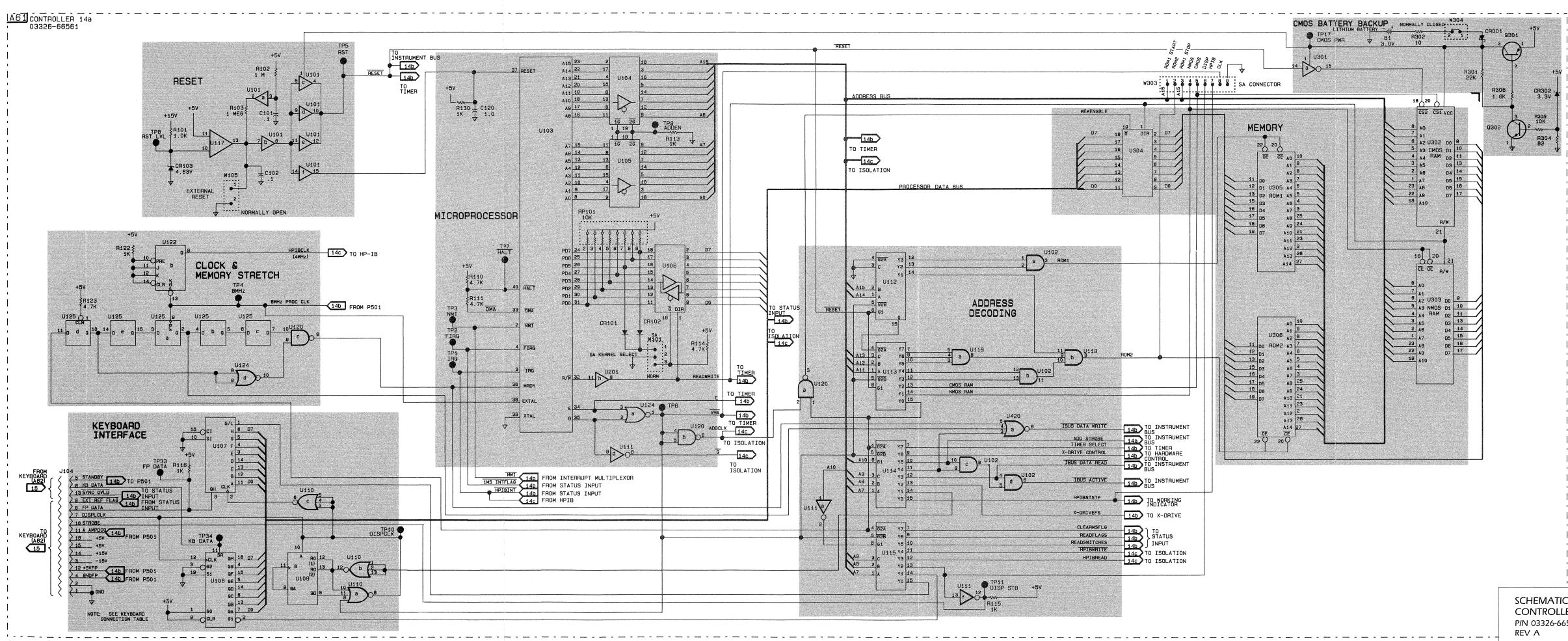


03326-66561

NOTES:

1. ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN, REGARDLESS OF THE TOTAL PIN COUNT (e.g., FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16).

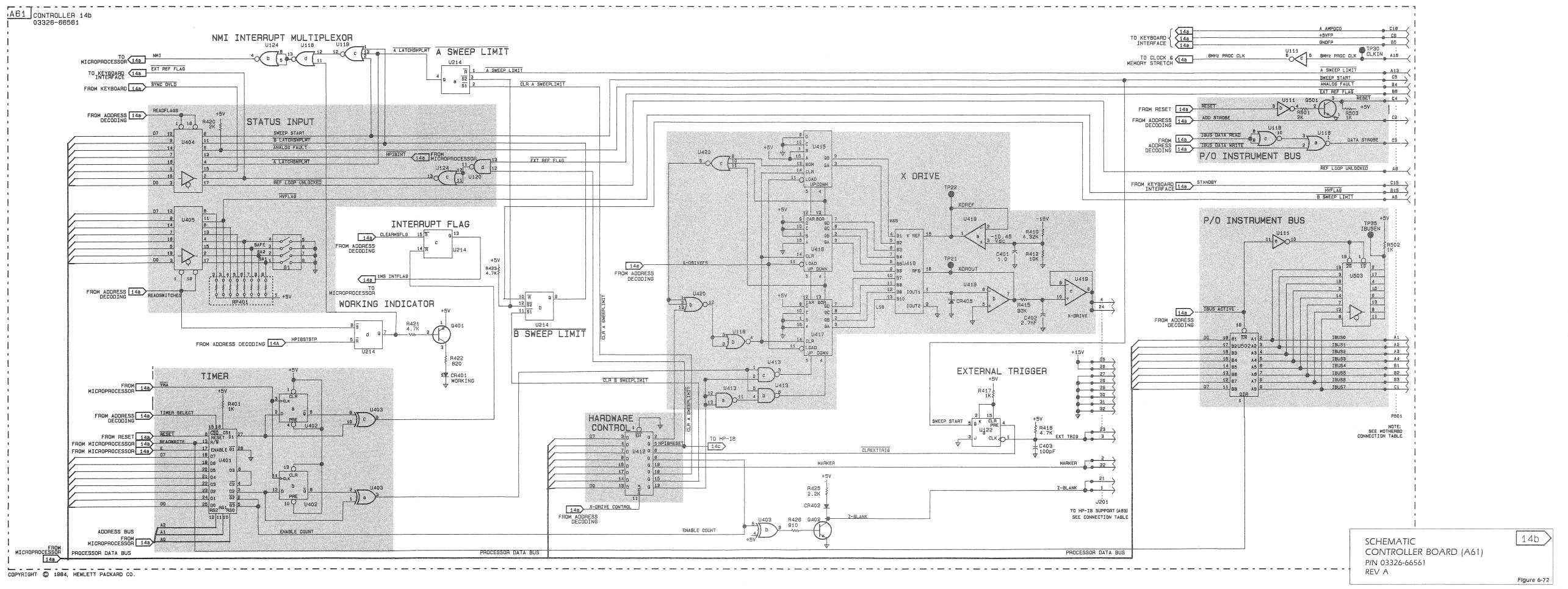



2. THIS SCHEMATIC USES CR AS THE REFERENCE DESIGNATOR FOR AN LED.

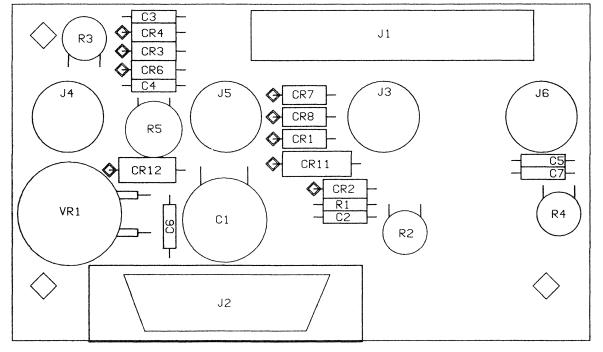
3. CAUTION

TTL, TTL COMPATIBLE NMOS LOGIC, AND TTL COMPATIBLE CMOS LOGIC DEVICES ARE USED IN THIS CIRCUIT.

USE THE APPROPRIATE PRECAUTIONS WHEN REMOVING, HANDLING, AND INSTALLING ALL STATIC SENSITIVE COMPONENTS TO AVOID DAMAGE.




COPYRIGHT 🔘 1984, HEWLETT PACKARD CO.


CONTROLLER BOARD (A61) P/N 03326-66561

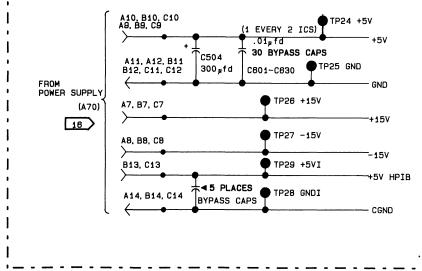
14a

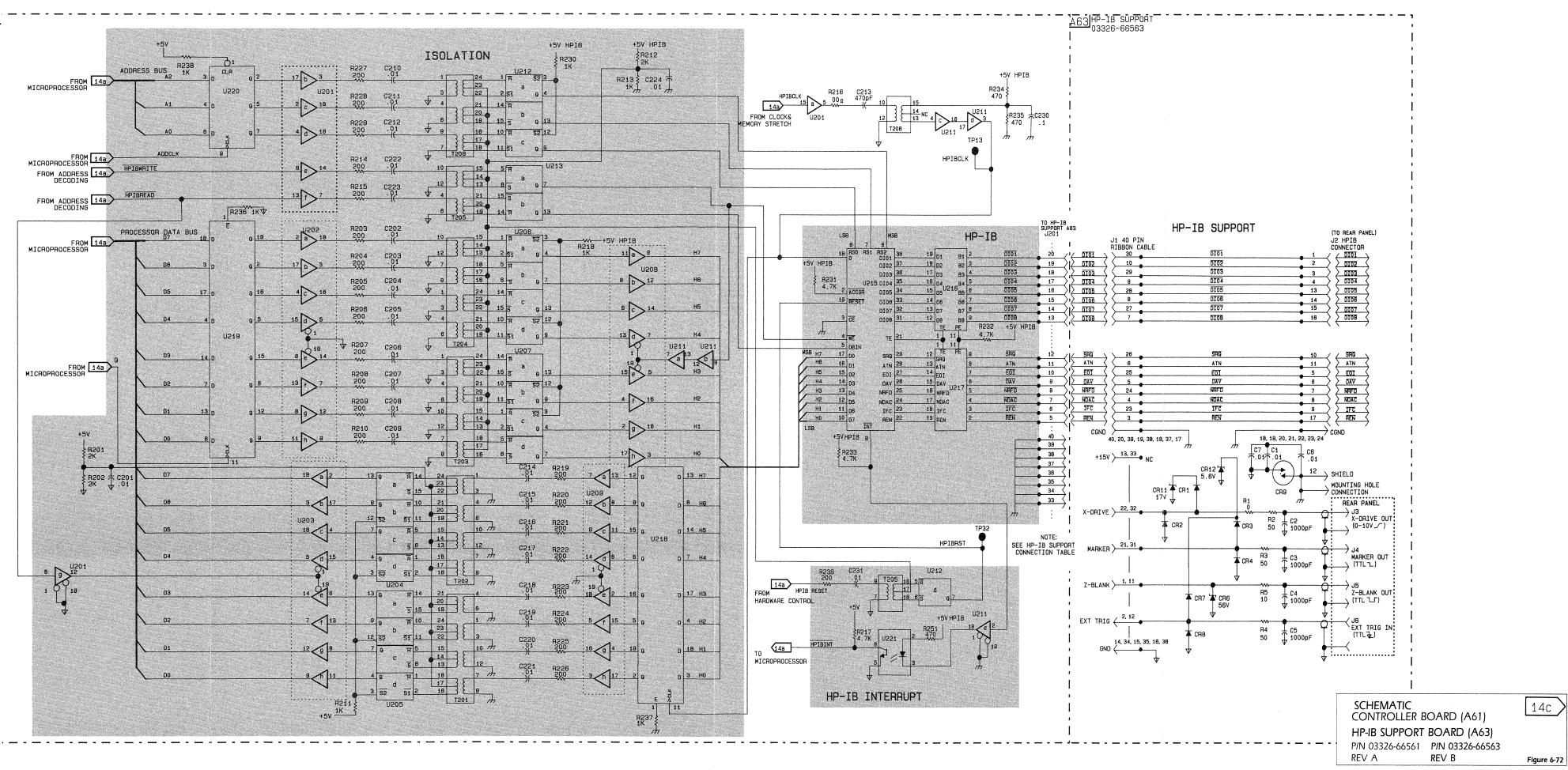
HP-IB SUPPORT BOARD (A63) P/N 03326-66563 REV B A61 CONTROLLER 14c 03326-66561

NOTES:

- 1. POOR GROUND CONNECTIONS IN THE PHONO CABLES MAY CAUSE INTERMITTENT PROBLEMS THAT CAN APPEAR TO BE SUBTLE HARDWARE FAILURES (FOR EXAMPLE, POOR PHASE OR AMPLITUDE CALIBRATION ACCURACY). CRIMPING THE PHONO CONNECTORS TO IMPROVE THE GROUND CONNECTIONS IS RECOMMENDED.
- **2.** THIS SCHEMATIC USES VR AS THE REFERENCE DESIGNATOR FOR A VARISTOR.

Table 6-57 CONTROLLER CONNECTION TABLE


HP-IE	3 SUPPORT A63 J1	CONTR	ROLLER 61
PINS	SIGNAL NAME	то	FROM
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 99 40	Z-BLANK EXT TRIG REN NDAC DAV ATN DI08 DI06 DI04 DI02 Z-BLANK EXT TRIG + 15V GND \Rightarrow GND \Rightarrow GND \Rightarrow GND \Rightarrow CGND CGND CGND CGND CGND CGND CGND CGND	******	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Table 6-58 HP-IB OUTPUT CONNECTION TABLE

HP-II	B SUPPORT A63		P-IB FPUT
PINS	SIGNAL NAME	то	FROM
1	DI01	•	
2	DIO2		
2 3	DIO3	▶	
4	DI04	►	•
5	EOI	•	◀
6	DAV	•	◀
7	NRFD	•	•
8	NDAC		
9	IFC	►	▲
10	SRO.		▲
11 12	ATN		▲
12	SHIELD DI05		
14	DI05 DI06		
15	DI07		
16	DIOB	•	
17	REN	►	•
18	CGND #	►	
19	CGND /#	►	
20	CGND /#	►	
21	CGND /#	►	
22	CGND #	►	
23 24	CGND ル CGND ル	►	

COMP	+5V	+5V HPIB	+15V	-15V	GND	CGND	NC
U101	. 1				8		13, 16
U103	7				1		5, 8
U107	18				8	1	7
U108	20	•••••			10	1	8, 17, 18
U109	14				7	1	1, 2, 3, 4, 5, 6
U112	18				8	1	7, 9, 10, 11,
U117			з		12		1. 2. 4. 5. 6. 7. 8. 9
U122	18				8		6,7
V125	16				B		12, 13
U208		18				8	
U207		16				8	
0508		20				10	
ńsóa		20				10	
U211		20				10	5, 6, 9, 11, 14, 15
U212		18				8	
U213		16				8	1 2 3 4 9 10 11 12
U215		40				20	1, 30, 39.
U218		20				10	
U217		20				. 10.	
Ų?18		20				. 10	
ńśśó	.10.				. 8		10, 11, 12, 13, 14, 15,
ńssi	. 8						1, 4, 7
Ų301					8		2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 1
<u>ń</u> 3óś					. 12.		
U305	1.28				.14.		
0308	1, 28				.14.		
U401	.14						7, 9, 28
U402	.14				. 7		5, 9
U403	.14				. 7		11, 12, 13
U413	.14 18				. 7	••••	8, 9, 10
U415					8		6, 7, 12
Ų418	.14				. 3	• • • • •	
U419			4	11		1	

POWER SUPPLY DECOUPLING

6-34 KEYBOARD, A62

The information in this section should be used to isolate defective sub-blocks when servicing the HP 3326A. All procedures assume Fault Isolation to the Board Level has been used to determine which functional block (board) has failed.

Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltages and energy available at many points can, if contacted, result in personal injury.

Be sure that the power switch is in the STBY position before inserting or removing any circuit board. Power transients caused by insertion or removal may damage the circuit boards.

Theory of Operation

Controller/Keyboard interface:

Interface between the controller and the keyboard is performed by U107 and U108 on the controller board (A61). These are parallel-to-serial and serial-to-parallel shift registers, respectively. The data flow between the the two boards is serial.

Serial data is clocked to the keyboard from the controller, shifted through six shift registers and returned to the controller. Five of the six registers receive information from the controller (to control illumination of the LEDs). The sixth encodes user input (pressed keys or rotation of the knob). Figure 6-73 shows the timing of the interface.

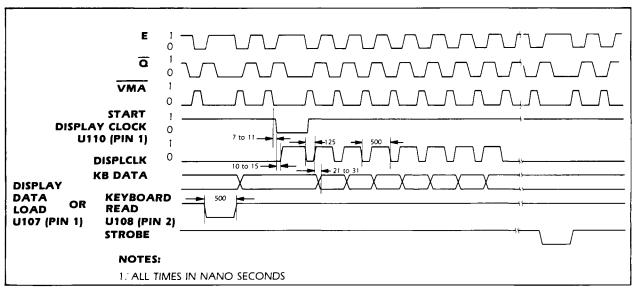


Figure 6-73. Keyboard Timing Diagram

LED drivers:

The LEDs are electrically arranged in 21 columns and 8 rows. Two columns are driven in each display cycle. Each display cycle takes one millisecond and clocks data completely through the serial loop on the keyboard. There are 15 display cycles for a complete display refresh (two of which are for the blinking digit), making the update rate 66 per second.

The keyboard uses PNP transistors and integrated NPN drivers to supply current to the LEDs. The row drive data is shifted into U1 and U3 and the column information is shifted into U2, U5, and U4. An LED is illuminated if its column information is a "1" and the row information is a "0."

Keys:

The keyboard is matrix of eight columns and six rows. The keys are driven (activated) by the display columns in the same manner as the LEDs. They are polled once every display cycle. Pressing a key identifies a row which U6 encodes onto the serial data loop. The data returns to the controller as the KB DATA signal. Since only two columns are activated at a time, the microprocessor can uniquely identify the key pressed based on the column it activated and the row information from U6. The keys are completely scanned every 15 ms.

Knob (rotary pulse generator, RPG):

When the RPG is rotated, it outputs two square waves whose phase relationship is always 90° or 270°. Directional information is available by comparing the two with an edge-triggered flip-flops whose clock is one RPG output and whose data input is the other RPG output. Activity is indicated by another flip-flop whose data input is held high and whose clock is an RPG output. Both flip-flops are reset by data clocked into Q8 of shift register U5. The RPG information and the keypress information is shifted out to the controller.

Synchronous output:

The synchronous output (sync) circuit is derived from the output of channel A (which is input to the keyboard on a phono cable). The dc offset of the channel A signal is sub-tracted from the input to maintain a 50% duty cycle out of the squaring circuit (U101). U104 buffers the dc offset information coming from the offset board (A21) via the controller board. The SYNC signal is buffered to the keyboard by five parallel drivers (U102).

Sync overload sensing is provided by U103 and overload protection is provided by relay K101. Two comparators on U103 activate relay protection when the signal on the SYNC A output connector becomes negative or exceeds +5 V. A third comparator provides hysteresis such that the protection relay remains open for a short period of time after the overload condition is removed and then closes, automatically returning to normal operation. When an overload occurs at the SYNC A output, a signal to the processor (SYNC \overline{OVLD}) causes the instrument to display the warning "ERROR 172 SYOL."

Troubleshooting

The troubleshooting information which follows assumes you have used the flow chart in Figure 6-2 to determine that the keyboard (A62) or the keyboard interface sub-section on the controller board (A61) has failed. It is recommended that this flow chart be used before proceeding further.

On the controller board:

- 1. Initiate the Interface Signature Analysis (SA) Test by connecting A61TP25 to A61TP28, setting switch 1 of A61S1 to the open position, and cycling power (as described in Figure 6-69 in controller troubleshooting sub-section 6-33).
- 2. Check for a 1 ms interrupt signal on A61TP2; there should be a 1 μ s pulse every millisecond.
- 3. Check the signature on A61TP33 (FP DATA) to erify that data is getting to the keyboard. See Table 6-49.
- 4. If there is no signal on the FP DATA test point (TP33), check the clock circuit composed of U109 and U110.
- 5. If the front panel LEDs illuminate but the keyboard doesn 't respond to key presses, check TP34 for data coming back from the keyboard (KB DATA). See Table 6-49.

Also, check for keys that are stuck down. See Table 6-50. The instrument microprocessor responds to a keypress when the key is released and it only acknowledges one key pressed at any time. When a key is stuck down, further key presses produce no response because the pressed key has not released.

- 6. If data appears to leave the controller board but none returns, perform the SA tests for the keyboard listed in the SA tests in the A61 board level repair. See Table 6-50.
- 7. If data appears at TP34 (i.e., data is returning from the keyboard) then U108 may be the problem. It is important that U108 is a Texas Instruments part as opposed to that of any other manufacturer.

On the keyboard:

Serial data path:

- 1. Check A62TP3 for an incoming serial clock signal (DISPLCLK) from the controller. This signal consists of five bursts of eight bits every millisecond.
- 2. Check TP1 for incoming data from the controller. This data (FP DATA) flows serially through all five serial-to-parallel registers on the keyboard (U1, U3, U2, U4, and U5) as well as the parallel-to-serial register (keypress encoder U7) and returns to the controller board as the signal KB DATA. It is not cleared after it is clocked into the registers. Check for this signal between each of these ICs along the main data path with a scope or logic probe.

3. Perform the SA tests listed in Table 6-50 in controller troubleshooting (sub-section 6-33).

Knob (rotary pulse generator, RPG):

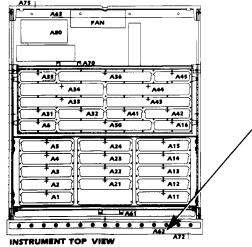
If the instrument does not respond to rotation of the knob or responds improperly, troubleshoot U6, U7 and the RPG unit.

- 1. TTL square waves should appear on pins 6 and 13 of U6 when the RPG is rotated. If the RPG unit has good power and ground and these signals do not appear as stated, troubleshoot the RPG and its interface (U6).
- 2. Pin 1 of U6 is normally low. It is TTL high when the knob is turned clockwise and TTL low when the knob is turned counterclockwise. Turning the knob counterclockwise results in no apparent change in status at pin 1. The high state remains only until it is reset, which happens once every millisecond.
- 3. Pin 15 of U6 indicates activity by going high when the knob is turned. This line returns to a low state when reset by the Q8 bit of U5 (once every 1 ms).
- 4. If the correct information is getting to U7 and the knob still does not function properly, troubleshoot the interface circuitry consisting of A62U7 on the keyboard and A61U108 on the controller board.

Sync circuit:

If there is no signal at the sync output and the display does not indicate that a sync circuit overload (ERROR 172 SYOL) has occurred, then either an overload has occurred that is not being reported properly, or the sync output circuitry is defective.

1. Preset the HP 3326A. A 1 kHz square wave should be present at U103, pins 4 and 7. It is important that this wave is between 0 and 5 volts. Any offset on the wave that brings it outside of these boundaries will trigger the overload circuitry.


Measure the voltage at pins 1, 2 and 14 of U103. In normal operation these should be TTL high and the protection relay should be closed.

2. Check for SYNC input signal from the channel A output amplifier (A3) and follow it through toward the sync output until the signal disappears or is otherwise defective. See Figure 6-74.

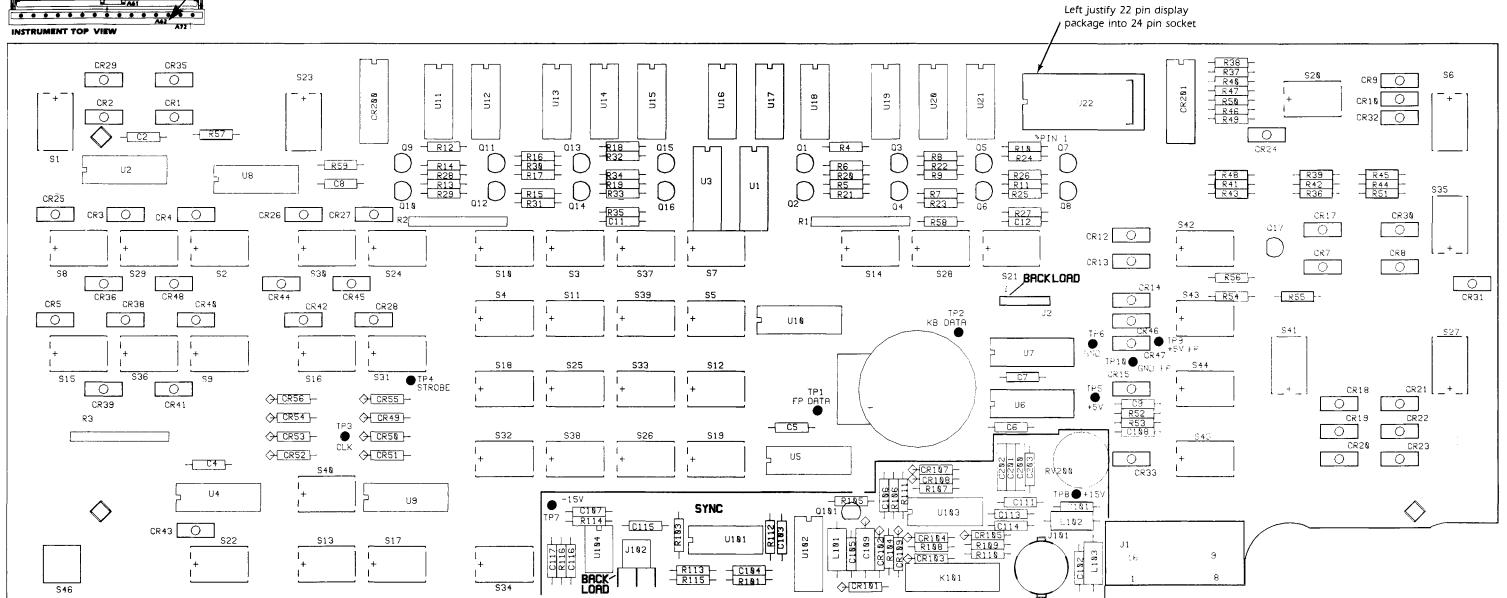

To check the bias volt the HP 3326A as follo		given for the sync circuit on the keyboard, set
HP 3326A Setup		
INSTR PRESET Channel Amplitude DC Offset	CH A 5 Vpp 1 V	
Oscilloscope Setup	(#1)	
BNC cable		
Ch 1 coupling Ch 1 V/div Time/div Trigger	50 Ω DC 1 V 200 μs Ch 1	

Figure 6-74. Keyboard Waveforms

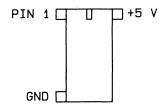
SERVICE

/LOCATION

ē.

Table 6-59 CONTROLLER CONNECTION TABLE

KEYBOARD A62			OLLER
	J1	A	51
PINS	SIGNAL NAME	то	FROM
1	GND ↓		•
2	GND ↓		<
3	- 15V		<
4	GNDFP		<
5	STANDBY	►	
6	KB DATA	►	
7	DISPLCLK		<
8	FP DATA		<
9	NOT EXT REF FLAG		<
10	STROBE		<
11	A AMPDCO †		•
12	+ 5VFP		•
13	SYNC OVLD	►	
14	+ 15V		<
15	+ 5V		<
16	+ 5V		<

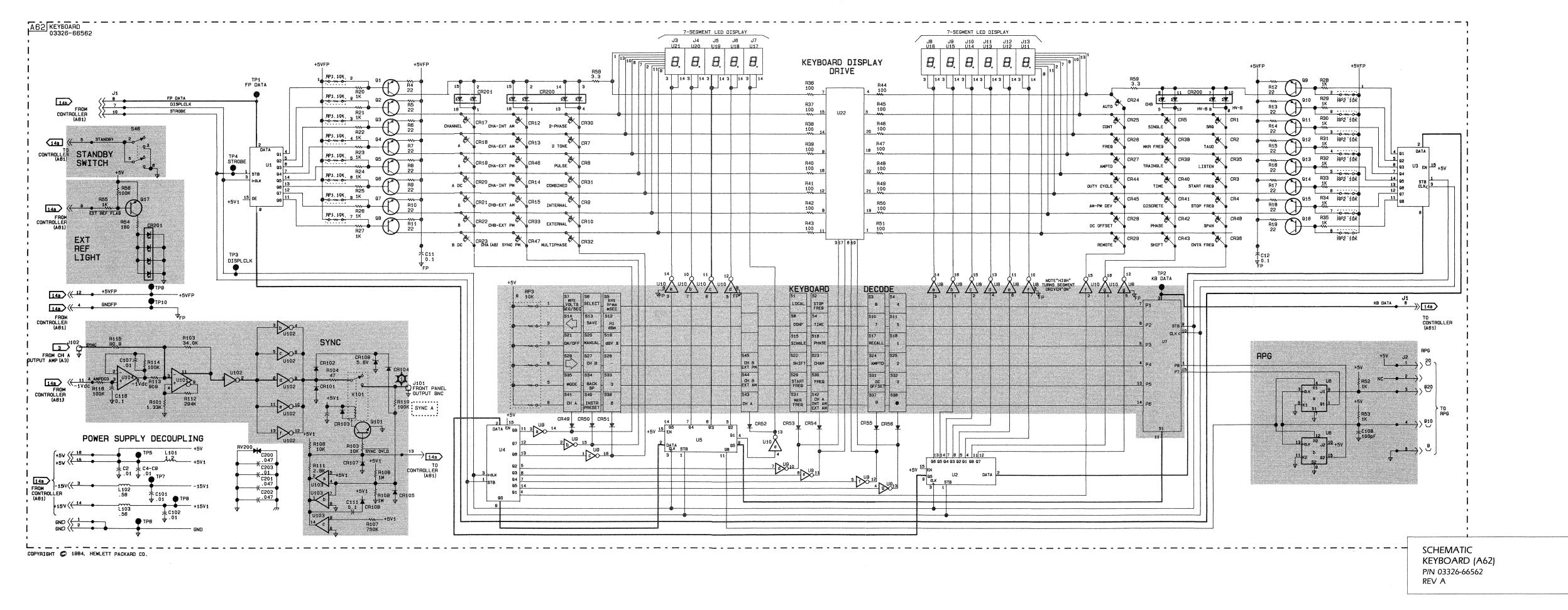

REFERENCE TABLE						
					BYPASS CAPS	
COMP	GND	+5V1	+15V	-15V	REF VALUE	
U101	10	8, 13, 14				
			1		C103 .01	
				6	C104 .01	
U102	8	14			C10401 C10501 C109 10	
U103	• • • •		3		C114 .01	
				12	C113 .01	
U104			7		C117 0.1	
				4	C115 0.1	

† Signal trace is shielded on the motherboard by ground traces.

NOTES:

5.

1. ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN, REGARDLESS OF THE TOTAL PIN COUNT (e.g., FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16).



- 2. RELAY IS SHOWN IN THE DE-ENERGIZED STATE.
- **3.** POOR GROUND CONNECTIONS IN THE PHONO CABLES MAY CAUSE INTERMITTENT PROBLEMS THAT CAN APPEAR TO BE SUBTLE HARDWARE FAILURES (FOR EXAMPLE, POOR PHASE OR AMPLITUDE CALIBRATION ACCURACY). CRIMPING THE PHONO CONNECTORS TO IMPROVE THE GROUND CONNECTIONS IS RECOMMENDED.
- **4.** THIS SCHEMATIC USES CR AS THE REFERENCE DESIGNATOR FOR THE LED AND VR FOR A VARISTOR.

CAUTION

TTL COMPATIBLE CMOS LOGIC DEVICES ARE USED FOR THE DRIVER CIRCUITRY ON THE KEYBOARD (A62) . U8, U9, AND U10 ARE OPEN COLLECTOR DRIVERS. TTL DEVICES ARE USED FOR THE SYNCHRONOUS OUTPUT CIRCUIT.

USE THE APPROPRIATE PRECAUTIONS WHEN REMOVING. HANDLING, AND INSTALLING ALL STATIC SENSITIVE COMPONENTS TO AVOID DAMAGE.

15

Figure 6-75.

6-35 POWER SUPPLY, A70

The information in this section should be used to isolate defective sub-blocks when servicing the HP 3326A. All procedures assume Fault Isolation to the Board Level has been used to determine which functional block (board) has failed.

Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltages and energy available at many points can, if contacted, result in personal injury.

CAUTION

Be sure that the power switch is in the STBY position before inserting or removing any circuit board. Power transients caused by insertion or removal may damage the circuit boards.

Theory of Operation

The HP 3326A has a linear power supply with fold-back current limiting and overvoltage protection. When the front panel power switch is in standby (STBY), primary line voltage is still present but the main supply outputs fall to zero. It is important to remember that the secondary (and other) voltages are present any time the instrument is connected to main power. Care must be taken not to short the supplies together when the instrument is connected to the line power.

WARNING

The main power switch does not disconnect power to the power supply. Dangerous voltages are present in the power supply when the switch is in the STBY position.

CAUTION	
---------	--

Care must be taken that the power supplies are not shorted together when troubleshooting. Do not place the power supply on the card nest without adequate insulation between them. Damage to components may result.

There are seven independent supplies on the power supply board: +15V, -15V, +5V, +5V HPIB, 5VFP, +28VDC, and -28VDC. See the signal glossary in Appendix A.

+15V supply:

The +15V supply has an unregulated output (+15V RAW) which supplies the oven reference board (A80) and a regulated output (+15V) which is one of the three main supplies. The +15V power supply also serves as the reference for the -15V and +5V supplies.

Power from the transformer 42 volt, center-tapped secondary is full wave rectified by diodes CR700 and CR701 and filtered by C700. The pass transistor, Q100, is a Darlington with a base-emitter voltage of approximately 2.5 V. The voltage reference zener diode (CR106) is connected to the non-inverting input of the regulator controller (U100). This 6.2 V zener is biased on at turn-on through R111 to the +18V supply. After the +15V supply reaches operating level, the zener is biased on by the +15V supply through CR105.

Regulation is accomplished by feedback through the $\pm 15V$ SENSE line (from the motherboard) and R113, R114, and R115. The feedback voltage is divided down to approximately 6.2 V to equal the zener reference. When the power supply board is not in the instrument, a 10 ohm resistor (R116) provides the voltage sense required to make the circuit function. This resistor is in parallel with the sense line when the board is in the instrument, but the impedance of the sense line is so much less than that of the resistor that its effect is negligible. When setting the $\pm 15V$ supply, the power supply board must be mounted in the instrument for an accurate adjustment to ± 15 V ± 2 mV.

When the front panel power switch is in standby, Q101 is turned on and the regulator's reference voltage falls to approximately zero. This effectively turns off the output of the power supply. The base circuit of the transistor is pulled high by R118, turning it on whenever the STANDBY line is not grounded. The STBY key on the keyboard signals the controller board to set the STANDBY line appropriately. When either the keyboard or the controller board is removed or the power supply is out of the instrument, jumper W105 may be used to take the power supply out of standby.

Fold-back current limiting is performed by R103, R104, R105, R106, and another section of U100. This circuit senses excessive output current and limits the output voltage to smaller values as the output current increases. A red LED is used to indicate that the instrument is in the current limit condition. This current limiting circuit is repeated in the -15V and +5V supplies. To help protect the instrument from power supply overvoltage, zener clamping diodes exist on each of the three main supplies; +15V, -15V, and +5V. Each of these is disabled by removing the board from the motherboard. This has the effect of moving jumpers built into the motherboard. See Overvoltage Protection which follows.

The pass transistors and regulators are further protected by a thermal cutout mounted on the heat sink. When the heat sink temperature rises above 100 °C the thermal cutout opens the STANDBY line, putting the instrument into standby.

The fan does not operate when the instrument is in standby. Fan switching is accomplished by operating the fan power relay with the +15V supply. When the supply goes to zero volts, the relay is de-energized and power to the fan is disconnected.

-15V supply:

The -15V supply is identical to the +15V supply except that it gets its reference from the +15V supply (comes from the motherboard) instead of using another zener. If the +15V supply goes to zero the -15V supply also shuts down. Sensing of the -15V supply comes from the motherboard (as explained previously for the +15V supply). A 10 ohm resistor is provided to operate the power supply outside the instrument.

Since this supply gets its reference from the $\pm 15V$ supply, no separate adjustment is required. The output should be $\pm 15 \pm 0.020$ V (measured at TP205 with the board in the instrument).

+5V supply:

The +5V supply circuit is approximately the same as previously described for the +15V supply. As with the -15V supply, the reference for the +5V supply is derived from the +15V supply. This supply should be +5.1 V \pm 60 mV.

\pm 18V supplies:

These supplies exist only to power circuits on the power supply board and do not go to any other board. This is a full-wave bridge circuit and dual regulators supplied by the 68 V secondary winding of the main transformer.

+5V HPIB supply:

The analog ground in the HP 3326A (GND) is floating relative to the chassis (safety) ground (CGND) to help eliminate ground-loop problems in measurements. This also preserves isolation when a cable is connected to the HP-IB connector. This supply requires the $\pm 5V$ supply (see schematic). A separate power supply and transformer winding are used for the isolated $\pm 5V$ HPIB supply. This supply should be $\pm 5V \pm 0.25V$.

This supply uses a full-wave bridge rectifier and filter capacitor, followed by a pass transistor to switch the supply off when the instrument is in standby. The opto-isolator device is used to preserve isolation of the two grounds. U400 is a +5 V regulator for the output. When measuring this supply voltage, CGND (TP402) must be used as the reference.

+ 5VFP supply:

This supply is used to run the front panel LEDs. It is supplied by U900 which taps the rectified and filtered +5V supply just before it is regulated. +5VFP operates the same as the +5V HPIB supply but has the same ground as the rest of the power supply (GND). +5VFP has a ground path separate from the rest of the return paths (until it gets back to the power supply) to avoid contamination of the other supplies. Also, **this supply does not go into standby.** Its output is present whenever line power is connected to the instrument.

+ 28 VDC AND - 28 VDC SUPPLIES

These supplies are used only by the high voltage amplifier boards (A1 and A11). They consist of the rectified and filtered portion of the 18V supplies; there is no regulation. Fuses protect the supply outputs.

Overvoltage Protection

The overvoltage protection circuit protects the instrument from failure of a pass transistor or from high voltage shorts by sensing the overvoltage condition and turning on an SCR (silicon controlled rectifier). This shorts the +15V supply to ground to blow the main power fuse. Sensing is done by comparators U801 and U802. Sensing of the +15V supply is done indirectly by monitoring the -15V supply, since it uses the +15V for reference. Selection of the wrong power line switch setting activates the overvoltage protection when 110 VAC is selected and 220 VAC is actually supplied to the instrument.

To troubleshoot this circuit, the drive to the SCR is disabled by removing the power supply board from the instrument. This insures that the instrument cannot be damaged while troubleshooting an overvoltage problem. Also, the clamping diodes on each of the +15V, -15V, +5V supplies are disabled by removing the board. Note that the LEDs used to indicate the overvoltage condition illuminate when a problem exists.

Troubleshooting

Red and green LED indicators exist on the board to give a quick indication of the status of the power supply circuits. The green LEDs are in the +15V, -15V, and the +5V supplies. The red LEDs (indicating some type of failure) are in the three main supplies for current limiting or overvoltage (see schematic). Any of the green LEDs which are not lit also indicate a failure.

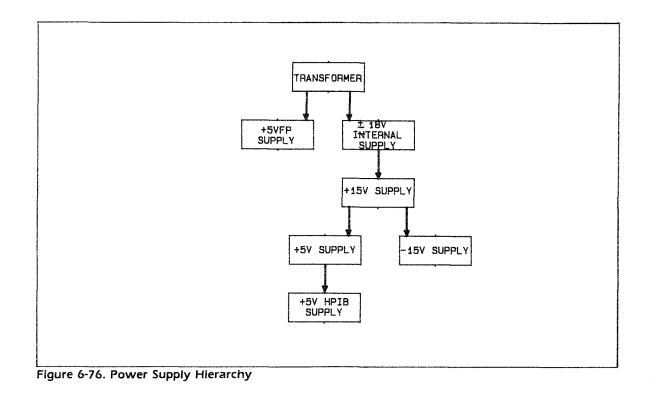
Check the supply outputs for the voltage levels shown in Table 6-60. Determine which supplies are not working. Use Figure 6-76 to determine which supply is defective. This figure shows the supply hierarchy; that is, it shows which supplies depend on other supplies to run. For example, if the +5V and +5VFP supplies are producing not the proper voltages, the defective supply is probably +5V, since the +5VFP supply cannot run without the +5V supply working properly.

Once the problem area is found, begin by checking the circuit's reference voltages and the voltages at the comparator inputs.

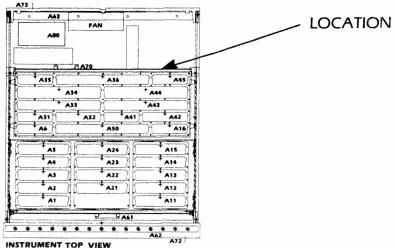
Intermittent failures of the power supply could be due to defective sockets. The pass transistors on the heat sink use sockets.

If the instrument blows fuses as soon as it is turned on, remove the power supply board from the motherboard and move jumper W105 to the "test" position. If the red LED(s) in the overvoltage circuits are illuminated, the problem is that one or more of the supply output values is too large.

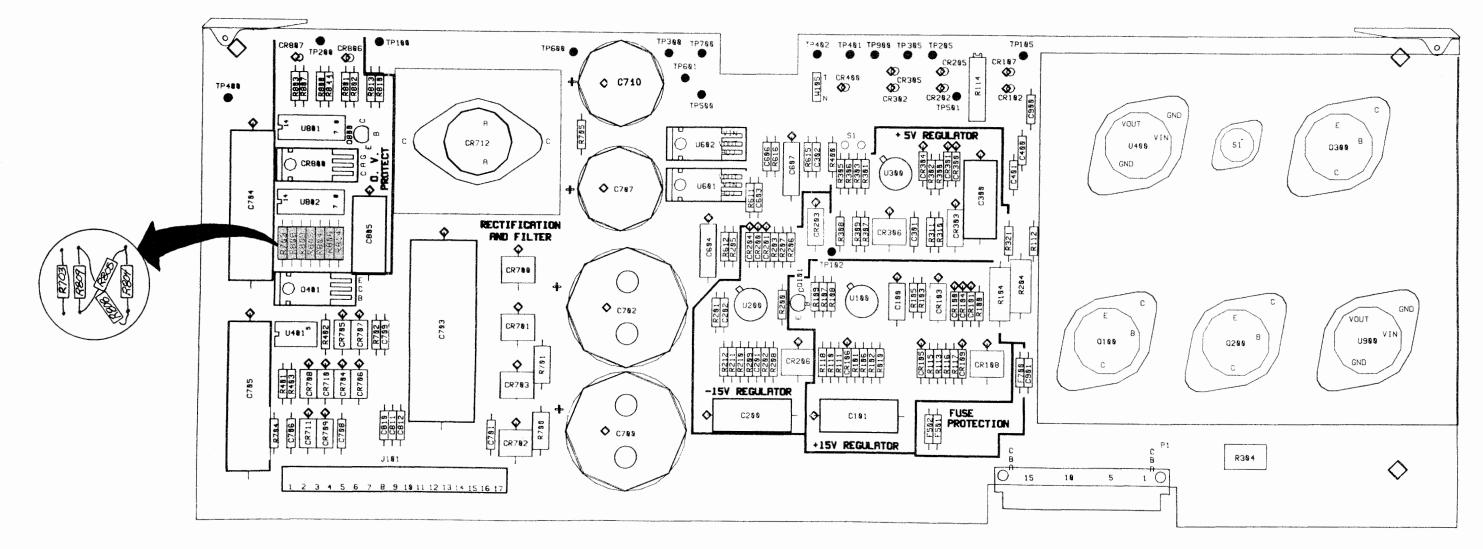
NOTE


After troubleshooting, be sure to move jumper W105 back to the "normal" position. If this is not done, the power supply does not go into standby when the STBY key is pressed.

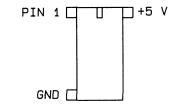
Refer to Table 6-15 for recommended post-repair adjustments.

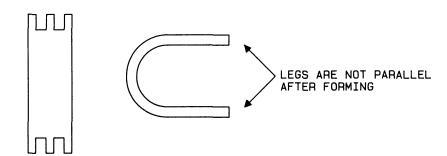

Table 6-60. Power Supply Voltage Levels

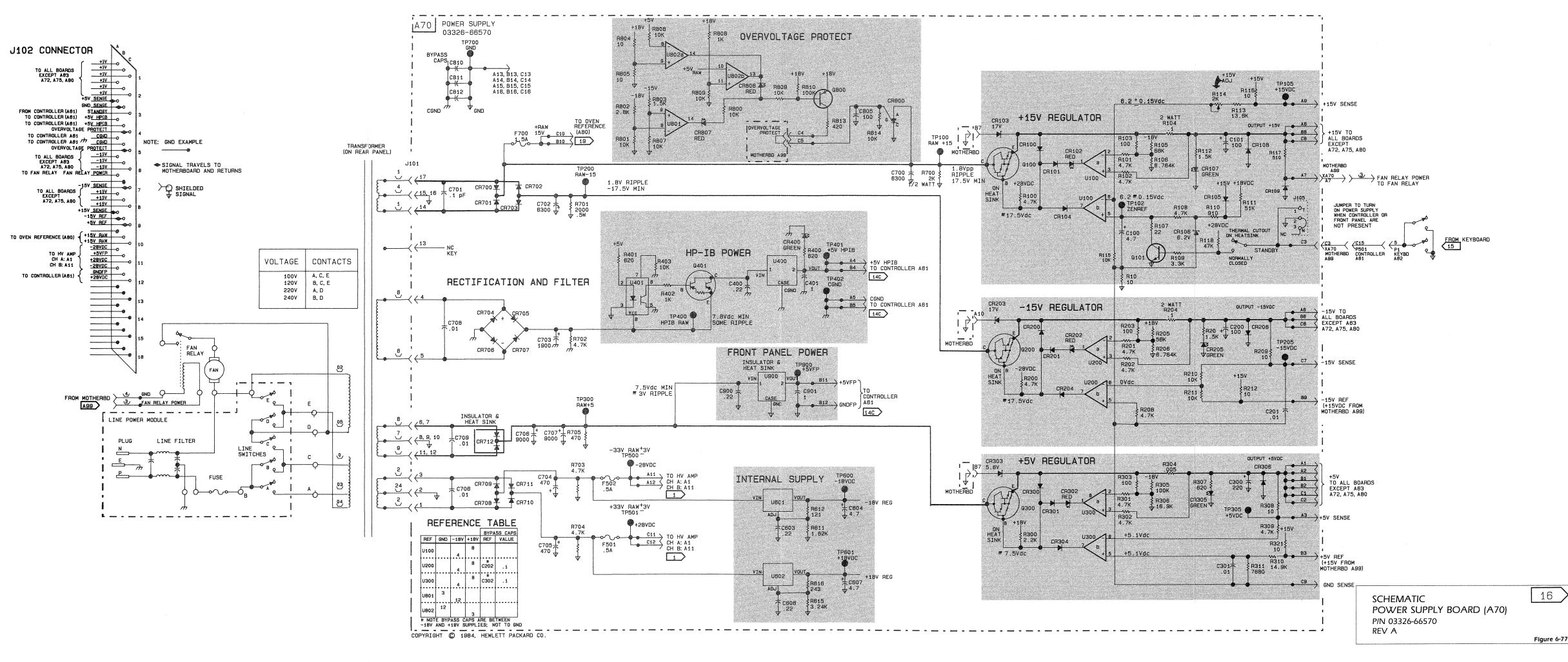
Supply Name	Output Location	Return Location	Nominal Voltage	Voltage Tolerance‡	Ripple Tolerance
+15V	TP105	GND (TP700) or card nests	+15.000 V	±0.010 V	50 μVrms
-15V	TP205	GND (TP700) or card nests	-15.000 V	±0.020 V	50 μVrms
+ 5V	TP305	CND (TP700) or card nests	+5.100 V	±0.060 V	75 μVrms
+ 5VFP	ТР900	GNDFP (use card nests)	+5.00 V	±0.25 V	
+5V HPIB	TP401	CGND (TP402) or chassis	+ 5.00 V	±0.25 V	
+ 28VDC	TP501	GND (TP700) or card nests	> 28.5 V		
- 28VDC	TP500	GND (TP700) or card nests	< -28.5 V		


The voltage levels and ripple tolerances are given for fully loaded supplies. All PC boards must be in the instrument. Removing individual boards will change the load on the supplies and change the supply levels.

SERVICE

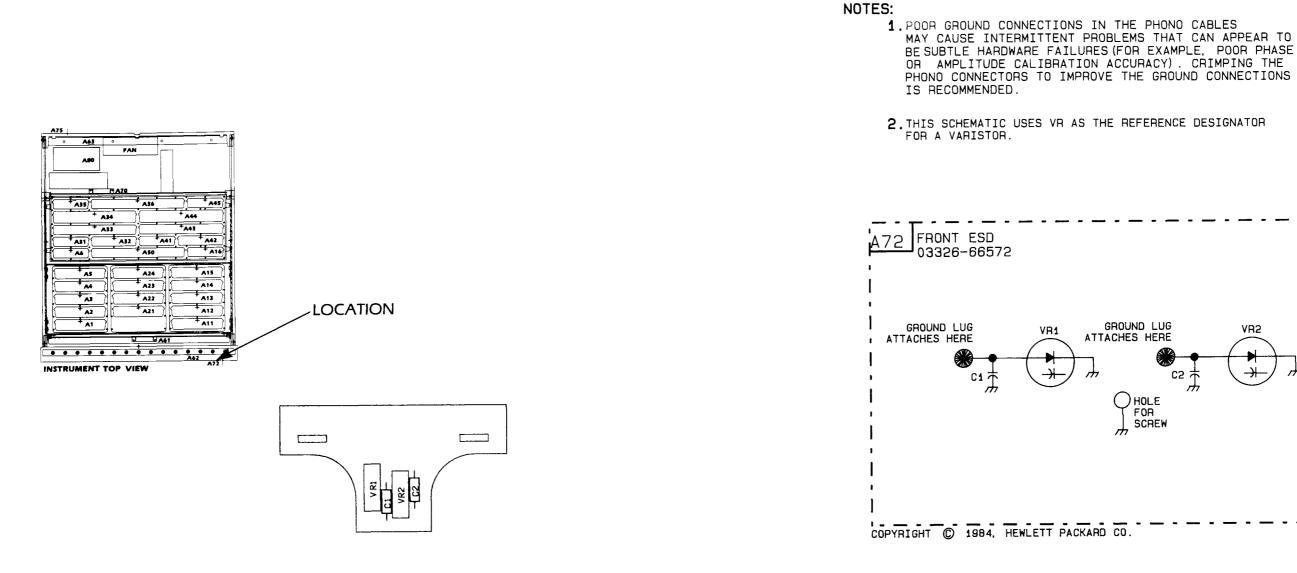

INSTRUMENT TOP VIEW


POWER SUPPLY BOARD (A70) P/N 03326-66570 rev a

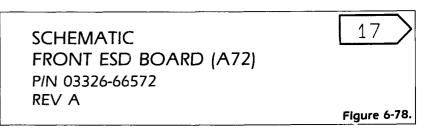

1. ALL INTEGRATED CIRCUITS ARE CORNER POWERED EXCEPT THOSE SHOWN IN THE REFERENCE TABLE.CORNER POWERED ICS HAVE GROUND CONNECTED TO THE LOWER LEFT PIN, AND +5 V CONNECTED TO THE UPPER RIGHT PIN. REGARDLESS OF THE TOTAL PIN COUNT (e.g., FOR A 16 PIN DIP, GROUND IS CONNECTED TO PIN 8 AND +5 V IS CONNECTED TO PIN 16).

2.INSTALLATION OF A70R34: R304 IS A FLAT PIECE OF METAL. IT MUST BE BENT TO FIT ONTO THE PC BOARD.

3. THIS SCHEMATIC USES CR AS THE REFERENCE DESIGNATOR FOR AN LED.

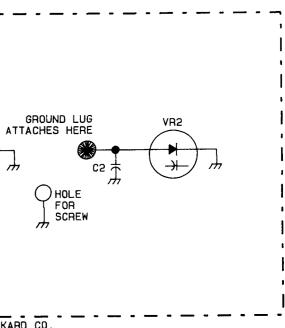


6-263

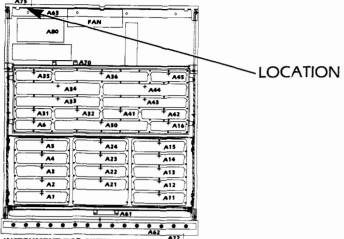


6-36 FRONT AND REAR ESD, A72 AND A75

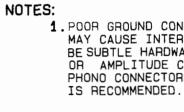
The front and rear panel electrostatic discharge (ESD) boards contain circuits which protect the instrument's internal circuitry from static electrical discharge to the front and rear panel connectors.

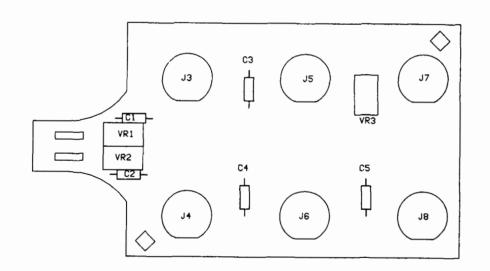


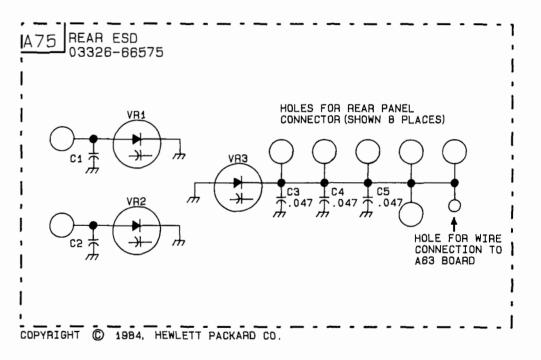
FRONT ESD BOARD (A72) P/N 03326-66572 REV A



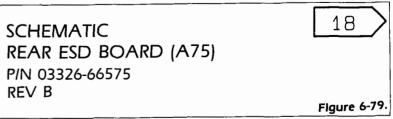
SERVICE


BE SUBTLE HARDWARE FAILURES (FOR EXAMPLE, POOR PHASE OR AMPLITUDE CALIBRATION ACCURACY). CRIMPING THE PHONO CONNECTORS TO IMPROVE THE GROUND CONNECTIONS




SERVICE

INSTRUMENT TOP VIEW


REAR ESD BOARD (A75) P/N 03326-66575 REV B

rev B

MODEL 3326A

1. POOR GROUND CONNECTIONS IN THE PHONO CABLES MAY CAUSE INTERMITTENT PROBLEMS THAT CAN APPEAR TO BE SUBTLE HARDWARE FAILURES (FOR EXAMPLE, POOR PHASE OR AMPLITUDE CALIBRATION ACCURACY). CRIMPING THE PHONO CONNECTORS TO IMPROVE THE GROUND CONNECTIONS

2.THIS SCHEMATIC USES VR AS THE REFERENCE DESIGNATOR FOR A VARISTOR.

6-37 OVEN REFERENCE, A80 (OPTION 001)

The information in this section should be used to isolate defective sub-blocks when servicing the HP 3326A. All procedures assume Fault Isolation to the Board Level has been used to determine which functional block (board) has failed.

Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltages and energy available at many points can, if contacted, result in personal injury.

CAUTION

Be sure that the power switch is in the STBY position before inserting or removing any circuit board. Power transients caused by insertion or removal may damage the circuit boards.

Theory of Operation

The oven reference board receives rectified power (+15V RAW) from the power supply (A70). This raw voltage is filtered by C100 and input to a +15 V regulator (U100). The +15 V regulator requires a heat sink to prevent its junction temperature from approaching 125°C. The regulated 15 volts then is used to power the high stability oven oscillator (U101), to bias Q100, and to provide a level for the resistive divider that establishes the fine tune frequency adjustment.

The crystal oven oscillator generates a highly stable, TTL level, 10 MHz output signal. The signal travels through a PNP emitter follower buffer, then is shaped into a sine wave by a 10 MHz low pass filter. The output signal travels through a phono cable to the rear panel output connector 10MHz OVEN OUT, OPTION 001.

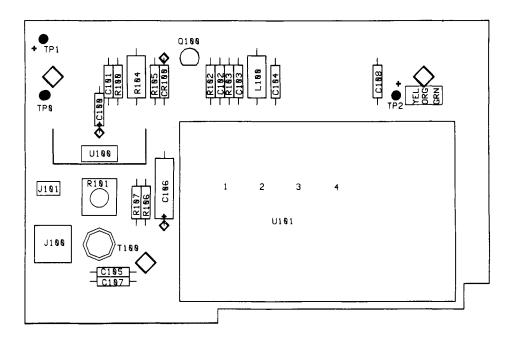
R105 makes the oven output resistance look like 50 Ω at 10MHz. C102 is used to ac couple the output and protect against dc overvoltage. J101 is used for board testing at the factory.

Coarse tuning of the output frequency is accomplished by removing the screw from the oven oscillator and turning the internal adjustment with a non-conductive tool. The frequency range of the adjustment is approximately 110 Hz. The frequency can be fine tuned by adjusting R101. This fine frequency adjustment changes the frequency by a minimum of 0.7 Hz to a maximum of 1.5 Hz.

Troubleshooting

This circuit may be analyzed by comparing the oscilloscope waveforms in Figure 6-80 with those of the defective unit. To access test points and signal lines, turn off the instrument, remove the power cord, and remove the bottom cover of the instrument. Turn on the instrument and probe the circuit side of the board. (Due to the positioning of the board, all test points cannot be accessed from the component side.)

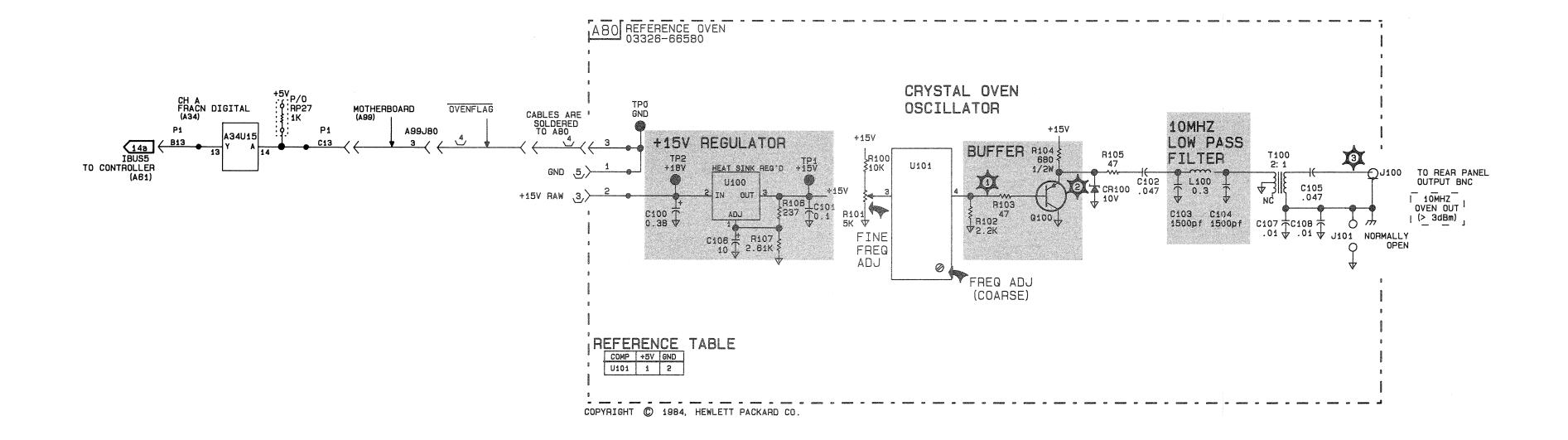
The most likely components to fail on this board are the regulator (U100) and the buffering transistor (Q100). In either case, there would be no output from the rear panel connector (10MHz OVEN OUT, OPTION 001).


HP 3326A SETUP **INSTR PRESET** Oscilloscope Setup (#1, #2, #3) 10:1 probet AC Ch 1 coupling 100 mV Ch 1 V/div Time/div 50 ns Trigger Ch 1 t Use a 10:1 probe with a ground spring (HP part number 1460-1476) when making high frequency measurements to minimize distortion.

Refer to Table 6-15 for recommended post-repair adjustments.

Figure 6-80. Oven Reference Board Waveforms

	LOCATION
+ A36 + A36 + A36 + A36 + A36 + A48 + A48	
$\begin{array}{c} & \mathbf{A}\mathbf{S} \\ & \mathbf{A}\mathbf{A}\mathbf{A} \\ & \mathbf{A}\mathbf{A} \\ & \mathbf{A} \\ & \mathbf$	


INSTRUMENT TOP VIEW

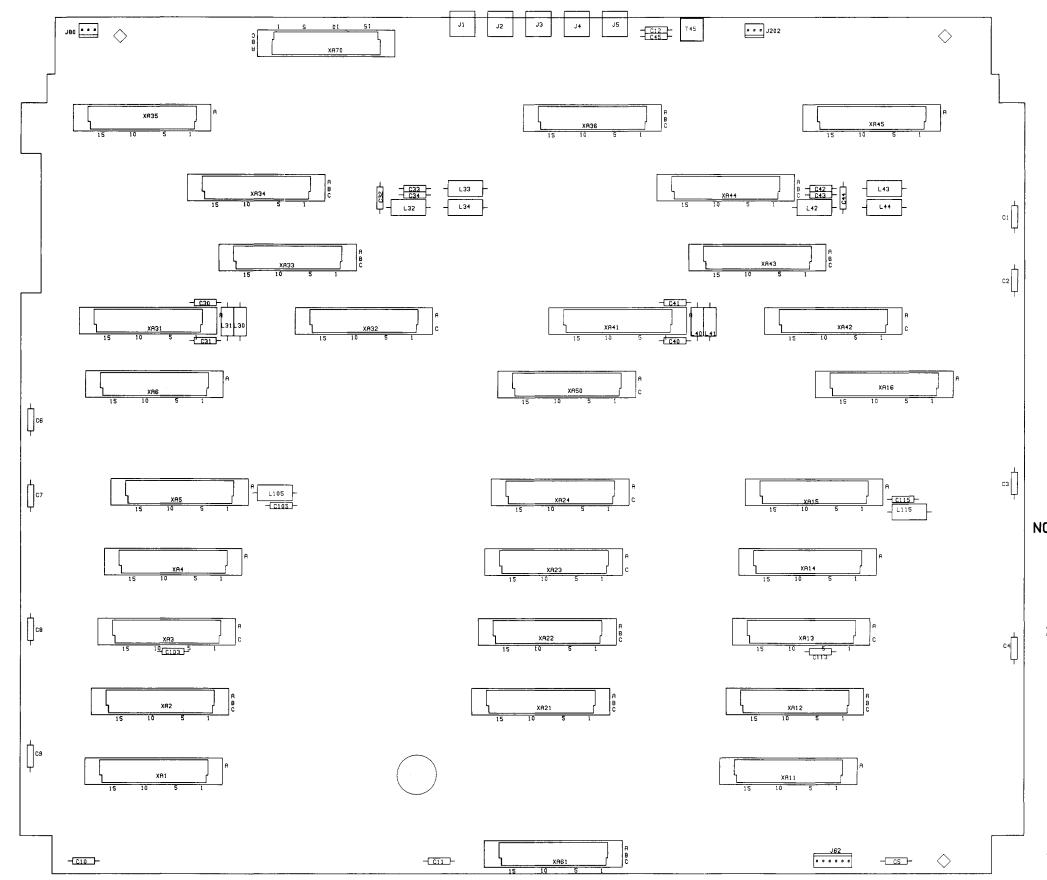
OVEN REFERENCE BOARD (A80) P/N 03326-66580 REV A

NOTES:

- 1. POOR GROUND CONNECTIONS IN THE PHONO CABLES MAY CAUSE INTERMITTENT PROBLEMS THAT CAN APPEAR TO BE SUBTLE HARDWARE FAILURES (FOR EXAMPLE, POOR PHASE OR AMPLITUDE CALIBRATION ACCURACY). CRIMPING THE PHONO CONNECTORS TO IMPROVE THE GROUND CONNECTIONS IS RECOMMENDED.
- 2.THE OVEN REFERENCE BOARD (A80, OPTION 001) IS MOST EASILY REMOVED FROM THE BOTTOM OF THE INSTRUMENT. TO REMOVE, REMOVE THE BOTTOM COVER AND THE SCREWS HOLDING THE BOARD IN PLACE. SLIP THE BOARD OUT FROM THE BOTTOM OF THE INSTRUMENT.

6-38 MOTHERBOARD, A99

The primary function of the motherboard is to interconnect many of the signals of the HP 3326A boards. In addition, the motherboard contains some power supply decoupling circuitry. These components are shown on the schematics for A21, A22, A31, A32, A33, A34, A41, A42, A43, A44, and A45. Capacitors C1 through C11 connect chassis ground (CGND) to the isolated ground (GND). See the component locator.

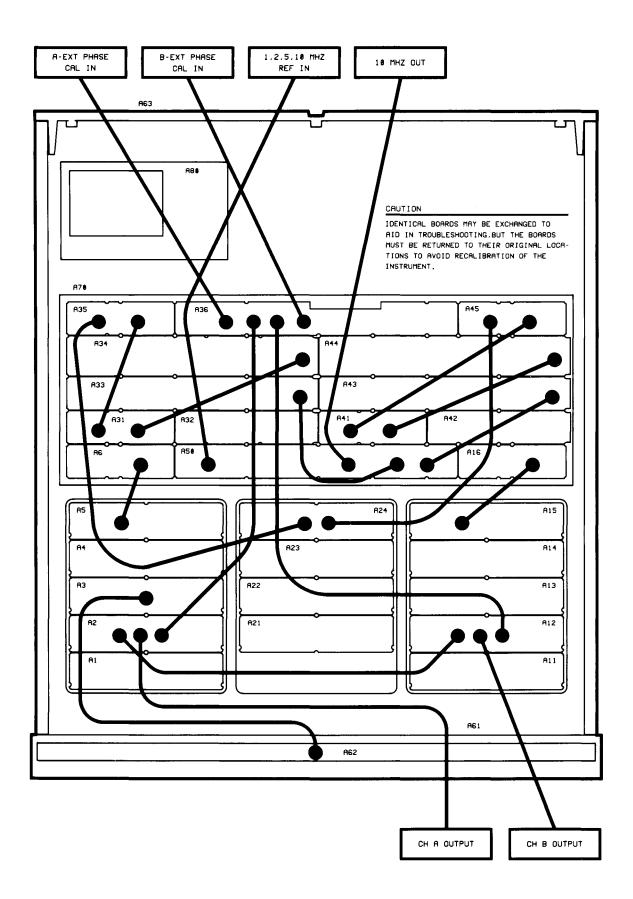

This circuit board contains no active or signal conditioning components. Several passive components are located on the board, however. All signal paths shown in the mother-board connector diagrams on the schematics can be checked for continuity by using an ohmmeter.

Service procedures described in this section are performed with the protective covers removed and power applied. Hazardous voltages and energy available at many points can, if contacted, result in personal injury.

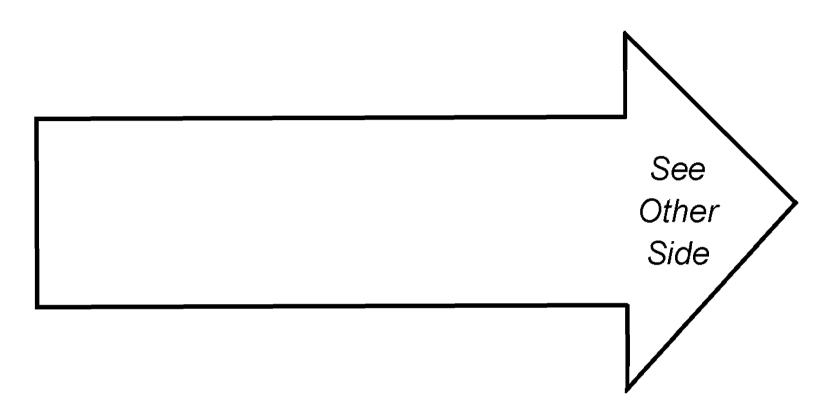
CAUTION

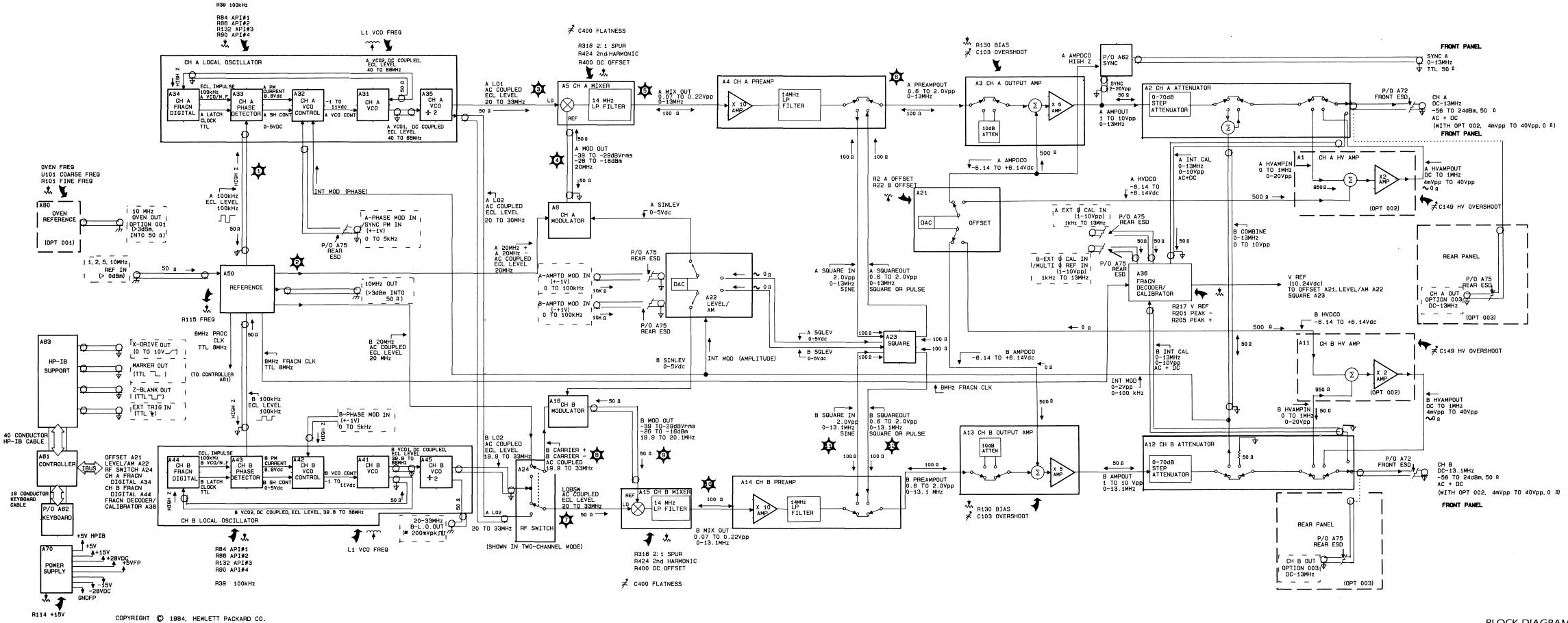
Be sure that the power switch is in the STBY position before inserting or removing any circuit board. Power transients caused by insertion or removal may damage the circuit boards.

NOTES:


- 1. POOR GROUND CONNECTIONS IN THE PHONO CABLES MAY CAUSE INTERMITTENT PROBLEMS THAT CAN APPEAR TO BE SUBTLE HARDWARE FAILURES (FOR EXAMPLE, POOR PHASE OR AMPLITUDE CALIBRATION ACCURACY). CRIMPING THE PHONO CONNECTORS TO IMPROVE THE GROUND CONNECTIONS IS RECOMMENDED.
- 2.MOST OF THE TWO-PIECE CONNECTORS ON THE MOTHERBOARD AND DAUGHTER BOARDS HAVE CONSISTENT POWER SUPPLY LINES. THE +5 V LINES ARE ON PINS A1, B1, AND C1. THE +15 V LINES ARE ON PINS A2, B2 AND C2. THE -15 V LINES ARE ON PINS A3, B3 AND C3. THE POWER SUPPLY (A70) AND THE CONTROLLER (A61) ARE EXCEPTIONS. SEE THE SCHEMATICS FOR THE DETAILS.

MOTHERBOARD (A99) P/N 03326-66599 REV B


Schematic Number CH A	Board Number		Decard Manua	tip paul Namban	
	СН А	СНВ	Common	Board Name	HP Part Number
1.	A1	A11		HV Ampt	03326-66501
2a.	A2			Attenuator	03326-66502
2b.		A12		Attenuator	03326-66512
3.	A3	A13		Output Amp	03326-66503
4.	A4	A14		Preamp	03326-66504
5.	A5	A15		Mixer	03326-66505
6.	A6	A16		Modulator	03326-66506
7.			A21	Offset	03326-66521
8.			A22	Level/AM	03326-66522
9.			A23	Square	03326-66523
10.			A24	RF Switch	03326-66524
11a.	A31	A41		VCO	03326-66531
11b.	A32	A42		VCO Control	03326-66532
11c.	A33	A43		Phase Detector	03326-66533
11d.	A34	A44		FracN Digital	03326-66534
11e.	A35	A45		VCO ÷ 2	03326-66535
11f.			P/O A36	FracN Decoder	03326-66536
12.			P/O A36	Calibrator	03326-66536
13.			A50	Reference	03326-66550
14a.			A61	Controller	03326-66561
14b.			A61	Controller	03326-66561
14c.			A61	Controller	03326-66561
			A63	HP-IB Support	03326-66563
15.			A62	Keyboard	03326-66562
16.			A70	Power Supply	03326-66570
17.			A72	Front ESD	03326-66572
18.			A75	Rear ESD	03326-66575
19.			A80	Oven Reference‡	03326-66580
_			A99	Motherboard	03326-66599


Table 6-61. PC Board Cross Reference

† Option 002 only.‡ Option 001 only.

OVERALL BLOCK DIAGRAM

NOTES:

4.

- 1. POOR GROUND CONNECTIONS IN THE PHONO CABLES MAY CAUSE INTERMITTENT PROBLEMS THAT CAN APPEAR TO BE SUBTLE HARDWARE FAILURES (FOR EXAMPLE, POOR PHASE OR AMPLITUDE CALIBRATION ACCURACY). CRIMPING THE PHONO CONNECTORS TO IMPROVE THE GROUND CONNECTIONS IS RECOMMENDED.
- 2.MOST OF THE TWO-PIECE CONNECTORS ON THE MOTHERBOARD AND DAUGHTER BOARDS HAVE CONSISTENT POWER SUPPLY LINES. THE +5 V LINES ARE ON PINS A1, B1, AND C1. THE +15 V LINES ARE ON PINS A2, B2 AND C2. THE -15 V LINES ARE ON PINS A3, B3 AND C3. THE POWER SUPPLY (A70) AND THE CONTROLLER (A61) ARE EXCEPTIONS. SEE THE SCHEMATICS FOR THE DETAILS.
- **3.** THE IDENTICAL BOARDS IN THIS INSTRUMENT (i.e., THE BOARDS WITH IDENTICAL TOP COVERS) MAY BE INTERCHANGED FOR TROUBLESHOOTING PURPOSES. THE BOARDS MUST BE RETURNED TO THEIR ORIGINAL LOCATIONS TO AVOID RECALIBRATION OF THE INSTRUMENT.

CAUTION

BEFORE INTERCHANGING BOARDS, BE SURE THAT THE CORRECT VOLTAGES ARE BEING SENT TO THE BOARD. WHEN A BOARD FAILURE IS CAUSED BY INCORRECT VOLTAGES POWERING THE BOARD, INTERCHANGING BOARDS WILL ONLY RESULT IN A FAILURE OF THE SECOND BOARD.

CAUTION

TTL, EMITTER COUPLED LOGIC (ECL), TTL COMPATIBLE NMOS LOGIC, AND TTL COMPATIBLE CMOS LOGIC DEVICES ARE USED IN THIS INSTRUMENT.

USE THE APPROPRIATE PRECAUTIONS WHEN REMOVING HANDLING, AND INSTALLING ALL STATIC SENSITIVE COMPONENTS TO AVOID DAMAGE.

BLOCK DIAGRAM OVERALL

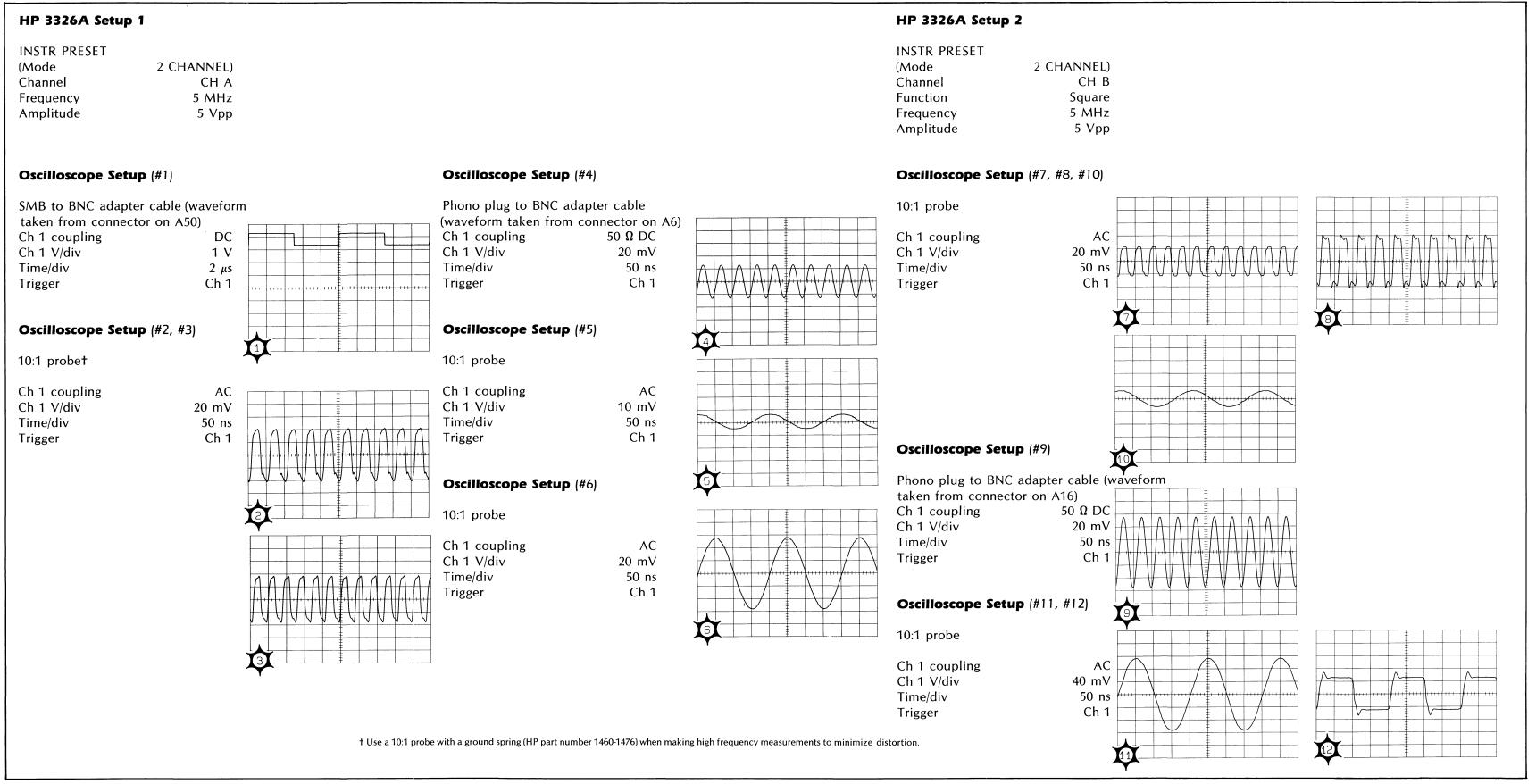
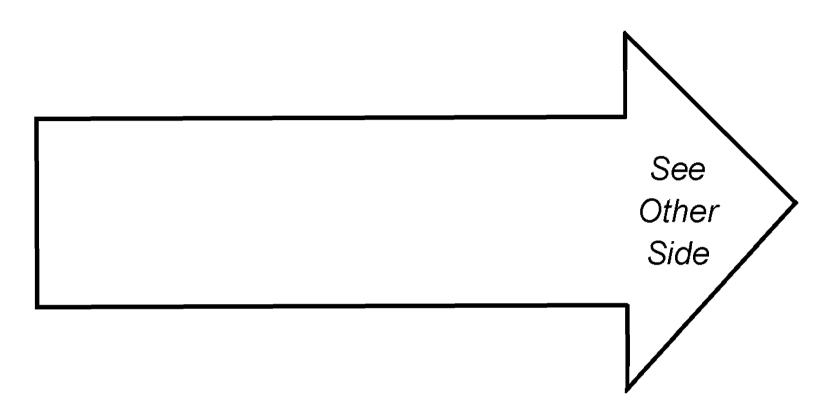
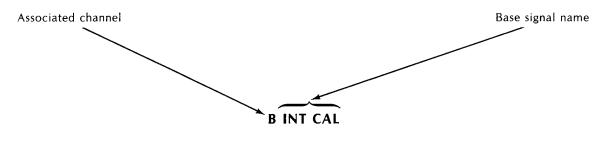
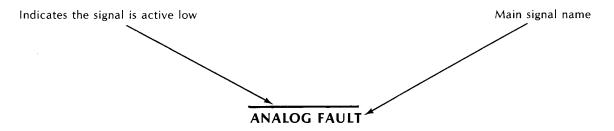



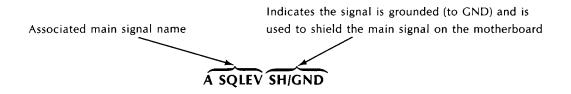
Figure 6-84. Overall Block Diagram Waveforms

APPENDIX A GLOSSARY OF SIGNAL NAMES


.


APPENDIX A GLOSSARY OF SIGNAL NAMES

The following is a list of all signals used in the HP 3326A that travel between printed circuit boards. Active low signals are indicated by bars over the signal name. There are no bars present on active high signals. The motherboard has many of the signal names marked on the connectors to help you locate the signals.


All main signal names have the form:

All active low control signals have the form:

There is a group of grounded signals used to shield the main analog signals as they travel from one destination to another on the motherboard (A99). These signal names have the form:

+15 V (regulated +15 Volt supply) A regulated +15 V supply generated by the power supply (A70). Used in all boards except the front ESD board (A72), the rear ESD board (A75) and the oven reference board (A80).

+ 15V RAW (RAW, unregulated + 15 V supply) Originates on the power supply (A70) and travels to the oven reference (A80, Option 001) via the three conductor cable on the motherboard. Provides unregulated power to the oven reference. The level of the signal is approximately + 18 V.

ł

+15V SENSE (+15 Volt SENSing signal) + 15 V signal from the motherboard. Used as a remote sense line for the +15 V supply on the power supply board (A70).

+ **28VDC** (unregulated + 28 Vdc supply) Generated by the power supply (A70). Used on the channel A and channel B high voltage amplifiers (A1 and A11, Option 002).

+5V (regulated +5 Volt supply) A highly regulated +5 V supply generated by the power supply (A70). Used by all the boards in the instrument except the HP-IB support board (A63), the front ESD board (A72), the rear ESD board (A75) and the oven reference board (A80, Option 001).

+ 5VFP (regulated + 5 Volt Front Panel supply) The + 5 V signal to the keyboard (A62), generated by the power supply (A70). This signal is separate from the + 5V supply to guarantee that the display scan frequency components do not degenerate the main supply. + 5VFP travels to the keyboard via the controller board (A61).

+ **5V HPIB** (regulated + 5 Volt HP-IB supply) A + 5 V supply generated by the power supply (A70). Used to power the HP-IB interface circuitry on the controller board (A61).

+ 5V REF (+5 Volt REFerence signal) + 15 V signal from the motherboard. Used as a voltage reference for the +5 V supply on the power supply board (A70).

+5V SENSE (+5 Volt SENSing signal) + 5 V signal from the motherboard. Used as a remote sense line for the +5 V supply on the power supply board (A70).

-15V (regulated -15 Volt supply) Generated by the power supply (A70). Used by all the boards in the instrument except the HP-IB support board (A63), the front ESD board (A72), the rear ESD board (A75) and the oven reference board (A80, Option 001).

-15V REF (-15 Volt REFerence signal) + 15 V signal from the motherboard. Used as the voltage reference for the -15 V supply on the power supply board (A70).

-15V SENSE (-15 Volt SENSing signal) -15 V from the motherboard. Used as a remote sense line for the -15 V supply on the power supply board (A70).

-28VDC (unregulated -28 Vdc supply) Generated by the power supply (A70). Used on the channel A and channel B high voltage amplifiers (A1 and A11, Option 002).

10MHz OUT (> 3dBm) \ddagger (10 MHz rear panel OUTput) Clean, 10 MHz rear panel output generated on the reference board (A50). Runs to the rear panel connector. Amplitude range is nominally 3 dBm into 50 ohms. The shield of the connector is tied to CGND. See specifications for details.

10MHz OVEN OUT, OPTION 001 (>3dBm) ‡ (10 MHz OVEN reference rear panel OUTput) Very accurate 10 MHz output signal from the oven reference (A80) to the rear panel output connector (when the high stability frequency reference (Option 001) is in place). Used to provide a stable input (1,2,5,10 MHz REF IN) to lock the HP 3326A's frequency reference (A50). See specifications for details. The shield of the connector is tied to CGND.

1,2,5,10MHz REF IN (>0dBm) **‡** (external REFerence INput) Input to the reference (A50) from the rear panel. Used to control the internal reference oscillator frequency. The external reference level must be greater than 0 dBm into 50Ω . The frequency must be within 20 ppm of an integer sub-harmonic of 20 MHz. The shield of the connector is tied to CGND.

20-33MHz B-L.O. OUT (\cong **200 mVpk**) † ‡ (20 to 33 MHz channel B Local Oscillator rear panel OUTput) ECL level, ac coupled. The frequency is offset from the front panel frequency by 20 MHz. Overload protection is provided. The signal is generated on the channel B VCO \div 2 board (A45) and sent through a transformer to reduce ground current loops before being routed to the rear panel. The shield of the connector is tied to CGND.

8MHz FRACN CLK † (8 MHz fractional-N local oscillator CLocK) An 8 MHz TTL level clock generated by the reference board (A50) and used by the fractional-N decoder board (P/O A36) for programming frequencies and sweeps.

8MHz FRACN CLK SH/GND ★ (8 MHz fractional-N local oscillator CLocK SHield/GrouND)

8MHz PROC CLK † (8 MHz PROCessor CLocK) An 8 MHz TTL level clock generated by the reference board (A50). Used by the controller (A61) as the clock signal for the microprocessor.

8MHz PROC CLK SH/GND ★ (8 MHz PROCessor CLocK SHield/GrouND)

A 100kHz ‡ (channel A 100 kHz reference) 100 kHz, ECL level square wave originating on the reference board (A50) and terminating on the channel A phase detector (A33). Used as the channel A local oscillator's reference signal.

A 10dB (channel A 10 dB attenuator control) This TTL signal from the offset board (A21), when high, drives the relay which engages the 10 dB pad on the channel A attenuator board (A2).

A 20dB (channel A 20 dB attenuator control) This TTL signal from the offset board (A21), when high, drives the relay which engages the 20 dB pad on the channel A attenuator board (A2).

A 20MHz +, **A 20MHz** – \dagger (channel A 20 MHz reference) Differential 20 MHz reference signal generated on the reference board (A50). Used as an input to the channel A modulator (A6). ECL level, ac coupled, 50 Ω input.

A 20MHz SH/GND ★ (channel A 20 MHz reference SHield/GrouND)

† Ground (GND) traces shield the signal trace on the motherboard. These ground traces are denoted by a "SH/GND" (SHield/GrouND) after the main signal name. See the introduction to this glossary for an example.

 $[\]star$ The signal is grounded (to GND) and is used to shield the main signal on the motherboard. See the introduction to this glossary for an example.

A2FLAG (channel A attenuator (A2) FLAG) TTL level. A low signal indicates to the processor that the channel A attenuator is inserted correctly in the channel A card nest. The signal runs from the channel A attenuator (A2) to the channel A fractional-N digital board (A44), where it is placed on the instrument bus and sent to the controller (A61). An error message is displayed when the $\overrightarrow{A2FLAG}$ signal is high (indicating the correct attenuator board is not in the channel A card nest or there is no board in the card nest).

A 40dB (channel A 40 dB attenuator control) When high, this TTL signal from the offset board (A21) drives the relay which engages the 40 dB pad on the channel A attenuator board (A2).

A A + B (channel A and channel B combiner control) When high, this TTL signal from the offset board (A21) engages the combiner relay on the channel A attenuator board (A2). The channel B output signal from the channel B attenuator is summed with the channel A output signal on the channel A attenuator board. Both signals are present on the channel A front panel output connector (CH A).

A AMPDCO t (channel A output AMPlifier DC Offset) Generated by a DAC and a current-to-voltage converter on the offset board (A21). Provides dc offset voltage to the instrument at the channel A output amplifier (A3). Summed with the primary RF signal at the amplifier input. Voltage range is -6.14 to +6.14 Vdc. When the high voltage option is activated, this signal is renamed A HVDCO and routed through the high voltage amplifier (A1, Option 002). Also used to provide a dc signal for the SYNC circuit on the keyboard (A62). It is sent to this circuit through cables on the controller (A61).

A AMPDCO SH/GND ★ (channel A output AMPlifier DC Offset SHield/GrouND)

A AMPOUT † (channel A output AMPlifier OUTput) Primary RF signal from the channel A output amplifier (A3) to the channel A attenuator (A2). Voltage range is 1 to 10 Vpp (unloaded). Frequency range is 0 to 13 MHz. Characteristic impedance of the line is 50 Ω .

A AMPOUT SH/GND ★ (channel A output AMPlifier OUTput SHield/GrouND)

A AMPTD MOD IN (± 1V) t ‡ (channel A external AMPliTuDe MODulation INput) Rear panel input to the level/AM board (A22). Used to amplitude modulate channel A. Level range is ± 1 V. Frequency range is 0 to 100 kHz. A 0 V signal produces 0% modulation. A dc or instantaneous input of +1 V produces 100% modulation. A -1 V signal reduces the un-modulated level by 100%, resulting in a 0 V output.

A AMPTD MOD IN SH/GND ★ (channel A external AMPliTuDe MODulation INput SHield/GrouND)

A API1 (channel A API #1 control) TTL level control line. Originates on the channel A fractional-N digital board (A34) and terminates on the channel A phase detector board (A33). A low level turns on the API #1 current correction source.

 \star The signal is grounded (to GND) and is used to shield the main signal on the motherboard. See the introduction to this glossary for an example.

† Ground (GND) traces shield the signal trace on the motherboard. These ground traces are denoted by a "SH/GND" (SHield/GrouND) after the main signal name. See the introduction to this glossary for an example.

A API2 (channel A API #2 control) TTL level control line. Originates on the channel A fractional-N digital board (A34) and terminates on the channel A phase detector board (A33). A low level turns on the API #2 current correction source.

A API3 (channel A API #3 control) TTL level control line. Originates on the channel A fractional-N digital board (A34) and terminates on the channel A phase detector board (A33). A low level turns on the API #3 current correction source.

A API4 (channel A API #4 control) TTL level control line. Originates on the channel A fractional-N digital board (A34) and terminates on the channel A phase detector board (A33). A low level turns on the API #4 current correction source.

A API5 (channel A API #5 control) TTL level control line. Originates on the channel A fractional-N digital board (A34) and terminates on the channel A phase detector board (A33). A low level turns on the API #5 current correction source.

A BIAS (channel A fractional-N local oscillator BIAS control) When low, this TTL level signal from the channel A fractional-N digital board (A34) turns on the bias, which discharges the integrator on the channel A phase detector board (A33).

A CAL (channel A CALibration) When low, this TTL signal from the offset board (A21) engages a relay on the channel A attenuator board (A2) which routes the attenuator's output signal to the calibrator board (P/O A36) for internal amplitude and phase calibration.

A COMPAR ENABLE (channel A COMPARator ENABLE) TTL level signal generated on the level/AM board (A22). Used to enable the comparators on the square board (A23). Active high.

A DATA (channel A DATA strobe) TTL level strobe from the fractional-N decoder board (P/O A36) whose positive edge indicates data is valid at the fractional-N IC. Signal terminates on the channel A fractional-N digital board (A34).

A DATA OUT (channel A DATA strobe OUT) TTL level strobe from the fractional-N decoder board (P/O A36) which enables the tri-state buffer (A34U15) when reading from the fractional-N digital board (A34). This line also clears the VCO unlocked flag (A VCOF).

ADD STROBE (ADDress STROBE) TTL level strobe from the controller (A61) to the fractional-N decoder board (P/O A36), the offset board (A21) and the level/AM board (A22). The signal is normally high and strobes when the microprocessor is writing an address to the instrument bus. The address placed on the bus is latched by all boards attached to the bus on the falling edge of the signal.

A DLBC (channel A DeLayed Bias Clock) 100 kHz pulse waveform. TTL level. Active low. Originates on the channel A fractional-N digital board (A34) and terminates on the calibrator/fractional-N decoder board (A36). Used by the fractional-N decoder to synchronize writing instructions to the two local oscillators. Used by the calibrator to clock the ADC.

A-EXT ϕ **CAL IN (1-10Vpp)** \ddagger (channel A EXTernal phase CALibration INput) Rear panel input to the calibrator (P/O A36). Used for external phase calibration in the two-phase mode only, with the square or sine functions. Input frequency range is 1 kHz to 13 MHz. Input voltage range is 1 to 10 Vpp. Requires 50% duty cycle. Fuse protected.

A HI-VOLT (channel A HIgh VOLTage option) When high, this TTL line from the offset board (A21) activates the relay on the channel A attenuator board (A2), which routes the output signal through the channel A high voltage amplifier (A1, Option 002).

A HVAMPIN † (channel A High Voltage AMPlifier INput) The primary RF signal from the channel A attenuator (A2) that is routed to the input of the channel A high voltage amplifier (A1, Option 002) when the high voltage option is activated. Voltage range is 0 to 20 Vpp. Frequency range is 0 to 1 MHz. Signal has 950 Ω of input impedance looking into the channel A high voltage amplifier (A1). The amplifier has a gain of two times the HVAMPIN signal level (four times the 50 Ω loaded level).

A HVAMPIN SH/GND ★ (channel A High Voltage AMPlifier INput SHield/GrouND)

A HVAMPOUT † (channel A High Voltage AMPlifier OUTput) Originates on the channel A high voltage amplifier (A1, Option 002) and terminates on the channel A attenuator (A2). Carries the main RF signal. Used only when the high voltage option is activated. Voltage range is 4 mVpp to 40 Vpp. Frequency range is dc to 1 MHz. Approximately 0 Ω output resistance.

A HVAMPOUT SH/GND ★ (channel A High Voltage AMPlifier OUTput SHield/GrouND)

A HVDCO † (channel A High Voltage amplifier DC Offset) Generated by a DAC and a current-to-voltage converter on the offset board (A21). Provides dc offset voltage to the instrument at the channel A high voltage amplifier (A1). A HVDCO is summed with A HVAM-PIN at the virtual ground point of the amplifier. Voltage range is -6.14 Vdc to +6.14 Vdc. The amplifier multiplies the offset by four. Input resistance is 499 Ω .

A HVDCO SH/GND ★ (channel A High Voltage amplifier DC Offset SHield/GrouND)

A HVOVLD (channel A High Voltage OVerLoaD) TTL compatible logic signal from the overload detection comparators of the channel A high voltage amplifier (A1, Option 002). A low signal indicates a current or voltage overload condition at the high voltage amplifier output. Signal terminates at the channel A attenuator (A2), which alerts the microprocessor (A61) when an overload has occurred. See A OVLD.

A INT CAL ‡ (channel An Internal CALibration) RF output signal from the channel A attenuator (A2) which runs to the calibrator board (P/O A36) for internal amplitude (ac and dc) and phase calibration. Used when internal phase or amplitude calibrations are performed. Characteristic impedance of the line is 50 Ω . Frequency range is 0 to 13 MHz. Voltage range is 0 to 10 Vpp (terminated into the calibrator board).

A INV (channel A INstruction Valid) Normally high, TTL level strobe used to clock instructions to the fractional-N IC. Positive edge triggered. (The signal is negative edge triggered at A34TP14.) Originates on the fractional-N decoder board (P/O A36) and terminates on the channel A fractional-N digital board (A34).

 $[\]star$ The signal is grounded (to GND) and is used to shield the main signal on the motherboard. See the introduction to this glossary for an example.

[†] Ground (GND) traces shield the signal trace on the motherboard. These ground traces are denoted by a "SH/GND" (SHield/GrouND) after the main signal name. See the introduction to this glossary for an example.

A IOVLD (channel A current OVerLoaD) TTL compatible logic signal from the current overload comparators of the channel A output amplifier (A3). A low signal indicates a current overload condition in the output stage of the amplifier. Signal terminates at the channel A attenuator (A2), which signals the microprocessor (A61) when an overload has occurred. See A OVLD.

A LATCH CLOCK † (channel A LATCH CLOCK) TTL level clock generated on the channel A fractional-N digital board (A34). Used on the channel A phase detector board (A33) to re-clock the bias and API signals.

A LATCHCLOCK SH/GND ★ (channel A LATCH CLOCK SHield/GrouND)

A LO1 + (channel A Local Oscillator 1) Input to the channel A mixer (A5) from the channel A local oscillator (VCO \div 2, A35). 20 to 33 MHz, ECL compatible, \pm 0.5 Vpp. Input impedance is 50 ohms, ac coupled.

A LO1 SH/GND ★ (channel A Local Oscillator 1 SHield/GrouND)

A LO2 ‡ (channel A Local Oscillator 2) 20 to 33 MHz, ECL level, ac coupled. Runs through a cable from the channel A VCO \div 2 board (A35) to the RF switch (A24). This primary RF signal is the input to the local oscillator port of the channel B mixer (A15) in the two-tone, two-phase, and pulse modes. In these modes, the channel B local oscillator provides the input to the reference port of the channel B mixer. A LO2 is disabled in the two-channel mode.

A MIX OUT † (channel A MIXer OUTput) Primary RF sine wave signal originating at the output of the channel A mixer (A5) and the 14 MHz lowpass filter (located on the mixer board) and terminating at the input of the channel A preamplifier (A4). Possible amplitude modulation of 100 kHz maximum. Voltage range is approximately 0.07 to 0.22 Vpp. Frequency range is 0 to 13 MHz. Expects 100 Ω termination.

A MIX OUT SH/GND ★ (channel A MIXer OUTput SHield/GrouND)

A MOD OUT ‡ (channel A MODulator OUTput) Input to the channel A mixer (A5) from the output of the channel A modulator (A6) and the half filter (20 MHz bandpass) located on the modulator board. 20 MHz carrier with possible AM of 100 kHz maximum. Voltage range is approximately -39 to -29 dBVrms (-26 to -16 dBm). Should be terminated in 50 ohms.

ANALOG FAULT (ANALOG circuitry FAULT) This TTL level input to the controller board (A61) is the logical OR of the individual circuit faults detected on the offset board (A21), channel A VCO control (A32), and channel B VCO control (A42). A low signal indicates a fault has occurred. The VCO control boards use this line to signal an unlocked local oscillator. The offset board uses this line to signal an overload condition. To determine the source of the problem, each of the boards must be interrogated via the instrument bus (IBUS0-7). ANALOG FAULT is available to the microprocessor on status register, bit D5.

 \star The signal is grounded (to GND) and is used to shield the main signal on the motherboard. See the introduction to this glossary for an example.

t Ground (GND) traces shield the signal trace on the motherboard. These ground traces are denoted by a "SH/GND" (SHield/GrouND) after the main signal name. See the introduction to this glossary for an example.

A OVLD (channel A OVerLoaD) When low, this TTL logic signal from the channel A attenuator (A2) to the offset board (A21) indicates that an overload condition has occurred somewhere in the instrument. The offset board signals the controller (A61) by pulling the ANALOG FAULT line low.

A PHASE MOD IN SH/GND ★ (channel A external PHASE MODulation rear panel INput SHield/GrouND)

A-PHASE MOD IN/SYNC PM IN ($\pm 1V$) † ‡ (channel A external PHASE MODulation rear panel INput/SYNC Phase Modulation INput) Input to the channel A VCO control board (A32). Used to phase modulate the channel A local oscillator. Voltage range is ± 1 V. Frequency range is 0 to 5 kHz. Input signals of ± 1 V correspond to $\pm 360^{\circ}$, respectively.

A PMC (channel A Phase Modulation Control) Originates on the fractional-N decoder board (P/O A36). Terminates on the channel A phase detector board (A33) and the channel A VCO control board (A32). When low, this TTL level signal indicates that no phase modulation is desired. When high, this signal activates the phase modulation circuitry.

A PMCAL (channel A Phase Modulation CALibration) Originates on the fractional-N decoder board (P/O A36). Terminates on the channel A VCO control board (A32). Active low. This line is shorted to ground to permit an internal phase modulation calibration to take place.

A PMCURRENT (channel A Phase Modulation CURRENT) Terminates on the channel A phase detector board (A33). Originates on the channel A VCO control board (A32). Signal is +15 Vdc when phase modulation is off, and +8.8 Vdc when phase modulation is on.

A PMS (channel A Phase Modulation Select) Originates on the fractional-N decoder board (P/O A36). Terminates on the channel A VCO control board (A32). When low, this TTL level indicates internal phase modulation is programmed. When high, this signal indicates external phase modulation is programmed.

A PRE10dB (channel A PRE-10 dB attenuator control) TTL logic line from the offset board (A21) to the channel A output amplifier (A3) which engages the 10 dB attenuation pad when the signal is high. (The level table in the attenuator repair sub-section lists the ranges when the pad is activated.)

A PREAMPOUT t (channel A PREAMPlifier OUTput) Primary RF output signal originating on the channel A preamplifier (A4) and terminating at the relay for the pre-10 dB pad on the channel A output amplifier (A3). Signal may be either a sine wave or a square wave, depending on the position of the relay on the preamplifier (A4K101). In the normal relay position, the main RF signal is a sine wave and travels directly to the output of the preamplifier board. When the square function or the pulse mode is activated, the relay is set and the output is diverted to the square board (A23) and returned to the preamplifier board as a square wave. The characteristic impedance of the line is 100 Ω . The voltage range is 0.6 to 2.0 Vpp when loaded. The frequency range is 0 to 13 MHz.

 \star The signal is grounded (to GND) and is used to shield the main signal on the motherboard. See the introduction to this glossary for an example.

† Ground (GND) traces shield the signal trace on the motherboard. These ground traces are denoted by a "SH/GND" (SHield/GrouND) after the main signal name. See the introduction to this glossary for an example.

A PREAMPOUT SH/GND ★ (channel A PREAMPlifier OUTput SHield/GrouND)

A PROTECTCLEAR (channel A PROTECT mode CLEAR) When low, this TTL logic signal from the offset board (A21) to the channel A attenuator board (A2) resets the overload protection latch and disables the protect mode. Normal operation is restored.

A SH CONT † (channel A Sample and Hold CONTrol voltage) Originates on the channel A phase detector board (A33). Terminates on the channel A VCO control board (A32). Used to control the VCO frequency. Voltage range is 0 to 5 V. A 0 V level corresponds to approximately 66 MHz on A VCO1 and A VCO2; a 5 V level corresponds to approximately 40 MHz.

A SH CONT SH/GND ★ (channel A Sample and Hold CQNTrol voltage SHield/GrouND)

A S-H TRIG (channel A Sample and Hold TRIGger) When high, this TTL level signal from the channel A fractional-N digital board (A34) triggers the channel A phase detector (A33) to sample the integrator output.

A SIN (channel A SINe wave function) TTL level signal from the level/AM board (A22) to the channel A preamplifier (A4). Low level indicates a sine wave ws programmed and the main signal is directed to the channel A output amplifier (A3). High level indicates a square wave was programmed and the signal is directed to the square board (A23).

A SINLEV t (channel A SINe wave LEVel) Generated by the level/AM board (A22). Amplitude control input (0 to 5 Vdc) and AM input (0 to 100 kHz) to the channel A modulator (A6) when the sine function is programmed. (A SINLEV = 5 V when the square function is programmed.) AM signal peak should be within the dc limits of 0 to 5 volts. Amplitude control typically ranges from 4.069 Vdc (calibrated full scale output) to 1.287 Vdc (10 dB below full scale). When the amplitude control is at its highest attenuation (i.e. 1.287 Vdc), a step attenuator is activated and A SINLEV is returned to its un-modulated (\cong 5 Vdc) level. When AM is programmed, the modulating signal is superimposed on A SINLEV, resulting in 0 to 100% modulation.

A SINLEV SH/GND ★ (channel A SINe wave LEVel SHield/GrouND)

A SQLEV t (channel A SQuare wave LEVel) Generated by the level/AM board (A22). Amplitude control input (0 to 5 Vdc) and AM input (0 to 100 kHz) to the channel A square board (A23) when the square or pulse functions are programmed. (A SQLEV = 0 V when the sine function is programmed.) Amplitude control typically ranges from 4.069 Vdc (calibrated full scale output) to 1.287 Vdc (10 dB below full scale). When the amplitude control is at its highest attenuation (i.e. 1.287 Vdc), a step attenuator is activated and A SQLEV is returned to its un-modulated (\cong 5 Vdc) level. When AM is programmed, the modulating signal is superimposed on A SQLEV, resulting in 0 to 100% modulation.

A SQLEV SH/GND ★ (channel A SQuare wave LEVel SHield/GrouND)

A SQUARE IN † (channel A SQUARE board INput) In the square function or pulse mode, this sinusoidal output of the channel A preamplifier (A4) is routed to the square board (A23) with a relay. Signal level is 2.0 Vpp. Frequency range is 0 to 13 MHz.

 \star The signal is grounded (to GND) and is used to shield the main signal on the motherboard. See the introduction to this glossary for an example.

† Ground (GND) traces shield the signal trace on the motherboard. These ground traces are denoted by a "SH/GND" (SHield/GrouND) after the main signal name. See the introduction to this glossary for an example.

A SQUARE IN SH/GND ★ (channel A SQUARE board INput SHield/GrouND)

A SQUAREOUT † (channel A SQUARE board OUTput) Output of the square board (A23). This square wave signal or pulse signal is sent to the channel A preamplifier (A4), where it is renamed A PREAMPOUT and sent to the channel A output amplifier (A3). Voltage range is 0.6 to 2.0 Vpp. Frequency range is 0 to 13 MHz.

A SQUAREOUT SH/GND ★ (channel A SQUARE board OUTput SHield/GrouND)

A SWEEP LIMIT (channel A SWEEP LIMIT flag) When low, this TTL signal generated by the channel A fractional-N digital board (A34) indicates to the controller (A61) that the sweep destination or marker frequency has been reached. This signal causes an NMI interrupt on the controller board.

A SWPL (channel A SWeeP Limit control) When high, this TTL signal from the fractional-N decoder (P/O A36) determines the point to stop the sweep. It assigns the stop frequency to the marker frequency and instructs the fractional-N IC on the channel A digital board (A34) to stop sweeping at this marker frequency. This occurs whenever the instrument is sweeping.

ATN (ATteNtion) Bidirectional HP-IB signal traveling from the controller (A61), through the HP-IB support board (A63), to the rear panel HP-IB connector. Causes all devices to interpret data on the bus as a controller command and to activate their acceptor handshake function (in the command mode, when ATN is high) or data between addressed devices (in the data mode, when ATN is low).

A VCO1 ‡ (channel A Voltage Controlled Oscillator 1) ECL level, dc coupled. Frequency range is 40 to 66 MHz. Output of the channel A fractional-N local oscillator which is sent to a divide-by-two circuit. Signal travels from the channel A VCO board (A31) to the channel A VCO ÷ 2 board (A35).

A VCO2 ‡ (channel A Voltage Contolled Oscillator 2) ECL level, dc coupled. Frequency range is 40 to 66 MHz. This channel A VCO board (A31) output serves as an input to the channel A fractional-N digital board (A34). It is divided by the N number, compared with the reference frequency, and sent through the fractional-N loop again. This repeats until the two frequencies match. See the fractional-N local oscillator theory of operation for more information.

A VCO CONT t (channel A VCO CONTrol voltage) This dc level signal originates on the channel A VCO control board (A32) and provides a frequency control for the channel A VCO board (A31). It is a buffered version of A SH CONT. The voltage range is -1 Vdc to 11 Vdc. A -1 Vdc level corresponds to approximately 66 MHz on A VCO1 and A VCO2; an 11 Vdc level corresponds to approximately 40 MHz.

A VCO CONT SH/GND + (channel A VCO CONTrol voltage SHield/GrouND)

 \star The signal is grounded (to GND) and is used to shield the main signal on the motherboard. See the introduction to this glossary for an example.

[†] Ground (GND) traces shield the signal trace on the motherboard. These ground traces are denoted by a "SH/GND" (SHield/GrouND) after the main signal name. See the introduction to this glossary for an example.

A VCOF (channel A VCO unlocked Flag) When high, this TTL level signal indicates the channel A VCO is unlocked. When low, this signal indicates the VCO is locked. Travels from the channel A VCO control board (A32) to the channel A fractional-N digital board (A34).

A VCO/N.F t (channel A VCO/N.F) ECL level, dc coupled. 20 ns pulse. 100 kHz rate. Originates on the channel A fractional-N digital board (A34). Terminates on the channel A phase detector (A33). Compared with A 100kHz on A33. The result of the comparison is used for activating the phase detector.

A VCO/N.F SH/GND ★ (channel A VCO/N.F SHield/GrouND)

B 100kHz ‡ (channel B 100 kHz reference) 100 kHz, ECL level square wave originating on the reference board (A50) and terminating on the channel B phase detector (A43). Used as the channel B local oscillator's reference signal.

B 10dB (channel B 10 dB attenuator control) When high, this TTL signal from the offset board (A21) drives the relay which engages the 10 dB pad on the channel B attenuator board (A12).

B 20dB (channel B 20 dB attenuator control) When high, this TTL signal from the offset board (A21) drives the relay which engages the 20 dB pad on the channel B attenuator board (A12).

B 20MHz t (channel B 20 MHz reference) Generated on the reference board (A50). Used as an input to the RF switch board (A24). The signal is used as the channel B reference signal in the two-channel mode. It is disabled in all other modes. ECL level, ac coupled, 50 Ω input.

B 20MHz SH/GND ★ (channel B 20 MHz reference SHield/GrouND)

B 40dB (channel B 40 dB attenuator control) When high, this TTL signal from the offset board (A21) drives the relay which engages the 40 dB pad on the channel B attenuator board (A12).

B A + B/MOD (channel A and channel B combiner/MODulation control) When high, this TTL signal from the offset board (A21) engages the combiner/modulation relay on the channel B attenuator board (A12). In the combined mode, the channel B output signal from the A12 is summed with the channel A output signal on the channel A attenuator board (A2). Both signals are present on the channel A front panel output connector (CH A). For internal amplitude and phase modulation, the relay directs the main signal (now renamed INT MOD) to the level/AM board (for AM) or to the channel A VCO control board (for PM).

 $[\]star$ The signal is grounded (to GND) and is used to shield the main signal on the motherboard. See the introduction to this glossary for an example.

[†] Ground (GND) traces shield the signal trace on the motherboard. These ground traces are denoted by a "SH/GND" (SHield/GrouND) after the main signal name. See the introduction to this glossary for an example.

[‡] Signal travels via a cable.

B AMPDCO t (channel B output AMPlifier DC Offset) Generated by a DAC and a current to voltage converter on the offset board (A21). Provides dc offset voltage to the instrument at the channel B output amplifier (A13). Summed with the primary RF signal at the amplifier input. Voltage range is -6.14 to +6.14 Vdc. When the high voltage option is activated, this signal is renamed B HVDCO and routed through the high voltage amplifier (A11, Option 002). Also used to provide a dc signal for the SYNC circuit on the keyboard (A62). It is sent to this circuit through cables on the controller (A61).

B AMPDCO SH/GND ★ (channel B output AMPlifier DC Offset SHeild/GrouND)

B AMPOUT t (channel B output AMPlifier OUTput) Primary RF signal from the channel B output amplifier (A13) to the channel B attenuator (A12). Voltage range is 1 to 10 Vpp (unloaded). Frequency range is 0 to 13 MHz. The maximum frequency limit increases to 13.1 in two-tone mode. Characteristic impedance of the line is 50 Ω .

B AMPOUT SH/GND ★ (channel B output AMPlifier OUTput SHield/GrouND)

B AMPTD MOD IN (\mp 1V) † ‡ (channel B external AMPliTuDe MODulation INput) Rear panel input to the level/AM board (A22). Used to amplitude modulate channel B. Level range is ±1 V. Frequency range is 0 to 100 kHz. A 0 V signal produces 0% modulation. A dc or instantaneous input of -1 V produces 100% modulation. A +1 V signal reduces the un-modulated level by 100%, resulting in a 0 V output.

B AMPTD MOD IN SH/GND ★ (channel B external AMPliTuDe MODulation INput SHield/GrouND)

B API1 (channel B API #1 control) TTL level control line. Originates on the channel B fractional-N digital board (A44) and terminates on the channel B phase detector board (A43). A low level turns on the API #1 current correction source.

B API2 (channel B API #2 control) TTL level control line. Originates on the channel B fractional-N digital board (A44) and terminates on the channel B phase detector board (A43). A low level turns on the API #2 current correction source.

B API3 (channel B API #3 control) TTL level control line. Originates on the channel B fractional-N digital board (A44) and terminates on the channel B phase detector board (A43). A low level turns on the API #3 current correction source.

B API4 (channel B API #4 control) TTL level control line. Originates on the channel B fractional-N digital board (A44) and terminates on the channel B phase detector board (A43). A low level turns on the API #4 current correction source.

B API5 (channel B API #5 control) TTL level control line. Originates on the channel B fractional-N digital board (A44) and terminates on the channel B phase detector board (A43). A low level turns on the API #5 current correction source.

 \star The signal is grounded (to GND) and is used to shield the main signal on the motherboard. See the introduction to this glossary for an example.

† Ground (GND) traces shield the signal trace on the motherboard. These ground traces are denoted by a "SH/GND" (SHield/GrouND) after the main signal name. See the introduction to this glossary for an example.

B BIAS (channel B fractional-N local oscillator BIAS control) When low, this TTL level signal from the channel B fractional-N digital board (A44) turns on the bias, which discharges the integrator on the channel B phase detector board (A43).

B CAL (channel B CALibration) When low, this TTL signal from the offset board (A21) engages a relay on the channel B attenuator board (A12) which routes the attenuator's output signal to the calibrator board (P/O A36) for internal amplitude and phase calibration.

B CARRIER +, B CARRIER – † (channel B reference CARRIER) Differential input to the channel B modulator board (A16) from the RF switch (A24). Provides the reference signal for the B channel. In the two-channel mode, B CARRIER is derived from the reference signal (B 20MHz) from the reference board (A50). In the two-tone mode, B CARRIER is derived from the channel B local oscillator. The frequency range is 19.9 to 20.1 MHz. In the two-phase and pulse modes, B CARRIER is a variable phase 20 MHz reference signal derived from the channel B local oscillators. Expects 50 Ω termination, ac coupled. See the overall theory of operation in Section VI for a description of the operating modes.

B CARRIER SH/GND ★ (channel B reference CARRIER SHield/GrouND)

B COMBINE ‡ (channel B COMBINEd operation) The channel B output signal (CH B) travels from the channel B attenuator to the channel A attenuator when the instrument is in combined operation. This channel B output signal is summed with the channel A output signal (CH A) before the two are sent to the CH A output connector. The channel B output (CH B) is disabled. Both main signals experience a 6.02 dB attenuation due to the resistive combining, so the maximum amplitude limit in combined operation is decreased by 6.02 dB. Voltage range is 0 to 10 Vpp (terminated into the channel A attenuator with the combiner active). Frequency range is 0 to 13 MHz.

B COMPAR ENABLE (channel B COMPARator ENABLE) TTL level signal generated on the level/AM board (A22). Used to enable the comparators on the square board (A23). Active high.

B DATA (channel B DATA strobe) TTL level strobe from the fractional-N decoder board (P/O A36) whose positive edge indicates data is valid at the fractional-N IC. Signal terminates on the channel B fractional-N digital board (A44).

B DATA OUT (channel B DATA strobe OUT) TTL level strobe from the fractonal-N decoder board (P/O A36) which enables the tri-state buffer (A44U15) when reading from the fractional-N digital board (A44). This line also clears the VCO unlocked flag (B VCOF).

B-EXT ϕ **CAL IN/MULTI** ϕ **REF IN (1-10Vpp)** \ddagger (channel B EXTernal phase CALibration INput/MULTIphase REFerence INput) Rear panel input to the calibrator (P/O A36). Used for external phase calibration and for multiphase calibration. Multiphase configuration allows phase calibration of two or more HP 3326As.

 $[\]star$ The signal is grounded (to GND) and is used to shield the main signal on the motherboard. See the introduction to this glossary for an example.

[†] Ground (GND) traces shield the signal trace on the motherboard. These ground traces are denoted by a "SH/GND" (SHield/GrouND) after the main signal name. See the introduction to this glossary for an example.

[‡] Signal travels via a cable.

B HI-VOLT (channel B HIgh VOLTage option) When high, this line from the offset board (A21) activates the relay on the channel B attenuator board (A12), which routes the output signal through the channel B high voltage amplifier (A11, Option 002).

B HVAMPIN t (channel B High Voltage AMPlifier INput) The primary RF signal from the channel B attenuator (A12) that is routed to the input of the channel B high voltage amplifier (A11, Option 002) when the high voltage option is activated. Voltage range is 0 to 20 Vpp. Frequency range is 0 to 1 MHz. Signal has 950 Ω of input impedance looking into the channel B high voltage amplifier (A11). The amplifier has a gain of two times the HVAMPIN signal level (four times the 50 Ω loaded level).

B HVAMPIN SH/GND ★ (channel B High Voltage AMPlifier INput SHield/GrouND)

B HVAMPOUT † (channel B High Voltage AMPlifier OUTput) Originates on the channel B high voltage amplifier (A11, Option 002) and terminates on the channel B attenuator (A12). Carries the main RF signal. Used only when the high voltage option is activated. Voltage range is 4 mVpp to 40 Vpp. Frequency range is dc to 1 MHz. Approximately 0 Ω output resistance.

B HVAMPOUT SH/GND ★ (channel B High Voltage AMPlifier OUTput SHield/GrouND)

B HVDCO † (channel B High Voltage amplifier DC Offset) Generated by a DAC and a current to voltage converter on the offse board (A21). Provides dc offset voltage to the instrument at the channel B high voltage amplifier (A11). B HVDCO is summed with B HVAMPIN at the virtual ground point of the amplifier. Voltage range is -6.14 Vdc to +6.14 Vdc. The amplifier multiplies the offset by four. Input resistance is 499 Ω .

B HVDCO SH/GND ★ (channel B High Voltage amplifier DC Offset SHield/GrouND)

B HVOVLD (channel A High Voltage OVerLoaD) TTL compatible logic signal from the overload detection comparators of the channel B high voltage amplifier (A11, Option 002). A low signal indicates a current or voltage overload condition at the high voltage amplifier output. Signal terminates at the channel B attenuator (A12), which alerts the microprocessor (A61) when an overload has occurred. See B OVLD.

B INT CAL \ddagger (channel B INTernal CALibration) RF output signal from the channel B attenuator (A12) which runs to the calibrator board (P/O A36) for internal amplitude (ac and dc) and phase calibration. Used when internal phase or amplitude calibrations are performed. Characteristic impedance of the line is 50 Ω . Frequency range is 0 to 13 MHz. Voltage range is 0 to 10 Vpp (terminated into the calibrator board).

B INV (channel B INstruction Valid) Normally high, TTL level strobe used to clock instructions to the fractional-N IC. Positive edge triggered. (The signal is negative edge triggered at A44TP14.) Originates on the fractional-N decoder board (P/O A36) and terminates on the channel B fractional-N digital board (A44).

 $[\]star$ The signal is grounded (to GND) and is used to shield the main signal on the motherboard. See the introduction to this glossary for an example.

[†] Ground (GND) traces shield the signal trace on the motherboard. These ground traces are denoted by a "SH/GND" (SHield/GrouND) after the main signal name. See the introduction to this glossary for an example.

BIOVLD (channel B current OVerLoaD)TTL compatible logic signal from the current overload comparators of the channel B output amplifier (A13). A low signal indicates a current overload condition in the output stage of the amplifier. Signal terminates at the channel B attenuator (A12), which alerts the microprocessor (A61) when an overload has occurred. See B OVLD.

B LATCH CLOCK † (channel B LATCH CLOCK) TTL level clock generated on the channel B fractional-N digital board (A44). Used on the channel B phase detector board (A43) to re-clock the bias and API signals.

B LATCHCLOCK SH/GND ★ (channel B LATCH CLOCK SHield/GrouND)

B LO2 ‡ (channel B Local Oscillator 2) ECL level, ac coupled. This main RF signal is generated in the channel B local oscillator, divided down by the channel B VCO \div 2 board (A45), and sent to the RF switch (A24). In the two-channel mode, the signal acts as the channel B local oscillator signal. The frequency range is 20 to 33 MHz. (The 20 MHz signal from the reference board (A50) acts as the channel B reference signal.) In the two-tone mode, the signal acts as the channel B reference signal acts as the channel B reference signal. The frequency varies between 19.9 and 20.1 MHz to provide a 100 kHz frequency offset. In the two-phase and pulse modes, this signal also acts as the channel B reference. The signal is at 20 MHz, with a variable phase offset. (The channel A local oscillator acts as the channel B local oscillator in these modes.)

B-L.O. OUT SH/GND ★ (20 to 33 MHz channel B Local Oscillator rear panel OUTput SHield/GrouND)

B MIX OUT t (channel B MIXer OUTput) Primary RF sine wave sinal originating at the output of the channel B mixer (A15) and the 14 MHz lowpass filter (located on the mixer board) and terminating at the input of the channel B preamplifier (A14). Possible amplitude modulation of 100 kHz maximum. Voltage range is approximately 0.07 to 0.22 Vpp. Frequency range is 0 to 13 MHz. The maximum frequency limit increases to 13.1 MHz in the two-tone mode. Expects 100 Ω termination.

B MIX OUT SH/GND ★ (channel B MIXer OUTput SHield/GrouND)

B MOD OUT ‡ (channel B MODulator OUTput) Input to the reference port of the channel B mixer (A15) from the output of the channel B modulator (A16) and the half filter (20 MHz bandpass) located on the modulator board. In the two-channel mode, B MOD OUT is 20 MHz. In the two-tone mode, B MOD OUT is 19.9 to 20.1 MHz. In the two-phase and pulse modes, B MOD OUT is a variable phase 20 MHz signal. See the overall theory of operation in Section VI. Possible AM of 100 kHz maximum. Voltage range is approximately -39 to -29 dBVrms (-26 to -16 dBm). Should be terminated in 50 ohms.

B OVLD (channel B OVerLoaD) When low, this TTL logic signal from the channel B attenuator (A12) to the offset board (A21) indicates that an overload condition has occurred somewhere in the instrument. The offset board alerts the controller (A61) by pulling the ANALOG FAULT line low.

 \star The signal is grounded (to GND) and is used to shield the main signal on the motherboard. See the introduction to this glossary for an example.

† Ground (GND) traces shield the signal trace on the motherboard. These ground traces are denoted by a "SH/GND" (SHield/GrouND) after the main signal name. See the introduction to this glossary for an example.

B-PHASE MOD IN ($\pm 1V$) $\pm \pm$ (channel B external PHASE MODulation rear panel INput) Input to the channel B VCO control board (A42). Used to phase modulate the channel B local oscillator. Voltage range is ± 1 V. Frequency range is 0 to 5 kHz. Input signals of ± 1 V correspond to $\pm 360^{\circ}$, respectively.

B PHASE MOD IN SH/GND ★ (channel B external PHASE MODulation rear panel INput SHield/GrouND)

B PMC (channel B Phase Modulation Control) Originates on the fractional-N decoder board (P/O A36). Terminates on the channel B phase detector board (A43) and the channel B VCO control board (A42). When low, this TTL level signal indicates that no phase modulation is desired. When high, this signal activates the phase modulation circuitry.

B PMCAL (channel B Phase Modulation CALibration) Originates on the fractional-N decoder (P/O A36). Terminates on the channel B VCO control board (A42). Active low. This line is shorted to ground to permit an internal phase modulation calibration to take place.

B PMCURRENT (channel B Phase Modulation CURRENT)Terminates on the channel B phase detector board (A43). Originates on the channel B VCO control board (A42). Signal is +15 Vdc when phase modulation is off, and +8.8 Vdc when phase modulation is on.

B PRE10dB (channel B PRE-10 dB attenuator control) TTL logic line from the offset board (A21) to the channel B output amplifier (A13) which engages the 10 dB attenuation pad when the signal is high. (The level table in the attenuator repair sub-section lists the ranges when the pad is activated.)

B PREAMPOUT † (channel B PREAMPlifier OUTput) Primary RF output signal originating on the channel B preamplifier (A14) and terminating at the relay for the pre-10 dB pad on the channel B output amplifier (A13). Signal may be either a sine wave or a square wave, depending on the position of the relay on the preamplifier (A14K101). In the normal relay position, the main RF signal is a sine wave and travels directly to the output of the preamplifier board. When the square function or the pulse mode is activated, the relay is set and the output is diverted to the square board (A23) and returned to the preamplifier board as a square wave. The characteristic impedance of the line is 100 Ω . The voltage range is 0.6 to 2.0 Vpp when loaded. The frequency range is 0 to 13 MHz. The maximum frequency limit increases to 13.1 MHz in the two-tone mode.

B PREAMPOUT SH/GND ★ (channel B PREAMPlifier OUTput SHield/GrouND)

B PROTECTCLEAR (channel B PROTECT mode CLEAR) When low, this TTL logic signal from the offset board (A21) to the channel B attenuator board (A12) resets the overload protection latch and disables the protect mode. Normal operation is restored.

B SH CONT † (channel A Sample and Hold CONTrol voltage) Originates by the channel B phase detector board (A43). Terminates at the channel B VCO control board (A42). Used to control the VCO frequency. Voltage range is 0 to 5 V. A 0 V level corresponds to approximately 66 MHz on B VCO1 and B VCO2; a 5 V level corresponds to approximately 40 MHz.

 \star The signal is grounded (to GND) and is used to shield the main signal on the motherboard. See the introduction to this glossary for an example.

[†] Ground (GND) traces shield the signal trace on the motherboard. These ground traces are denoted by a "SH/GND" (SHield/GrouND) after the main signal name. See the introduction to this glossary for an example.

B SH CONT SH/GND ★ (channel B Sample and Hold CONTrol voltage SHield/GrouND)

B S-H TRIG (channel B Sample and Hold TRIGger) When high, this TTL level signal from the channel B fractional-N digital board (A44) triggers the channel B phase detector (A43) to sample the integrator output.

B SIN (channel B SINe wave funcction) TTL level signal from the level/AM board (A22) to the channel B preamplifier (A14). Low level indicates a sine wave was programmed and the main signal is directed to the channel B output amplifier (A13). High level indicates a square wave was programmed and the signal is directed to the square board (A23).

B SINLEV † (channel B SINe wave LEVel) Generated by the level/AM board (A22). Amplitude control input (0 to 5 Vdc) and AM input (0 to 100 kHz) to the channel B modulator (A16) when the sine function is programmed. (B SINLEV = 5 V when the square function is programmed.) AM signal peak should be within the dc limits of 0 to 5 volts. Amplitude control typically ranges from 4.069 Vdc (calibrated full scale output) to 1.287 Vdc (10 dB below full scale). When the amplitude control is at its highest attenuation (i.e. 1.287 Vdc), a step attenuator is activated and A SINLEV is returned to its un-modulated (\cong 5 Vdc) level. When AM is programmed, the modulating signal is superimposed on B SINLEV, resulting in 0 to 100% modulation.

B SINLEV SH/GND ★ (channel B SINe wave LEVel SHield/GrouND)

B SQLEV † (channel B SQuare wave LEVel) Generated by the level/AM board (A22). Amplitude control input (0 to 5 Vdc) and AM input (0 to 100 kHz) to the channel B square board (A23) when the square or pulse functions are programmed. (B SQLEV = 0 V when the sine function is programmed.) Amplitude control typically ranges from 4.069 Vdc (calibrated full scale output) to 1.287 Vdc (10 dB below full scale). When the amplitude control is at its highest attenuation (i.e. 1.287 Vdc), a step attenuator is activated and B SQLEV is returned to its un-modulated (\cong 5 Vdc) level. When AM is programmed, the modulating signal is superimposed on B SQLEV, resulting in 0 to 100% modulation.

B SQLEV SH/GND ★ (channel B SQuare wave LEVel SHield/GrouND)

B SQUARE IN † (channel B SQUARE board INput) In the square function or pulse mode, this sinusoidal output of the channel B preamplifier (A14) is routed to the square board (A23) with a relay. Signal level is 2.0 Vpp. Frequency range is 0 to 13 MHz.

B SQUARE IN SH/GND ★ (channel B SQUARE board INput SHield/GrouND)

B SQUAREOUT † (channel B SQUARE board OUTput) Output of the square board (A23). Square wave signal or pulse signal sent to the channel B preamplifier (A14), where it is renamed B PREAMPOUT and sent to the channel B output amplifier (A13). Voltage range is 0.6 to 2.0 Vpp. Frequency range is 0 to 13 MHz.

B SQUAREOUT SH/GND ★ (channel B SQUARE board OUTput SHield/GrouND)

 \star The signal is grounded (to GND) and is used to shield the main signal on the motherboard. See the introduction to this glossary for an example.

† Ground (GND) traces shield the signal trace on the motherboard. These ground traces are denoted by a "SH/GND" (SHield/GrouND) after the main signal name. See the introduction to this glossary for an example.

B SWEEP LIMIT (channel B SWEEP LIMIT flag) When low, this TTL signal generated by the channel B fractional-N digital board (A44) indicates to the controller (A61) that the sweep destination or marker frequency has been reached. This signal causes an NMI interrupt on the controller board.

B SWPL (channel B SWeeP Limit control) When high, this TTL signal from the fractional-N decoder (P/O A36) determines the point to stop the sweep. It assigns the stop frequency to the marker frequency and instructs the fractional-N IC on the channel B digital board (A44) to stop sweeping at this marker frequency. This occurs whenever the instrument is sweeping.

B VCO1 ‡ (channel B Voltage Controlled Oscillator 1) ECL level, dc coupled. Frequency range is 40 to 66 MHz. The minimum frequency limit decreases to 39.8 MHz in the two-tone mode. Output of the channel B fractional-N local oscillator which is sent to a divide-by-two circuit. Signal travels from the channel B VCO board (A41) to the channel B VCO ÷ 2 byard (A45).

B VCO2 ‡ (channel B Voltage Controlled Oscillator 2) ECL level, dc coupled. Frequency range is 40 to 66 MHz. The minimum frequency limit decreases to 39.8 MHz in the two-tone mode. This channel B VCO board (A31) output serves as an input to the channel B fractional-N digital board (A44). It is divided by the N number, compared with the reference frequency, and sent through the fractional-N loop again. This repeats until the two frequencies match. See the fractional-N local oscillator theory of operation for more information.

B VCO CONT t (channel B VCO CONTrol voltage) This dc level signal originates on the channel B VCO control board (A42) and provides a frequency control for the channel B VCO board (A41). It is a buffered version of B SH CONT. The voltage range is -1 Vdc to 11 Vdc. A -1 Vdc level corresponds to approximately 66 MHz on B VCO1 and B VCO2; an 11 Vdc level corresponds to approximately 40 MHz.

B VCO CONT SH/GND ★ (channel B VCO CONTrol voltage SHield/GrouND)

B VCOF (channel B VCO unlocked Flag) When high, this TTL level signal indicates the channel B VCO is unlocked. When low, this signal indicates the VCO is locked. Travels from the channel B VCO control board (A42) to the channel B fractional-N digital board (A44).

B VCO/N.F t (channel B VCO/N.F) ECL level, dc coupled. 20 ms pulse. 100 kHz rate. Originates on the channel B fractional-N digital board (A44). Terminates on the channel B phase detector (A43). Compared with B 100kHz on A43. The result of the comparison is used for activating the phase detector.

B VCO/N.F SH/GND ★ (channel B VCO/N.F SHield/GrouND)

 $[\]star$ The signal is grounded (to GND) and is used to shield the main signal on the motherboard. See the introduction to this glossary for an example.

t Ground (GND) traces shield the signal trace on the motherboard. These ground traces are denoted by a "SH/GND" (SHield/GrouND) after the main signal name. See the introduction to this glossary for an example.

CGND (Chassis GrouND) Same as safety ground. Connected to the protective earth ground of the power plug. The instrument chassis, frame, covers, and exposed metal surfaces, the HP-IB connector (pins 12, 18-24), and the shields of four rear panel output connectors are connected to CGND.

CH A \ddagger (CHannel A output) Primary RF signal from the channel A attenuator (A2) which connects to the CH A output connector on the front panel of the HP 3326A. The signal depends on the front panel setting. Characteristic impedance of the line is 50 Ω . Frequency range is dc to 13 MHz. Voltage range is 0 to 10 Vpp. Option 002 increases the voltage limit to 40 Vpp. Option 003 changes the location of the output connector to the rear panel (CH A OUT).

CH A OUT, OPTION 003 (DC-13MHz) \$ (CHannel A rear panel OUTput, OPTION 003) See CH A description.

CH B ‡ (CHannel B output) Upper frequency limit changes to 13.1 MHz in the twotone mode since a frequency offset of 100 kHz is allowed.

CH B OUT, OPTION 003 (DC-13MHz) ‡ (CHannel B rear panel OUTput, OPTION 003) See CH B description.

DATA STROBE (DATA STROBE) Normally high. Strobes when the controller (A61) puts data on the instrument bus (IBUSO-7) and the data is ready to be received by the other boards on the bus.

DAV (DAta Valid) Bidirectional HP-IB signal traveling from the controller (A61), through the HP-IB support board (A63), to the rear panel HP-IB connector. Used to indicate the condition of the information on the data bus (DI01-8). Active low. Driven (low) by the source when data is settled and valid and NRFD (high) has been sensed.

DIO1, **DIO2**, **DIO3**, **DIO4**, **DIO5**, **DIO6**, **DIO7**, **DIO8** (Data Input and Output bits) Eight bit, bidirectional bus traveling from the controller (A61), through the HP-IB support board (A63), to the rear panel HP-IB connector. Active low. Used to transfer information from device to device on the interface. Information transferred includes interface commands, addresses, and device dependent data.

DISPLCLK (DISPLay CLocK) From controller (A61) to keyboard (A62). Serves as the clock for display data traveling to the keyboard shift register.

DLD (Data Latch Disable) When low, this TTL level from the fractional-N decoder board (P/O A36) latches instructions to the fractional-N ICs on the digital boards (A34 and A44).

ENABLE LO2 (ENABLE the LO2 signal control line) When low, this TTL level signal from the RF switch (A24) enables the channel A VCO \div 2 board (A35) to produce A LO2. The signal is disabled in the two-channel mode. (B LO2 is always enabled, since it is used in every mode.)

[‡] Signal travels via a cable.

EOI (End Or Identify) Bidirectional HP-IB signal traveling from the controller (A61), through the HP-IB support board, to the rear panel HP-IB connector. Indicates last data byte of a multibyte sequence. Also used with ATN to parallel poll devices for their status bit. Active low.

EXT REF FLAG (EXTernal REFerence input present FLAG) When low, this TTL level signal indicates an external reference is present. Generated on the reference board (A50). Terminates on the controller board (A61).

EXT TRIG (EXTernal TRIGger) Input to the microprocessor on the controller board (A61) from the external input EXT TRIG IN. Used to start events.

EXT TRIG IN (TTL) ‡ (EXTernal TRIGger rear panel input) Negative edge triggered, TTL compatible. Runs through the HP-IB support board (A63) to the controller board, where it is renamed EXT TRIG and used instead of the instrument bus to trigger a sweep or a parameter increment. EXT TRIG IN is ignored during a sweep or when the trigger is turned off.

FAN RELAY POWER (FAN RELAY POWER) Generated on the power supply (A70). Connected to +15 V through a 510 Ω resistor. Used to turn on fan relay to start the fan.

FP DATA (Front Panel DATA) Data from the controller (A61) to the LEDs on the keyboard (A62). TTL level.

GND (isolated GrouND) The isolated ground signal for the printed circuit boards in the instrument. It is tied to chassis ground (CGND) through varistors on the HP-IB support board (A63), the rear ESD board (A70), the front ESD board (A72) and the keyboard (A62). GND is connected to chassis ground through capacitors on the above boards, as well as on the motherboard (A99), the controller (A61) and the power supply (A70).

GNDFP (Front Panel GrouND) GNDFP travels to the keyboard (A62) via the controller board (A61). Serves as a ground return for the keyboard LEDs.

GND SYNC (GrouND for the SYNC circuit) Identical to GND. Used for the "sync" circuit on the keyboard. Has its own separate connection to the motherboard (three pin connector).

GND SENSE (GrouND SENSing signal) Used on the power supply (A70). Ground sense for the power supply reference circuit. Connected to the motherboard ground plane.

HVFLAG (High Voltage option present FLAG) When low, this TTL signal indicates to the controller (A61) that one of the high voltage amplifiers (A1 or A11) is in the instrument and available for use. (It is assumed that either none or both of the amplifiers are in the instrument at a given time. The flag is active when either board is in place.)

IBUS0 (Instrument BUS bit 0) Bidirectional, TTL level instrument bus bit used by the controller (A61) to communicate with the offset board (A21), the level/AM board (A22), the RF switch (A24), the channel A and channel B fractional-N digital boards (A34 and A44), and the fractional-N decoder/calibrator board (A36).

IBUS1, IBUS2, IBUS3, IBUS4, IBUS5 (Instrument BUS bit1, 2, 3, 4, and 5) Bidirectional, TTL level instrument bus bit used by the controller (A61) to communicate with the offset board (A21), the level/AM board (A22), the channel A and channel B fractional-N digital boards (A34 and A44), and the fractional-N decoder/calibrator board (A36).

IBUS6, IBUS7 (Instrument BUS bit 6 and 7) Bidirectional, TTL level instrument bus bit used by the controller (A61) to communicate with the offset board (A21), the level/AM board (A22), and the calibrator board (P/O A36).

IFC (InterFace Clear) Bidirectional HP-IB signal traveling from the controller (A61), through the HP-IB support board (A63), to the rear panel HP-IB connector. Active low. Initializes the HP-IB system to an idle state (no activity on the bus).

INH BREF (INHibit channel B REFerence signal) TTL level signal originating on the RF switch (A24) and terminating on the reference board (A50). A high level inhibits the B 20MHz signal from the reference board. (The reference signal is inhibited in the pulse, two-tone, and two-phase modes since it is not being used by channel B.) Internal to the RF switch board, INH BREF places the switches in the two-phase/two-tone/pulse mode.

INT MOD † (INTernal MODulation) When the instrument is programmed for internal amplitude or phase modulation, the output signal from the channel B attenuator (A12) is directed to perform the desired modulation. When internal amplitude modulation is programmed, the signal is sent to the level/AM board (A22) to internally modulate the amplitude of the A channel. Frequency range is 0 to 100 kHz. Voltage range is 0 to 2 Vpp. When internal phase modulation is programmed, INT MOD is sent to the channel A VCO control board (A32) to internally modulate the phase of the A channel. Frequency range is 0 to 5 kHz. Voltage range is 0 to 2 Vpp.

INT MOD SH/GND ★ (INTernal MODulation SHield/GrouND)

KB DATA (KeyBoard DATA) Data from the front panel keyboard (A62) to the controller (A61). TTL level.

LEVTEST (LEVel self TEST signal) Analog input signal generated on the level/AM board (A22) and sent to the calibrator (P/O A36). Used for a service self test of the DACs on the level/AM board. The voltage level sent to the calibrator board is equal to (1/2)(A SQLEV + B SQLEV).

LOBSW † (channel B RF SWitch Local Oscillator output) Input to the channel B mixer (A15) from the RF switch (A24). 20 to 33 MHz, ECL compatible, \pm 0.5Vpp. Input impedance is 50 Ω , ac coupled.

LOBSW SH/GND ★ (channel B RF SWitch Local Oscillator output SHield/GrouND)

 $[\]star$ The signal is grounded (to GND) and is used to shield the main signal on the motherboard. See the introduction to this glossary for an example.

[†] Ground (GND) traces shield the signal trace on the motherboard. These ground traces are denoted by a "SH/GND" (SHield/GrouND) after the main signal name. See the introduction to this glossary for an example.

MARKER (MARKER) Generated on the controller (A61). TTL compatible levels. When the sweep mode is ramp or triangle, MARKER is high at the start of the sweep and low at the selected marker frequency. When the sweep mode is ramp, the sweep marker returns to the initial level during the retrace. When the mode is triangle, the sweep marker returns to the initial level at the selected marker frequency during the retrace. When the sweep mode is discrete, MARKER is high at the start of the sweep, low at the beginning of each sweep element as the new frequency is programmed, and high at the end of each sweep element. MARKER remains high for at least 10 μ s in this configuration. Runs to the HP-IB support board (A63), where it is renamed MARKER OUT (TTL), and sent to the rear panel connector.

MARKER OUT (TTL) ‡ (rear panel MARKER OUTput) See MARKER.

NC (No Connection) The IC pin or the connector pin is left unconnected to any other pin.

NDAC (Not Data ACcepted) Bidirectional HP-IB signal traveling from the controller (A61), through the HP-IB support board (A63), to the rear panel HP-IB connector. Active low. Used to indicate the condition of acceptance of data by device(s). The acceptor sets its NDAC (low) to indicate it has not accepted data. When it accepts data from the data bus (DIO1-8) lines, it releases its NDAC line. However, NDAC to the talker does not go high until the last/slowest listener has accepted the data.

NRFD (Not Ready For Data) Bidirectional HP-IB signal traveling from the controller (A61), through the HP-IB support board (A63), to the rear panel HP-IB connector. Active low. Indicates the condition of readiness of device(s) to accept data. Acceptor sets its NRFD (low) to indicate it is not ready to accept data. It releases this line when it is ready to accept data. However, the NRFD line to the talker does not go high until all addressed listeners are ready to accept data.

OFFTEST (OFFset self TEST signal) Analog input to the calibrator board (P/O A36) from the offset board (A21). Used for a service self test of the DACs on the offset board. Provides a voltage to the calibrator equal to (1/2)(A AMPDCO + B AMPDCO).

OVENFLAG (OVEN reference option present FLAG) Signal originates on the oven reference (A80) and travels through the motherboard (via a cable) to the channel A fractional-N digital board (A34). It is then sent to the controller (A61) via the instrument bus (IBUS5). A low signal tells the processor that the high stability frequency reference option (Option 001) is in the HP 3326A.

OVERVOLTAGE PROTECT (OVERVOLTAGE PROTECTion flag) Generated by the overvoltage sense circuit on the power supply (A70). When the +5 V, -15 V, or +15 V supplies exceed +5.6 V, -17 V, or +17 V, respectively, this line goes high and trips the silicon rectifier on the +15 V raw supply. The fuse should blow.

REF LOOP UNLOCKED (REFerence LOOP UNLOCKED) The reference board (A5) produces this signal when an external frequency reference signal is present and the reference board is unable to lock to the signal. Active low. This signal is false (high) when no external reference is present. Terminates at the controller (A61). The microprocessor has access to this signal via the status flags register (SFR), bit D0.

REN (Remote ENable) Bidirectional HP-IB signal traveling from the controller (A61), through the HP-IB support board (A63), to the rear panel HP-IB connector. Active low. Used to enable devices to respond to remote control when addressed to listen.

RESET (RESET) This signal is made true (low) during power-up or whenever the regulated +5 V supply (+5V) drops below +4.85 V. The signal originates on the controller (A61), where it resets the microprocessor, prevents ROM access, prevents CMOS RAM access, and disables the front panel display. The signal terminates at the offset board (A21), the level/AM board (A22), and the fractional-N decoder/calibrator board (A36). When RESET is active, these boards are set to the turn-on state.

RF SWITCH STROBE (RF SWITCH STROBE) Generated by the level/AM board (A22). TTL level strobe to the RF switch board (A24). A positive transition latches the current state of bit 0 of the instrument bus (IBUS0), which sets the switches according to the selected operating mode.

SHIELD (HP-IB SHIELD) HP-IB connector line from HP-IB support board (A63). Connected to chassis ground (CGND). Used to reduce noise.

SQUARE/PULSE (SQUARE function vs. PULSE function control) TTL level signal from the level/AM board (A22) to the square board (A24). A high signal enables the square circuitry. A low level signal enables the pulse circuitry.

SRQ (Service ReQuest) Bidirectional HP-IB signal traveling from the controller (A61), through the HP-IB support board (A63), to the rear panel HP-IB connector. Active low. Used to signal the controller that communication is needed.

STANDBY (STANDBY) Originates on the keyboard (A62). Terminates at the power supply (A70). Travels from the keyboard to the controller (A61) via a cable, then travels to the power supply via the motherboard (A99). Used as a control signal to turn on the instrument. STANDBY is actively pulled to ground when the instrument is turned on. When the instrument is in the standby state (only the fan and battery backup are turned on), the STANDBY line floats. There is a pull-up resistor to +28VDC on the power supply.

STROBE (display STROBE) Signal to the keyboard (A62) from the controller (A61) to latch in front panel data. TTL level, 375 ns low pulse, 1 ms period.

SWEEP START (SWEEP START) TTL level strobe from the controller board (A61) used to signal the fractional-N decoder board (P/O A36) that an exernally triggered sweep (using EXT TRIG IN) or a frequency change should be made. SWEEP START starts a synchronous sweep of the two fractional-N LOs on an external triggered event without any processor intervention after the initial set-up.

SYNC ‡ (SYNChronous output) Main ac input to the channel A synchronous output circuit on the keyboard (A62). Derived from A AMPOUT. Voltage range is 2 to 20 Vpp.

SYNC A \ddagger (SYNChronous with channel A) TTL level output from the keyboard (A62) to the front panel output connector. Should be terminated in 50 Ω . Frequency range is 0 to 13 MHz.

SYNC OVLD (SYNC OVerLoaD) From the keyboard (A62) to the controller (A61). TTL level. Low signal indicates an overload.

V REF (Voltage REFerence) Generated on the calibrator board (P/O A36). Master voltage reference for the entire instrument. Used by the calibrator board, level/AM board (A22), offset board (A21), and square board (A24). Nominal value is 10.24 Vdc \pm .01 Vdc.).

X-DRIVE (X-DRIVE) Generated on the controller board (A61). Starts at 0 V and increases linearly to +10 V from sweep start to sweep stop. Decreases linearly from +10 V to 0 V from sweep stop to sweep start. When the sweep mode is ramp or discrete, X-DRIVE returns to the initial level during the retrace. When the total time of the discrete sweep exceeds 1000 s, X-DRIVE increases at its slowest rate and start again at 10.24 V each 1024 seconds. Runs to the HP-IB support board (A63), where it is renamed X-DRIVE OUT (0 to 10V), and sent to the rear panel output connector.

X-DRIVE OUT (0 to 10V) **‡** (X-DRIVE rear panel OUTput) See X-DRIVE.

Z-BLANK (Z-BLANK) TTL compatible, 0 to 3.4 V signal, generated by the controller (A61) which goes high while blanking. Z-BLANK goes low (ON) at the start of a sweep and high (OFF) at the end of a sweep and during the retrace of a ramp. Runs to the HP-IB support board (A63), where it is renamed Z-BLANK OUT (TTL), and sent to the rear panel output connector.

Z-BLANK OUT (TTL) ‡ (Z-BLANK rear panel OUTput) See Z-BLANK.

[‡] Signal travels via a cable.

Product Line Sales/Support Key

Key Product Line

- A Analytical CM Components
- CM Components
- C Computer Systems Sales only CH Computer Systems Hardware Sal
- CH Computer Systems Hardware Sales and Services CS Computer Systems Software Sales and Services
- E Electronic Instruments & Measurement Systems
- M Medical Products
- MP Medical Products Primary SRO
- MS Medical Products Secondary SRO
- P Personal Computation Products
- Sales only for specific product line
- " Support only for specific product line

IMPORTANT: These symbols designate general product line capability. They do not insure sales or support availability for all products within a line, at all locations. Contact your local sales office for information regarding locations where HP support is available for specific products.

HP distributors are printed in italics

HEADQUARTERS OFFICES

If there is no sales office listed for your area, contact one of these headquarters offices.

OTHER EUROPE

NORTH / CENTRAL AFRICA Hewlett-Packard S.A. 7, Rue du Bois-du-Lan CH-1217 MEYRIN 2, Switzerland Tel: (022) 83 12 12 Telex: 27835 hpse Cable: HEWPACKSA Geneve

ASIA

Hewlett-Packard Asia Ltd. 6th Floor, Sun Hung Kai Centre 30 Harbour Rd. G.P.O. Box 795 HONG KONG Tel: 5-832 3211 After Jan. 1, 1984 47th Floor, China Resources Bldg 26 Harbour Rd., Wanchai HONG KONG Telex: 66678 HEWPA HX Cable: HEWPACK HONG KONG

CANADA

Hewlett-Packard (Canada) Ltd. 6877 Goreway Drive MISSISSAUGA, Ontario L4V 1M8 Tel: (416) 678-9430 Telex: 610-492-4246

EASTERN EUROPE

Hewlett-Packard Ges.m.b.h. Lieblgasse 1 P.O.Box 72 A-1222 VIENNA, Austria Tel: (222) 2365110 Telex: 1 3 4425 HEPA A

NORTHERN EUROPE

Hewlett-Packard S.A. Uilenstede 475 P.O.Box 999 NL-1180 AZ **AMSTELVEEN** The Netherlands Tel: 20 437771

SOUTH EAST EUROPE

Hewlett-Packard S.A. 7, Rue du Bois-du-Lan CH-1217 **MEYRIN** 2, Switzerland Tel: (022) 83 12 12 Telex: 27835 hpse Cable: HEWPACKSA Geneve

Hewlett-Packard S.A. P.O. Box 150, Rte du Nant-D'Avril CH-1217 MEYRIN 2, Switzerland

CH-1217 MEYRIN 2, Switzerland Tel: (022) 83 8111 Telex: 22486 hpsa Cable: HEWPACKSA Geneve

MEDITERRANEAN AND MIDDLE EAST

Hewielt-Packard S.A. Mediterranean and Middle East Operations Atrina Centre 32 Kifissias Ave Paradissos-Amarousion, **ATHENS** Greece Tel: 682 88 11 Telex: 21-6588 HPAT GR Cable: HEWPACKSA Athens

EASTERN USA Hewlett-Packard Co.

4 Choke Cherry Road ROCKVILLE, MD 20850 Tel: (301) 258-2000 MIDWESTERN USA

Hewlett-Packard Co.

5201 Tollview Drive ROLLING MEADOWS, IL 60008 Tel: (312) 255-9800

SOUTHERN USA

Hewlett-Packard Co. 2000 South Park Place P.O. Box 105005 ATLANTA, GA 30348 Tel: (404) 955-1500

WESTERN USA

Hewlett-Packard Co. 3939 Lankershim Blvd. P.O. Box 3919 LOS ANGELES, CA 91604 Tel: (213) 506-3700

OTHER INTERNATIONAL AREAS

Hewlett-Packard Co. Intercontinental Headquarters 3495 Deer Creek Road PALO ALTO, CA 94304 Tel: (415) 857-1501 Telex: 034-8300 Cable: HEWPACK

SALES & SUPPORT OFFICES

Arranged alphabetically by country

ANGOLA Telectra

Empresa Técnica de Equipamentos R. Barbosa Rodrigues, 41-1 DT. Caixa Postal 6487 LUANDA Tel: 35515,35516 F.P.

ARGENTINA

Hewlett-Packard Argentina S.A. Avenida Santa Fe 2035 Martinez 1640 **BUENOS AIRES** Tel: 798-5735, 792-1293 Telex: 17595 BIONAR Cable: HEWPACKARG A,E,CH,CS,P *Biotron S.A.C.I.M. e I. Av Paseo Colon 221, Piso 9 1399 BUENOS AIRES Tel: 30-4846, 30-1851 Telex: 17595 BIONAR*

AUSTRALIA

Adelaide, South Australia Office

Hewlett-Packard Australia Ltd. 153 Greenhill Road PARKSIDE, S.A. 5063 Tel: 272-5911 Telex: 82536 Cable: HEWPARD Adelaide A*,CH,CM,,E,MS,P

Brisbane, Queensland Office

Hewlett-Packard Australia Ltd. 10 Payne Road **THE GAP**, Queensland 4061 Tel: 30-4133 Telex: 42133 Cable: HEWPARD Brisbane A,CH,CM,E,M,P

Canberra, Australia Capital Territory

Office Hewlett-Packard Australia Ltd. 121 Wollongong Street FYSHWICK, A.C.T. 2609 Tel: 80 4244 Telex: 62650 Cable: HEWPARD Canberra CH.CM.E.P

Melbourne, Victoria Office

Hewlett-Packard Australia Ltd. 31-41 Joseph Street BLACKBURN, Victoria 3130 Tel: 895-2895 Telex: 31-024 Cable: HEWPARD Melbourne A,CH,CM,CS,E,MS,P

Perth, Western Australia

Office Hewlett-Packard Australia Ltd. 261 Stirling Highway CLAREMONT, W.A. 6010 Tel: 383-2188 Telex: 93859 Cable: HEWPARD Perth A,CH,CM,E,MS,P

Sydney, New South Wales

Office Hewlett-Packard Australia Ltd. 17-23 Talavera Road P.O. Box 308 NORTH RYDE, N.S.W. 2113 Tel: 887-1611 Telex: 21561 Cable: HEWPARD Sydney A.CH.CM.CS.E.MS.P

AUSTRIA

Hewlett-Packard Ges.m.b.h. Grottenhofstrasse 94 A-8052 GRAZ Tel: (0316) 291 5 66 Telex: 32375 CH,E Hewlett-Packard Ges.m.b.h. Lieblgasse 1 P.O. Box 72 A-1222 VIENNA Tel: (0222) 23 65 11-0 Telex: 134425 HEPA A A.CH.CM.CS.E.MS,P

BAHRAIN

Green Salon P.O. Box 557 Manama **BAHRAIN** Tel: 255503-255950 Telex: 84419

Wael Pharmacy P.O. Box 648 **BAHRAIN** Tel: 256123 Telex: 8550 WAEL BN E.C.M

BELGIUM

Hewlett-Packard Belgium S.A./N.V. Blvd de la Woluwe, 100 Woluwedal 8-1200 **BRUSSELS** Tel: (02) 762-32-00 Telex: 23-494 paloben bru A.CH.CM.CS.E.MP.P

BRAZIL

Hewlett-Packard do Brasil I.e.C. Ltda. Alameda Rio Negro, 750 Alphaville

06400 BARUERI SP Tel: (011) 421.1311 Telex: (011) 33872 HPBR-BR Cable: HEWPACK Sao Paulo A,CH,CM,CS,E,M,P Hewlett-Packard do Brasil I.e.C. Ltda. Avenida Epitacio Pessoa, 4664 22471 RIO DE JANEIRO-RJ Tel: (021) 286.0237 Telex: 021-21905 HPBR-BR Cable: HEWPACK Rio de Janeiro

A,CH,CM,E,MS,P* ANAMED I.C.E.I. Ltda. Rua Bage, 103 04012 **SAO PAULO** Tel: (011) 570-5726 Telex: 021-21905 HPBR-BR M

SALES & SUPPORT OFFICES

Arranged alphabetically by country

CANADA

Alberta

Hewlett-Packard (Canada) Ltd. 3030 3rd Avenue N.E. CALGARY, Alberta T2A 6T7 Tel: (403) 235-3100 A,CH,CM,E*,MS,P*

Hewlett-Packard (Canada) Ltd. 11120A-178th Street EDMONTON, Alberta T5S 1P2 Tel: (403) 486-6666 A,CH,CM,CS,E,MS,P

British Columbia

Hewlett-Packard (Canada) Ltd. 10691 Shellbridge Way RICHMOND,

British Columbia V6X 2W7 Tel: (604) 270-2277 Telex: 610-922-5059 A,CH,CM,CS,E*,MS,P*

Manitoba

Hewlett-Packard (Canada) Ltd. 380-550 Century Street WINNIPEG, Manitoba R3H 0Y1 Tel: (204) 786-6701 A,CH,CM,E,MS,P*

Nova Scotia

Hewlett-Packard (Canada) Ltd. P.O. Box 931 900 Windmill Road DARTMOUTH, Nova Scotia B2Y 326 Tel: (902) 469-7820 CH.CM.CS.E*_MS.P*

Ontario

Hewlett-Packard (Canada) Ltd. 3325 N. Service Rd., Unit 6 BURLINGTON, Ontario P3A 2A3 T <: (416) 335-8644 CS,M* Hewlett-Packard (Canada) Ltd. 552 Newbold Street LONDON, Ontario N6E 2S5 Tel: (519) 686-9181 A,CH,CM,E*,MS,P* Hewlett-Packard (Canada) Ltd. 6877 Goreway Drive MISSISSAUGA, Ontario L4V 1M8 Tel: (416) 678-9430 A,CH,CM,CS,E,MP,P Hewlett-Packard (Canada) Ltd. 2670 Queensview Dr OTTAWA, Ontario K2B 8K1 Tel: (613) 820-6483 A,CH,CM,CS,E*,MS,P* Hewlett-Packard (Canada) Ltd. 220 Yorkland Blvd., Unit #11 WILLOWDALE, Ontario M2J 1R5 Tel: (416) 499-9333 CH

Quebec

Hewlett-Packard (Canada) Ltd. 17500 South Service Road Trans-Canada Highway KIRKLAND, Quebec H9J 2M5 Tel: (514) 697-4232 A,CH,CM,CS,E,MP,P* Hewlett-Packard (Canada) Ltd. Les Galeries du Vallon 2323 Du Versont Nord STE. FOY, Quebec G1N 4C2 Tel: (418) 687-4570 CH

CHILE

Jorge Calcagni y Cia. Ltda. Av. Italia 634 Santiago Casilia 16475 **SANTIAGO** 9 Tel: 222-0222 Telex: Public Booth 440001 A.CM.E.M Olympia (Chile) Ltda. Av. Rodrigo de Araya 1045 Casilla 256-V **SANTIAGO** 21 Tel: (02) 22 55 044 Telex: 240-565 OLYMP CL Cable: Olympiachile Santiagochile CH.CS.P

CHINA, People's Republic of

China Hewlett-Packard Rep. Office P.O. Box 418 1A Lane 2, Luchang St. Beiwei Rd., Xuanwu District **BEIJING** Tel: 33-1947, 33-7426 Telex: 22601 CTSHP CN Cable. 1920 A,CH,CM,CS,E,P

COLOMBIA

Instrumentación H. A. Langebaek & Kier S.A. Carrera 4A No. 52A-26 Apartado Aereo 6287 BOGOTA 1, D.E. Tel: 212-1466 Telex: 44400 INST CO Cable: AARIS Bogota CM.E.M Casa Humboldt Ltda. Carrera 14, No. 98-60 Apartado Aereo 51283 BOGOTA 1, D.E. Tel: 256-1686 Telex: 45403 CCAL CO.

COSTA RICA

Cientifica Costarricense S.A. Avenida 2, Calle 5 San Pedro de Montes de Oca Apartado 10159 **SAN JOSE** Tel: 24-38-20, 24-08-19 Telex: 2367 GALGUR CR CMEM

CYPRUS

Telerexa Ltd. P.O. Box 4809 14C Stassinos Avenue NICOSIA Tel: 62698 Telex: 2894 LEVIDO CY E.M.P

DENMARK

Hewlett-Packard A/S Datavej 52 DK-3460 **BIRKEROD** Tel: (02) 81-66-40 Telex: 37409 hpas dk A,CH,CM,CS,E,MS,P Hewlett-Packard A/S Rolighedsvej 32 DK-8240 **RISSKOV**, Aarhus Tel: (06) 17-60-00 Telex: 37409 hpas dk CH,E

DOMINICAN REPUBLIC

Microprog S.A. Juan Tomás Mejía y Coles No. 60 Arroyo Hondo SANTO DOMINGO Tel: 565-6268 Telex: 4510 ARENTA DR (RCA) P

ECUADOR

CYEDE Cia. Ltda. Avenida Eloy Altaro 1749 Casilla 6423 CCI **OUITO** Tel: 450-975, 243-052 Telex: 2548 CYEDE ED CM,E,P Hospitalar S.A. Robles 625 Casilla 3590 **OUITO** Tel: 545-250, 545-122 Telex: 2485 HOSPIT ED Cable. HOSPITALAR-Quito

EGYPT

International Engineering Associates 24 Hussein Hegazi Street Kasr-el-Aini **CAIRO** Tel: 23829, 21641 Telex: IEA UN 93830 CH.CS.E.M EGYPOR P.O.Box 2558 42 El Zahraa Street **CAIRO**, Egypt Tel: 65 00 21 Telex: 93 337 P

EL SALVADOR

IPESA de El Salvador S.A. 29 Avenida Norte 1216 SAN SALVADOR Tel: 26-6858, 26-6868 Telex: 20539 IPESASAL A.CH.CM.CS.E.P

FINLAND

Hewlett-Packard Oy Revontulentie 7 PL 24 SF-02101 ESPO0 10 Tel: (90) 4550211 Telex: 121563 hewpa sf CH.CM.CS.P Hewlett-Packard Oy (Olarinluoma 7) PI 24 02101 ESPOO 10 Tel: (90) 4521022 A,E,MS Hewlett-Packard Oy Aatoksenkatv 10-C SF-40720-72 JYVASKYLA Tel: (941) 216318 CH Hewlett-Packard Oy Kainvuntie 1-C SF-90140-14 OULU Tel: (981) 338785 CH

FRANCE

Hewlett-Packard France Z.I. Mercure B Rue Berthelot F-13763 Les Milles Cedex AIX-EN-PROVENCE Tel: 16 (42) 59-41-02 Telex: 410770F A,CH,E,MS,P* Hewlett-Packard France 64, rue Marchand Saillant F-61000 ALENCON Tel: 16 (33) 29 04 42 Hewlett-Packard France Boite Postale 503 F-25026 BESANCON 28 rue de la Republique F-25000 BESANCON Tel: 16 (81) 83-16-22 CH,M Hewlett-Packard France 13, Place Napoleon III F-29000 BREST Tel: 16 (98) 03-38-35 Hewlett-Packard France Chemin des Mouilles Boite Postale 162 F-69130 ECULLY Cedex (Lyon) Tel: 16 (78) 833-81-25 Telex: 310617F A,CH,CS,E,MP Hewlett-Packard France Tour Lorraine Boulevard de France F-91035 EVRY Cedex Tel: 16 6 077-96-60 Telex: 692315F F Hewlett-Packard France Parc d'Activite du Bois Briard Ave. du Lac F-91040 EVRY Cedex Tel: 16 6 077-8383 Telex: 692315F E Hewlett-Packard France 5, avenue Raymond Chanas F-38320 EYBENS (Grenoble) Tel: 16 (76) 25-81-41 Telex: 980124 HP GRENOB EYBE CH Hewlett-Packard France Centre d'Affaire Paris-Nord Bâtiment Ampère 5 étage Rue de la Commune de Paris Boite Postale 300 F-93153 LE BLANC MESNIL Tel: 16 (1) 865-44-52 Telex: 211032F CH,CS,E,MS Hewlett-Packard France Parc d'Activités Cadera Quartier Jean Mermoz Avenue du Président JF Kennedy F-33700 MERIGNAC (Bordeaux) Tel: 16 (56) 34-00-84 Telex: 550105F CH,E,MS Hewlett-Packard France Immueble "Les 3 B" Nouveau Chemin de la Garde ZAC de Bois Briand F-44085 NANTES Cedex Tel: 16 (40) 50-32-22 CH*

FRANCE (Cont'd) Hewlett-Packard France 125, rue du Faubourg Bannier F-45000 ORLEANS Tel: 16 (38) 68 01 63 Hewlett-Packard France Zone Industrielle de Courtaboeuf Avenue des Tropiques F-91947 Les Ulis Cedex ORSAY Tel: (6) 907-78-25 Telex: 600048F A,CH,CM,CS,E,MP,P Hewlett-Packard France Paris Porte-Maillot 15, Avenue de L'Amiral Bruix F-75782 PARIS CEDEX 16 Tel: 16 (1) 502-12-20 Telex: 613663F CH, MS, P Hewlett-Packard France 124, Boulevard Tourasse F-64000 PAU Tel: 16 (59) 80 38 02 Hewlett-Packard France 2 Allée de la Bourgonnette F-35100 RENNES Tel: 16 (99) 51-42-44 Telex: 740912F CH.CM.E.MS.P* Hewlett-Packard France 98 Avenue de Bretagne F-76100 ROUEN Tel: 16 (35) 63-57-66 CH**.CS Hewlett-Packard France 4 Rue Thomas Mann Boite Postale 56 F-67033 STRASBOURG Cedex Tel: 16 (88) 28-56-46 Telex: 890141F CH,E,MS,P* Hewlett-Packard France Le Péripole 20, Chemin du Pigeonnier de la Cépière F-31083 TOULOUSE Cedex Tel: 16 (61) 40-11-12 Telex: 531639F A,CH,CS,E,P* Hewlett-Packard France 9, rue Baudin F-26000 VALENCE Tel: 16 (75) 42 76 16 Hewlett-Packard France Carolor ZAC de Bois Briand F-57640 VIGY (Metz) Tel: 16 (8) 771 20 22 CH Hewlett-Packard France Immeuble Péricentre F-59658 VILLENEUVE D'ASCO Cedex Tel: 16 (20) 91-41-25 Telex: 160124F CH,E,MS,P*

GERMAN FEDERAL REPUBLIC

Hewlett-Packard GmbH Geschäftsstelle Keithstrasse 2-4 D-1000 BERLIN 30 Tel: (030) 24-90-86 Telex: 018 3405 hpbln d A,CH,E,M,P

Hewlett-Packard GmbH Geschäftsstelle Herrenberger Strasse 130 D-7030 BÖBLINGEN Tel: (7031) 14-0 Telex: A,CH,CM,CS,E,MP,P Hewlett-Packard GmbH Geschäftsstelle Emanuel-Leutze-Strasse 1 D-4000 DUSSELDORF Tel: (0211) 5971-1 Telex: 085/86 533 hpdd d A,CH,CS,E,MS,P Hewlett-Packard GmbH Geschäftsstelle Schleefstr. 28a D-4600 DORTMUND-Aplerbeck Tel: (0231) 45001 Hewlett-Packard GmbH Vertriebszentrale Frankfurt Berner Strasse 117 Postfach 560 140 D-6000 FRANKFURT 56 Tel: (0611) 50-04-1 Telex: 04 13249 hpffm d A,CH,CM,CS,E,MP,P Hewlett-Packard GmbH Geschäftsstelle Aussenstelle Bad Homburg Louisenstrasse 115 D-6380 BAD HOMBURG Tel: (06172) 109-0 Hewlett-Packard GmbH Geschäftsstelle Kapstadtring 5 D-2000 HAMBURG 60 Tel: (040) 63804-1 Telex: 021 63 032 hphh d A,CH,CS,E,MS,P Hewlett-Packard GmbH Geschäftsstelle Heidering 37-39 D-3000 HANNOVER 61 Tel: (0511) 5706-0 Telex: 092 3259 A,CH,CM,E,MS,P Hewlett-Packard GmbH Geschäftsstelle Rosslauer Weg 2-4 D-6800 MANNHEIM Tel: (0621) 70050 Telex: 0462105 A,C,E Hewlett-Packard GmbH Geschäftsstelle Messerschmittstrasse 7 D-7910 NEU ULM Tel: 0731-70241 Telex: 0712816 HP ULM-D A.C.E* Hewlett-Packard GmbH Geschäftsstelle Ehhericherstr. 13 D-8500 NÜRNBERG 10 Tel: (0911) 5205-0 Telex: 0623 860 CH,CM,E,MS,P Hewlett-Packard GmbH Geschäftsstelle Eschenstrasse 5 D-8028 TAUFKIRCHEN Tel: (089) 6117-1

Telex: 0524985

A,CH,CM,E,MS,P

GREAT BRITAIN Blue Star Ltd. Band Box House See United Kingdom GREECE Kostas Karaynnis S.A. 8 Omirou Street ATHENS 133 Tel: 32 30 303, 32 37 371 Telex: 215962 RKAR GR A, CH, CM, CS, E, M, P PLAISIO S.A. G. Gerardos 24 Stournara Street ATHENS Tel: 36-11-160 Telex: 221871 GUATEMALA IPESA Avenida Reforma 3-48, Zona 9 GUATEMALA CITY Tel: 316627, 314786 Telex: 4192 TELTRO GU A.CH.CM.CS.E.M.P HONG KONG Hewlett-Packard Hong Kong, Ltd. G.P.O. Box 795 5th Floor, Sun Hung Kai Centre 30 Harbour Road HONG KONG Tel: 5-8323211 Telex: 66678 HEWPA HX Cable: HEWPACK HONG KONG E.CH.CS.P CET Ltd.

1402 Tung Wah Mansion 199-203 Hennessy Rd. Wanchia, HONG KONG Tel: 5-729376 Telex: 85148 CET HX CM Schmidt & Co. (Hong Kong) Ltd. Wing On Centre, 28th Floor Connaught Road, C. HONG KONG Tel: 5-455644 Telex: 74766 SCHMX HX A.M ICELAND

Elding Trading Company Inc. Hafnarnvoli-Tryggvagotu P.O. Box 895 IS-REYKJAVIK Tel: 1-58-20, 1-63-03 11

INDIA

Computer products are sold through Blue Star Ltd. All computer repairs and maintenance service is done through Computer Maintenance Corp. Blue Star Ltd. Sabri Complex II Floor 24 Residency Rd. BANGALORE 560 025 Tel: 55660 Telex: 0845-430 Cable: BLUESTAR A,CH*,CM,CS*,E

Prahhadevi BOMBAY 400 025 Tel: 422-3101 Telex: 011-3751 Cable: BLUESTAR AMBlue Star Ltd. Sahas 414/2 Vir Savarkar Marg Prabhadevi BOMBAY 400 025 Tel: 422-6155 *Telex: 011-4093 Cable: FROSTBLUE* A,CH*,CM,CS*,E,M Blue Star Ltd. Kalyan, 19 Vishwas Colony Alkapuri, BORODA, 390 005 Tel: 65235 Cable: BLUE STAR Blue Star Ltd. 7 Hare Street CALCUTTA 700 001 Tel: 12-01-31 Telex: 021-7655 Cable: BLUESTAR AM Blue Star Ltd. 133 Kodambakkam High Road MADRAS 600 034 Tel: 82057 Telex: 041-379 Cable: BLUESTAR AM Blue Star Ltd. Bhandari House, 7th/8th Floors 91 Nehru Place NEW DELHI 110 024 Tel: 682547 Telex: 031-2463 Cable: BLUESTAR A.CH .CM.CS .E.M Blue Star Ltd 15/16:C Wellesley Rd. PUNE 411 011 Tel: 22775 Cable: BLUE STAR Blue Star Ltd. 2-2-47/1108 Bolarum Rd. SECUNDERABAD 500 003 Tel: 72057 Telex: 0155-459 Cable: BLUEFROST

A.E Blue Star Ltd. T.C. 7/603 Poornima Maruthankuzhi TRIVANDRUM 695 013 Tel: 65799 Telex: 0884-259 Cable: BLUESTAR

Computer Maintenance Corporation Ltd. 115, Sarojini Devi Road SECUNDERABAD 500 003 Tel: 310-184, 345-774 Telex: 031-2960 CH

SALES & SUPPORT OFFICES

Arranged alphabetically by country

SALES & SUPPORT OFFICES

Arranged alphabetically by country

INDONESIA BERCA Indonesia P.T. P.O.Box 496/Jkt. JI. Abdul Muis 62 JAKARTA Tel: 21-373009 Telex: 46748 BERSAL IA Cable: BERSAL JAKARTA

BERCA Indonesia P.T. P.O.Box 2497/Jkt Antara Bldg., 17th Floor Jl. Medan Merdeka Selatan 17 JAKARTA-PUSAT Tel: 21-344-181 Telex: BERSAL IA A.CS.E.M BERCA Indonesia P.T. P.O. Box 174/SBY. Jl. Kutei No. 11 SURABAYA Tel: 68172 Telex: 31146 BERSAL SB Cable: BERSAL-SURABAYA A*,E,M,P

IRAQ

Hewlett-Packard Trading S.A. Service Operation AI Mansoor City 9B/3/7 BAGHDAD Tel: 551-49-73 Telex: 212-455 HEPAIRAQ IK CH,CS

IRELAND

Hewlett-Packard Ireland Ltd. 82/83 Lower Leeson Street **DUBLIN** 2 Tel: 0001 608800 Telex: 30439 A,CH,CM,CS,E,M.P *Cardiac Services Ltd. Kilmore Road Artane* **DUBLIN** 5 Tel: (01) 351820 Telex: 30439 M

ISRAEL

Eldan Electronic Instrument Ltd. P.O.Box 1270 JERUSALEM 91000 16, Ohaliav St. JERUSALEM 94467 Tel: 533 221, 553 242 Telex: 25231 AB/PAKRD IL A Electronics Engineering Division Motorola Israel Ltd. 16 Kremenetski Street P.O. Box 25016 TEL-AVIV 67899 Tel: 3 88 388 Telex: 33569 Motil IL Cable: BASTEL Tel-Aviv CH.CM.CS.EM.P

ITALY

Hewlett-Packard Italiana S.p.A Traversa 99C Via Giulio Petroni, 19 I-70124 **BARI** Tel: (080) 41-07-44 M

Hewlett-Packard Italiana S.p.A. Via Martin Luther King, 38/III 1-40132 BOLOGNA Tel: (051) 402394 Telex: 511630 CH,E,MS Hewlett-Packard Italiana S.p.A. Via Principe Nicola 43G/C 1-95126 CATANIA Tel: (095) 37-10-87 Telex: 970291 C.P Hewlett-Packard Italiana S.p.A. Via G. Di Vittorio 9 1-20063 CERNUSCO SUL NAVIGLIO (Milano) Tel: (02) 923691 Telex: 334632 A,CH,CM,CS,E,MP,P Hewlett-Packard Italiana S.p.A. Via C. Colombo 49 I-20090 TREZZANO SUL NAVIGLIO (Milano) Tel: (02) 4459041 Telex: 322116 C.M Hewlett-Packard Italiana S.p.A. Via Nuova San Rocco a Capodimonte, 62/A I-80131 NAPOLI Tel: (081) 7413544 Telex: 710698 A,CH,E Hewlett-Packard Italiana S.p.A. Viale G. Modugno 33 I-16156 GENOVA PEGLI Tel: (010) 68-37-07 Telex: 215238 E.C Hewlett-Packard Italiana S.p.A. Via Pelizzo 15 1-35128 PADOVA Tel: (049) 664888 Telex: 430315 A,CH,E,MS Hewlett-Packard Italiana S.p.A. Viale C. Pavese 340 1-00144 ROMA EUR Tel: (06) 54831 Telex: 610514 A,CH,CM,CS,E,MS,P* Hewlett-Packard Italiana S.p.A. Via di Casellina 57/C I-50018 SCANDICCI-FIRENZE Tel: (055) 753863 Hewlett-Packard Italiana S.p.A. Corso Svizzera, 185 I-10144 TORINO Tel: (011) 74 4044 Telex: 221079 CH,E JAPAN

Yokogawa-Hewlett-Packard Ltd. 152-1, Onna ATSUGI, Kanagawa, 243 Tel: (0462) 28-0451 CM,C*,E Yokogawa-Helwett-Packard Ltd. Meiji-Seimei Bldg. 6F 3-1 Hon Chiba-Cho CHIBA, 280 Tel: 472 25 7701 E,CH,CS

Yokogawa-Hewlett-Packard Ltd. Yasuda-Seimei Hiroshima Bldg. 6-11, Hon-dori, Naka-ku HIROSHIMA, 730 Tel: 82-241-0611 Yokogawa-Hewlett-Packard Ltd. **Towa Building** 2-3, Kaigan-dori, 2 Chome Chuo-ku **KOBE**, 650 Tel: (078) 392-4791 C,E Yokogawa Hewlett-Packard Ltd. Kumagaya Asahi 82 Bldg 3-4 Tsukuba KUMAGAYA, Saitama 360 Tel: (0485) 24-6563 CH,CM,E Yokogawa-Hewlett-Packard Ltd. Asahi Shinbun Daiichi Seimei Bldg. 4-7, Hanabata-cho KUMAMOTO,860 Tel: (0963) 54-7311 CH.E Yokogawa-Hewlett-Packard Ltd. Shin-Kyoto Center Bldg. 614, Higashi-Shiokoji-cho Karasuma-Nishiiru Shiokoji-dori, Shimoqyo-ku **KYOTO**, 600 Tel: 075-343-0921 CH.E Yokogawa-Hewlett-Packard Ltd. Mito Mitsui Bldg 4-73, Sanno-maru, 1 Chome MITO, Ibaraki 310 Tel: (0292) 25-7470 CH.CM.E Yokogawa-Hewlett-Packard Ltd. Sumitomo Seimei 14-9 Bldg. Meieki-Minami, 2 Chome Nakamura-ku NAGOYA, 450 Tel: (052) 571-5171 CH,CM,CS,E,MS Yokogawa-Hewlett-Packard Ltd. Chuo Bldg. 4-20 Nishinakajima, 5 Chome Yodogawa-ku OSAKA, 532 Tel: (06) 304-6021 Telex: YHPOSA 523-3624 A,CH,CM,CS,E,MP,P* Yokogawa-Hewlett-Packard Ltd. 27-15, Yabe, 1 Chome SAGAMIHARA Kanagawa, 229 Tel: 0427 59-1311 Yokogawa-Hewlett-Packard Ltd. Daiichi Seimei Bldg. 7-1, Nishi Shinjuku, 2 Chome Shinjuku-ku, TOKYO 160 Tel: 03-348-4611 CH.E Yokogawa-Hewlett-Packard Ltd. 29-21 Takaido-Higashi, 3 Chome Suginami-ku TOKYO 168 Tel: (03) 331-611 Telex: 232-2024 YHPTOK A,CH,CM,CS,E,MP,P Yokogawa-Hewlett-Packard Ltd. Daiichi Asano Building 2-8, Odori, 5 Chome UTSUNOMIYA, Tochigi 320 Tel: (0286) 25-7155 CH,CS,E

Yokogawa-Hewlett-Packard Ltd. Yasuda Seimei Nishiguchi Bldg. 30-4 Tsuruya-cho, 3 Chome YOKOHAMA 221 Tel: (045) 312-1252 CH,CM,E

JORDAN

Mouasher Cousins Company P.O. Box 1387 AMMAN Tel: 24907, 39907 Telex: 21456 SABCO JO CH.E.M.P

KENYA

ADCOM Ltd., Inc., Kenya P.O.Box 30070 NAIROBI Tel: 33 1955 Telex: 22639 FM

KOREA

Samsung Electronics HP Division 12 Fl. Kinam Bldg. San 75-31, Yeoksam-Dong Kangnam-Ku Yeongdong P.O. Box 72 **SEOUL** Tel: 555-7555, 555-5447 Telex: K27364 SAMSAN A.CH.CM.CS.E.M.P

KUWAIT

Al-Khaldiya Trading & Contracting P.O. Box 830 Safat **KUWAIT** Tel: 42-4910, 41-1726 Telex: 22481 Areeg kt CH,E,M Photo & Cine Equipment P.O. Box 270 Safat **KUWAIT** Tel: 42-2846, 42-3801 Telex: 22247 Matin kt

LEBANON

G.M. Dolmadijan Achrafieh P.O. Box 165.167 **BEIRUT** Tel: 290293 MP** Computer Information Systems P.O. Box 11-6274 **BEIRUT** Tel: 89 40 73 Telex: 22259 C

LUXEMBOURG

Hewlett-Packard Belgium S.A./N.V. Blvd de la Woluwe, 100 Woluwedal B-1200 **BRUSSELS** Tel: (02) 762-32-00 Telex: 23-494 paloben bru A,CH,CM,CS,E,MP,P

MALAYSIA

Hewlett-Packard Sales (Malaysia) Sdn. Bhd. 1st Floor, Bangunan British American Jalan Semantan, Damansara Heights KUALA LUMPUR 23-03 Tel: 943022 Telex: MA31011 A,CH,E,M,P*

MAYLAYSIA (Cont'd)

Protel Engineering P.O.Box 1917 Lot 6624, Section 64 23/4 Pending Road Kuching, **SARAWAK** Tel: 36299 Telex: MA 70904 PROMAL Cable: PROTELENG A.E,M

MALTA

Philip Toledo Ltd. Notabile Rd. **MRIEHEL** Tel: 447 47, 455 66 Telex: Media MW 649 E,P

MEXICO Hewlett-Packard Mexicana, S.A. de C.V. Av. Periferico Sur No. 6501 Tepepan, Xochimilco 16020 MEXICO D.F. Tel: 6-76-46-00 Telex: 17-74-507 HEWPACK MEX A.CH.CS.E.MS.P Hewlett-Packard Mexicana, S.A. de C.V. Ave, Colonia del Valle 409 Col. del Valle Municipio de Garza Garcia MONTERREY, Nuevo Leon Tel: 78 42 41 Telex: 038 410 CH ECISA José Vasconcelos No. 218 Col. Condesa Deleg. Cuauhtémoc MEXICO D.F. 06140 Tel: 553-1206 Telex: 17-72755 ECE ME

MOROCCO

Colbeau 81 rue Karatchi CASABLANCA Tel: 3041-82, 3068-38 Telex: 23051, 22822 E Gerep

2 rue d'Agadir Boite Postale 156 **CASABLANCA** Tel: 272093, 272095 Telex: 23 739

NETHERLANDS

Hewlett-Packard Nederland B.V. Van Heuven Goedhartlaan 121 NL 1181KK AMSTELVEEN P.O. Box 667 NL1180 AR AMSTELVEEN Tel: (020) 47-20-21 Telex: 13 216 HEPA NL A,CH,CM,CS,E,MP,P Hewlett-Packard Nederland B.V. Bongerd 2 NL 2906VK CAPELLE A/D IJSSEL P.O. Box 41 NL 2900AA CAPELLE A/D IJSSEL Tel: (10) 51-64-44 Telex: 21261 HEPAC NL A,CH,CS,E

Hewlett-Packard Nederland B.V. Pastoor Petersstraat 134-136 NL 5612 LV EINDHOVEN P O. Box 2342 NL 5600 CH EINDHOVEN Tel: (040) 326911 Telex: 51484 hepae nl A CH11 L M

NEW ZEALAND

Hewlett-Packard (N Z.) Ltd 5 Owens Road P.O. Box 26-189 Epsom. AUCKLAND Tel: 687-159 Cable: HEWPACK Auckland CH,CM,E,P Hewlett-Packard (N.Z.) Ltd. 4-12 Cruickshank Street Kilbirnie, WELLINGTON 3 P.O. Box 9443 Courtenay Place, WELLINGTON 3 Tel: 877-199 Cable: HEWPACK Wellington CH.CM.E.P Northrop Instruments & Systems Ltd. 369 Khyber Pass Road P.O. Box 8602 AUCKLAND Tel: 794-091 Telex: 60605 AM Northrop Instruments & Systems Ltd. 110 Mandeville St. P.O. Box 8388 CHRISTCHURCH Tel: 486-928 Telex: 4203 AM Northrop Instruments & Systems Ltd. Sturdee House 85-87 Ghuznee Street P.O. Box 2406 WELLINGTON Tel: 850-091 Telex: NZ 3380 AM

NORTHERN IRELAND See United Kingdom

NORWAY

Hewlett-Packard Norge A/S Folke Bernadottes vei 50 P.O. Box 3558 N-5033 FYLLINGSDALEN (Bergen) Tel: 0047/5/16 55 40 Telex: 16621 hpnas n CH,CS,E,MS Hewlett-Packard Norge A/S Österndalen 16-18 P.O. Box 34 N-1345 ÖSTERÅS Tel: 0047/2/17 11 80 Telex: 16621 hpnas n A,CH,CM,CS,E,M,P

OMAN

Khimjil Ramdas P.O. Box 19 **MUSCAT** Tel: 722225, 745601 Telex: 3289 BROKER MB MUSCAT

Suhail & Saud Bahwan P.O.Box 169 **MUSCAT** Tel: 734 201-3 Telex: 3274 BAHWAN MB

PAKISTAN

Mushko & Company Ltd. 1-B, Street 43 Sector F-8/1 ISLAMABAD Tel: 51071 Cable FEMUS Rawalpindi 4.E.M Mushko & Company Ltd. Oosman Chambers Abdullah Haroon Road KARACH 0302 Tel: 524131, 524132 Telex: 2894 MUSKO PK Cable: COOPERATOR Karachi A.E.M.P*

PANAMA

Electrónico Balboa. S.A. Calle Samuel Lewis, Ed. Alfa Apartado 4929 **PANAMA 5** Tel: 63-6613, 63-6748 Telex. 3483 ELECTRON PG A.CM.E.M.P.

PERU

Cía Electro Médica S A. Los Flamencos 145, San Isidro Casilla 1030 LIMA 1 Tel: 41-4325, 41-3703 Telex: Pub. Booth 25306 CM.E.M.P

PHILIPPINES

The Online Advanced Systems Corporation Rico House, Amorsolo Cor. Herrera Street Legaspi Village, Makati P.O. Box 1510 Metro MANILA Tel: 85-35-81, 85-34-91, 85-32-21 Telex: 3274 ONLINE A,CH,CS,E,M Electronic Specialists and Proponents Inc 690-B Epifanio de los Santos Avenue Cubao, QUEZON CITY P.O. Box 2649 Manila Tel: 98-96-81, 98-96-82, 98-96-83 Telex: 40018, 42000 ITT GLOBE MACKAY BOOTH

PORTUGAL

Mundinter Intercambio Mundial de Comércio S.A.R.L. P.O. Box 2761 Av. Antonio Augusto de Aguiar 138 P-LISBON Tel: (19) 53-21-31, 53-21-37 Telex: 16691 munter p M

Soquimica Av. da Liberdade, 220-2 1298 LISBOA Codex Tel: 56 21 81/2/3 Telex: 13316 SABASA

Telectra-Empresa Técnica de Equipmentos Eléctricos S.A.R.L. Rua Rodrigo da Fonseca 103 P.O. Box 2531 P-LISBON 1 Tel: (19) 68-60-72 Telex: 12598 CH,CS,E,P

SALES & SUPPORT OFFICES

Arranged alphabetically by country

PUERTO RICO

Hewlett-Packard Puerto Rico Ave. Muñoz Rivera #101 Esq. Calle Ochoa HATO REY, Puerto Rico 00918 Tel: (809) 754-7800 Hewlett-Packard Puerto Rico Calle 272 Edificio 203 Urb. Country Club RIO PIEDRAS, Puerto Rico P O. Box 4407 CAROLINA, Puerto Rico 00628 Tel: (809) 762-7255 A.CH.CS

QATAR

Computearbia P.O. Box 2750 DOHA Tel: 883555 Telex: 4806 CHPARB P Eastern Technical Services

P.O.Box 4747 DOHA Tel: 329 993 Telex: 4156 EASTEC DH Nasser Trading & Contracting P.O.Box 1563 DOHA

Tel: 22170, 23539 Telex: 4439 NASSER DH M

SAUDI ARABIA

Modern Electronic Establishment Hewlett-Packard Division P.O. Box 22015 Thuobah AL-KHOBAR Tel: 895-1760, 895-1764 Telex: 671 106 HPMEEK SJ Cable: ELECTA AL-KHOBAR CH,CS,E,M Modern Electronic Establishment Hewlett-Packard Division P.O. Box 1228 Redec Plaza, 6th Floor JEDDAH Tel: 644 38 48 Telex: 4027 12 FARNAS SJ Cable: ELECTA JEDDAH CH,CS,E,M Modern Electronic Establishment Hewlett-Packard Division P.O.Box 22015 RIYADH Tel: 491-97 15, 491-63 87 Telex: 202049 MEERYD SJ CH,CS,E,M Abdul Ghani El Ajou P.O. Box 78 RIYADH Tel: 40 41 717 Telex: 200 932 EL AJOU

SCOTLAND

See United Kingdom

SINGAPORE

Hewlett-Packard Singapore (Sales) Pte. Ltd. #08-00 Inchcape House 450-2 Alexandra Road P.O. Box 58 Alexandra Rd. Post Office SINGAPORE, 9115 Tel: 631788 Telex: HPSGSO RS 34209 Cable: HEWPACK, Singapore A,CH,CS,E,MS,P

SALES & SUPPORT OFFICES

Arranged alphabetically by country

SINGAPORE (Cont'd)

Dynamar International Ltd. Unit 05-11 Block 6 Kolam Ayer Industrial Estate SINGAPORE 1334 Tel: 747-6188 Telex: RS 26283 CM

SOUTH AFRICA

Hewlett-Packard So Africa (Pty.) Ltd. P.O. Box 120 Howard Place CAPE PROVINCE 7450 Pine Park Center, Forest Drive, Pinelands **CAPE PROVINCE** 7405 Tel: 53-7954 Telex: 57-20006 A,CH,CM,E,MS,P Hewlett-Packard So Africa (Pty.) Ltd. P.O. Box 37099 92 Overport Drive DURBAN 4067 Tel: 28-4178, 28-4179, 28-4110 Telex: 6-22954 CH,CM Hewlett-Packard So Africa (Pty.) Ltd. 6 Linton Arcade 511 Cape Road Linton Grange PORT ELIZABETH 6000 Tel: 041-302148 CH Hewlett-Packard So Africa (Pty.) Ltd. P.O.Box 33345 Glenstantia 0010 TRANSVAAL 1st Floor East Constantia Park Ridge Shopping Centre Constantia Park PRETORIA Tel: 982043 Telex: 32163 CH.E Hewlett-Packard So Africa (Pty.) Ltd. Private Bag Wendywood SANDTON 2144 Tel: 802-5111, 802-5125 Telex: 4-20877 Cable: HEWPACK Johannesburg A,CH,CM,CS,E,MS,P

SPAIN

Hewlett-Packard Española S.A. Calle Entenza, 321 E-BARCELONA 29 Tel: 322.24.51, 321.73.54 Telex: 52603 hpbee A,CH,CS,E,MS,P Hewlett-Packard Española S.A. Calle San Vicente S/No Edificio Albia II F-BILBAO 1 Tel: 423.83.06 A,CH,E,MS Hewlett-Packard Española S.A. Crta. de la Coruña, Km. 16, 400 Las Rozas E-MADRID Tel: (1) 637.00.11 CH.CS.M Hewlett-Packard Española S.A. Avda. S. Francisco Javier, S/no Planta 10. Edificio Sevilla 2, E-SEVILLA 5 Tel: 64.44.54 Telex: 72933 A,CS,MS,P

Hewlett-Packard Españoia S.A. Calle Ramon Gordillo, 1 (Entlo.3) E-VALENCIA 10 Tel: 361-1354 CH P

SWEDEN

Hewlett-Packard Sverige AB Sunnanvagen 14K S-22226 LUND Tel: (046) 13-69-79 Telex: (854) 17886 (via Spånga office) CH Hewlett-Packard Sverige AB Östra Tullgatan 3 S-21128 MALMÖ Tel: (040) 70270 Telex: (854) 17886 (via Spånga office) Hewlett-Packard Sverige AB Våstra Vintergatan 9 S-70344 ÖREBRO Tel: (19) 10-48-80 Telex: (854) 17886 (via Spånga office) CH Hewlett-Packard Sverige AB Skalholtsgatan 9, Kista Box 19 S-16393 SPÅNGA Tel: (08) 750-2000 Telex: (854) 17886 Telefax: (08) 7527781 A,CH,CM,CS,E,MS,P Hewlett-Packard Sverige AB Frotallisgatan 30 S-42132 VASTRA-FROLUNDA Tel: (031) 49-09-50 Telex: (854) 17886 (via Spånga office) CH.E.P

SWITZERLAND

Hewlett-Packard (Schweiz) AG Clarastrasse 12 CH-4058 BASEL Tel: (61) 33-59-20 Δ Hewlett-Packard (Schweiz) AG 7. rue du Bois-du-Lan Case Postale 365 CH-1217 MEYRIN 2 Tel: (0041) 22-83-11-11 Telex:27333 HPAG CH CH,CM,CS Hewlett-Packard (Schweiz) AG Allmend 2 CH-8967 WIDEN Tel: (0041) 57 31 21 11 Telex: 53933 hpag ch Cable: HPAG CH A,CH,CM,CS,E,MS,P

SYRIA

General Electronic Inc. Nuri Basha Ahnaf Ebn Kays Street P.O. Box 5781 DAMASCUS Tel: 33-24-87 Telex: 411 215 Cable: ELECTROBOR DAMASCUS E Middle East Electronics P.O.Box 2308 Abu Rumnaneh DAMASCUS Tel: 33 4 5 92 Telex: 411 304 M

TAIWAN

Hewlett-Packard Far East Ltd Kaohsiung Office 2/F 68-2, Chung Cheng 3rd Road KAOHSIUNG Tel: (07) 241-2318 CH,CS,E Hewlett-Packard Far East Ltd. Taiwan Branch 8th Floor 337 Fu Hsing North Road TAIPEI Tel: (02) 712-0404 Telex: 24439 HEWPACK Cable:HEWPACK Taipei A,CH,CM,CS,E,M,P Ing Lih Trading Co. 3rd Floor, 7 Jen-Ai Road, Sec. 2 TAIPEI 100 Tel: (02) 3948191 Cable: INGLIH TAIPEI

THAILAND

Unimesa 30 Patpong Ave., Suriwong BANGKOK 5 Tel: 235-5727 Telex: 84439 Simonco TH Cable: UNIMESA Bangkok A.CH,CS.E.M Bangkok Business Equipment Ltd. 5/5-6 Dejo Road BANGKOK Tel: 234-8670, 234-8671 Telex: 87669-BEQUIPT TH Cable: BUSIQUIPT Bangkok

TRINIDAD & TOBAGO

Caribbean Telecoms Ltd. 50/A Jerningham Avenue P.O. Box 732 **PORT-OF-SPAIN** Tel: 62-44213, 62-44214 Telex: 235,272 HUGCO WG CM.E.M.P

TUNISIA

Tunisie Electronique 31 Avenue de la Liberte **TUNIS** Tel: 280-144 E,P Corema 1 Ier. Av. de Carthage **TUNIS** Tel: 253-821 Telex: 12319 CABAM TN M

TURKEY

Teknim Company Ltd. Iran Caddesi No. 7 Kavaklidere, **ANKARA** Tel: 275800 Telex: 42155 TKNM TR F E.M.A. Medina Eldem Sokak No.41/6 Yuksel Caddesi ANKARA Tel: 175 622 Telex: 42 591 M

UNITED ARAB EMIRATES

Emitac Ltd. P.O. Box 2711 **ABU DHABI** Tel: 82 04 19-20 Cable: EMITAC ABUDHABI Emitac Ltd. P.O. Box 1641 **SHARJAH** Tel: 591 181 Telex: 68136 Emitac Sh CH.CS.E.M.P

UNITED KINGDOM

GREAT BRITAIN Hewlett-Packard Ltd. Trafalgar House Navigation Road ALTRINCHAM Cheshire WA14 1NU Tel: 061 928 6422 Telex: 668068 A,CH,CS,E,M,MS,P Hewlett-Packard Ltd. Eistree House, Elstree Way BOREHAMWOOD, Herts WD6 1SG Tel: 01 207 5000 Telex: 8952716 E,CH,CS,P Hewlett-Packard Ltd. Oakfield House, Oakfield Grove Clifton BRISTOL, Avon BS8 2BN Tel: 0272 736806 Telex: 444302 CH,CS,E,P Hewlett-Packard Ltd. **Bridewell House** Bridewell Place LONDON EC4V 6BS Tel: 01 583 6565 Telex: 298163 CH,CS,P Hewlett-Packard Ltd. Fourier House 257-263 High Street LONDON COLNEY Herts. AL2 1HA, St. Albans Tel: 0727 24400 Telex: 1-8952716 CH,CS Hewlett-Packard Ltd. Pontefract Road NORMANTON, West Yorkshire WF6 1RN Tel: 0924 895566 Telex: 557355 CH.CS.P Hewlett-Packard Ltd. The Quadrangle 106-118 Station Road REDHILL, Surrey RH1 1PS Tel: 0737 68655 Telex: 947234 CH,CS,E,P

GREAT BRITAIN (Cont'd) Hewlett-Packard Ltd. Avon House 435 Stratford Road Shirley, SOLIHULL, West Midlands B90 4BL Tel: 021 745 8800 Telex: 339105 CH,CS,E,P Hewlett-Packard Ltd. West End House 41 High Street, West End SOUTHAMPTON Hampshire S03 3DQ Tel: 04218 6767 Telex: 477138 CH,CS,P Hewlett-Packard Ltd. Eskdale Rd. Winnersh, WOKINGHAM Berkshire RG11 5DZ Tel: 0734 696622 Telex: 848884 Ε Hewlett-Packard Ltd. King Street Lane Winnersh, WOKINGHAM Berkshire RG11 5AR Tel: 0734 784774 Telex: 847178 A,CH,CS,E,M,MP,P Hewlett-Packard Ltd. Nine Mile Ride Easthampstead, WOKINGHAM Berkshire, 3RG11 3LL Tel: 0344 773100 Telex: 848805 CH.CS.E.P

IRELAND

NORTHERN IRELAND Hewlett-Packard Ltd. Cardiac Services Building 95A Finaghy Road South BELFAST BT10 0BY Tel: 0232 625-566 Telex: 747626 CH,CS

SCOTLAND Hewlett-Packard Ltd. SOUTH QUEENSFERRY West Lothian, EH30 9TG Tel: 031 331 1188 Telex: 72682 CH,CM,CS,E,M,P

UNITED STATES

Alabama

Hewlett-Packard Co. 700 Century Park South, Suite 128 BIRMINGHAM, AL 35226 Tel: (205) 822-6802 A,CH,M Hewlett-Packard Co. 420 Wynn Drive HUNTSVILLE, AL 35805 P.O. Box 7700 HUNTSVILLE, AL 35807 Tel: (205) 830-2000 CH,CM,CS,E,M* Arizona

Hewlett-Packard Co. 8080 Pointe Parkway West PHOENIX, AZ 85044 Tel: (602) 273-8000 A,CH,CM,CS,E,MS Hewlett-Packard Co. 2424 East Aragon Road **TUCSON**, AZ 85706 Tel: (602) 889-4631 CH,E,MS**

California Hewlett-Packard Co.

99 South Hill Dr. BRISBANE, CA 94005 Tel: (415) 330-2500 CH,CS Hewlett-Packard Co. P.O. Box 7830 (93747) 5060 E. Clinton Avenue, Suite 102 FRESNO, CA 93727 Tel: (209) 252-9652 CH,CS,MS Hewlett-Packard Co. P.O. Box 4230 1430 East Orangethorpe FULLERTON, CA 92631 Tel: (714) 870-1000 CH,CM,CS,E,MP Hewlett-Packard Co. 320 S. Kellogg, Suite B GOLETA, CA 93117 Tel: (805) 967-3405 CH Hewiett-Packard Co. 5400 W. Rosecrans Boulevard LAWNDALE, CA 90260 P.O. Box 92105 LOS ANGELES, CA 90009 Tel: (213) 970-7500 Telex: 910-325-6608 CH,CM,CS,MP Hewlett-Packard Co. 3155 Porter Oaks Drive PALO ALTO, CA 94304 Tel: (415) 857-8000 CH,CS,E Hewlett-Packard Co. 4244 So. Market Court, Suite A P.O. Box 15976 SACRAMENTO, CA 95852 Tel: (916) 929-7222 A*,CH,CS,E,MS Hewlett-Packard Co. 9606 Aero Drive P.O. Box 23333 SAN DIEGO, CA 92139 Tel: (619) 279-3200 CH,CM,CS,E,MP Hewlett-Packard Co. 2305 Camino Ramon "C" SAN RAMON, CA 94583 Tel: (415) 838-5900 CH,CS Hewlett-Packard Co. 3005 Scott Boulevard SANTA CLARA, CA 95050 Tel: (408) 988-7000 Telex: 910-338-0586 A,CH,CM,CS,E,MP Hewlett-Packard Co. 5703 Corsa Avenue WESTLAKE VILLAGE, CA 91362 Tel: (213) 706-6800 E.CH.CS. Colorado

Hewlett-Packard Co. 24 Inverness Place, East ENGLEWOOD, CO 80112 Tel: (303) 649-5000 A,CH,CM,CS,E,MS

SALES & SUPPORT OFFICES

Arranged alphabetically by country

Connecticut

Hewlett-Packard Co. 47 Barnes Industrial Road South P.O. Box 5007 WALLINGFORD, CT 06492 Tel: (203) 265-7801 A.CH.CM.CS.E.MS

Florida

Hewlett-Packard Co. 2901 N.W. 62nd Street P.O. Box 24210 FORT LAUDERDALE, FL 33307 Tel: (305) 973-2600 CH,CS,E,MP Hewlett-Packard Co 6177 Lake Ellenor Drive P.O. Box 13910 ORLANDO, FL 32859 Tel: (305) 859-2900 A,CH,CM,CS,E,MS Hewlett-Packard Co. 5750B N. Hoover Blvd., Suite 123 P.O. Box 15200 TAMPA, FL 33614

Tel: (813) 884-3282 A*,CH,CM,CS,E*,M*

Georgia Hewlett-Packard Co.

2000 South Park Place P.O. Box 105005 ATLANTA, GA 30348 Tel: (404) 955-1500 Telex: 810-766-4890 A,CH,CM,CS,E,MP

Hawaii

Hewlett-Packard Co. Kawaiahao Plaza, Suite 190 567 South King Street HONOLULU, HI 96813 Tel: (808) 526-1555 A,CH,E,MS

Illinois

Hewlett-Packard Co. 304 Eldorado Road P.O. Box 1607 BLOOMINGTON, IL 61701 Tel: (309) 662-9411 CH,MS** Hewlett-Packard Co. 1100 31st Street, Suite 100 DOWNERS GROVE, IL 60515 Tel: (312) 960-5760 CHICS Hewlett-Packard Co. 5201 Tollview Drive ROLLING MEADOWS, IL 60008 Tel: (312) 255-9800 Telex: 910-687-1066 A,CH,CM,CS,E,MP

Indiana

Hewlett-Packard Co. 7301 No. Shadeland Avenue P.O. Box 50807 INDIANAPOLIS, IN 46250 Tel: (317) 842-1000 A,CH,CM,CS,E,MS

lowa

Hewlett-Packard Co. 1776 22nd Street, Suite 1 WEST DES MOINES, IA 50265 Tel: (515) 224-1435 CH,MS**

Kansas

Hewlett-Packard Co. 7804 East Funston Road, #203 WICHITA, KS 67207 Tel. (316) 684-6491 CH

Kentucky

Hewlett-Packard Co. 10300 Linn Station Road, #100 LOUISVILLE, KY 40223 Tel: (502) 426-0100 A.CH.CS.MS

Louisiana

Hewlett-Packard Co. 160 James Drive East ST. ROSE, LA 70087 P.O. Box 1449 KENNER, LA 70063 Tel: (504) 467-4100 A,CH,CS,E,MS

Maryland

Hewlett-Packard Co. 3701 Koppers Street BALTIMORE, MD 21227 Tel: (301) 644-5800 Telex: 710-862-1943 A,CH,CM,CS,E,MS Hewlett-Packard Co. 2 Choke Cherry Road ROCKVILE, MD 20850 Tel: (301) 948-6370 A,CH,CM,CS,E,MP

Massachusetts

Hewlett-Packard Co. 1775 Minuteman Road ANDOVER, MA 01810 Tel: (617) 682-1500 A,C,CH,CS,CM,E,MP,P* Hewlett-Packard Co.

32 Hartwell Avenue LEXINGTON, MA 02173 Tel: (617) 861-8960 CH,CS,E

Michigan

Hewlett-Packard Co. 4326 Cascade Road S.E. GRAND RAPIDS, MI 49506 Tel: (616) 957-1970 CH,CS,MS Hewlett-Packard Co. 1771 W. Big Beaver Road TROY, MI 48084

Tel: (313) 643-6474 CH,CS

Minnesota

Hewlett-Packard Co. 2025 W. Larpenteur Ave. ST. PAUL, MN 55113 Tel: (612) 644-1100 A,CH,CM,CS,E,MP

Missouri

Hewlett-Packard Co. 11131 Colorado Avenue KANSAS CITY, MO 64137 Tel: (816) 763-8000 A,CH,CM,CS,E,MS

Hewlett-Packard Co. 13001 Hollenberg Drive BRIDGETON, MO 63044 Tel: (314) 344-5100 A,CH,CS,E,MP

SALES & SUPPORT OFFICES

Arranged alphabetically by country

UNITED STATES (Cont'd)

Nebraska

Hewlett-Packard 10824 Old Mill Rd., Suite 3 OMAHA, NE 68154 Tel: (402):334-1813 CM,MS

New Jersey

Hewlett-Packard Co. 120 W. Century Road PARAMUS, NJ 07652 Tel: (201) 265-5000 A,CH,CM,CS,E,MP Hewlett-Packard Co. 60 New England Av. West PISCATAWAY, NJ 08854 Tel: (201) 981-1199 A,CH,CM,CS,E

New Mexico

Hewlett-Packard Co. 11300 Lomas Blvd.,N.E. P.O. Box 11634 ALBUQUERQUE, NM 87112 Tel: (505) 292-1330 CH.CS.E.MS

New York

Hewlett-Packard Co 5 Computer Drive South ALBANY, NY 12205 Tei: (518) 458-1550 A,CH,E,MS Hewlett-Packard Co. 9600 Main Street P.O. Box AC CLARENCE, NY 14031 Tel: (716) 759-8621 СН Hewlett-Packard Co. 200 Cross Keys Office Park FAIRPORT, NY 14450 Tel: (716) 223-9950 CH,CM,CS,E,MS Hewlett-Packard Co 7641 Henry Clay Blvd. LIVERPOOL, NY 13088 Tel: (315) 451-1820 A.CH.CM.E.MS Hewlett-Packard Co. No. 1 Pennsylvania Plaza 55th Floor 34th Street & 8th Avenue MANHATTAN NY 10119 Tel: (212) 971-0800 CH.CS.E .M. Hewlett-Packard Co. 250 Westchester Avenue WHITE PLAINS, NY 10604 Tel: (914) 684-6100 CM,CH,CS,E Hewlett-Packard Co. 3 Crossways Park West WOODBURY, NY 11797 Tel: (516) 921-0300 A.CH.CM.CS.E.MS

North Carolina

Hewlett-Packard Co. 5605 Roanne Way P.O. Box 26500 GREENSBORO, NC 27420 Tel: (919) 852-1800 A,CH,CM,CS,E,MS

) Ohio

Hewlett-Packard Co. 9920 Carver Road CINCINNATI, OH 45242 Tel: (513) 891-9870 CH.CS.MS Hewlett-Packard Co. 16500 Sprague Road CLEVELAND, OH 44130 Tel: (216) 243-7300 A,CH,CM,CS,E,MS Hewlett-Packard Co. 962 Crupper Ave. COLUMBUS, OH 43229 Tel: (614) 436-1041 Eff: Nov. 25, 1983 675 Brooksedge Blvd WESTERVILLE, OH 43081 CH.CM.CS.E Hewlett-Packard Co. 330 Progress Rd. DAYTON, OH 45449 Tel: (513) 859-8202 A.CH.CM.E*,MS Oklahoma

Oklahoma

Hewlett-Packard Co. 304 N. Meridian, Suite A P.O. Box 75609 OKLAHOMA CITY, OK 73147 Tel: (405) 946-9499 A*.CH,E*,MS Hewlett-Packard Co. 3840 S. 103rd E. Avenue, #100 P.O. Box 35747 TULSA, OK 74153 Tel: (918) 665-3300 A**,CH,CS,M*

Oregon

Hewlett-Packard Co. 9255 S. W. Pioneer Court P.O. Box 328 WILSONVILLE, OR 97070 Tel: (503) 682-8000 A.CH.CS.E* MS

Pennsylvania

Hewlett-Packard Co. 111 Zeta Drive PITTSBURGH, PA 15238 Tel: (412) 782-0400 A,CH,CS,E,MP Hewlett-Packard Co. 2750 Monroe Boulevard P.O. Box 713 VALLEY FORGE, PA 19482 Tel: (215) 666-9000 A,CH,CM,E,M

South Carolina

Hewlett-Packard Co. Brookside Park, Suite 122 1 Harbison Way P.O. Box 21708 **COLUMBIA**, SC 29221 Tel: (803) 732-0400 CH,E,MS Hewlett-Packard Co. Koger Executive Center Chesterfield Bldg., Suite 124 **GREENVILLE**, SC 29615 Tel: (803) 297-4120

Tennessee

Hewlett-Packard Co. 224 Peters Road, Suite 102 P.O. Box 22490 KNOXVILLE, TN 37922 Tel: (615) 691-2371 A*,CH,MS Hewlett-Packard Co. 3070 Directors Row MEMPHIS, TN 38131 Tel: (901) 346-8370 A,CH,MS

Texas

Hewlett-Packard Co. 4171 North Mesa Suite C-110 EL PASO, TX 79902 Tel: (915) 533-3555 CH.E*.MS** Hewlett-Packard Co. 10535 Harwin Drive P.O. Box 42816 HOUSTON, TX 77042 Tel: (713) 776-6400 A.CH.CM.CS.E.MP Hewlett-Packard Co. 930 E. Campbell Rd. P.O. Box 1270 RICHARDSON, TX 75080 Tel: (214) 231-6101 A,CH,CM,CS,E,MP Hewlett-Packard Co. 1020 Central Parkway South P.O. Box 32993 SAN ANTONIO, TX 78216 Tel: (512) 494-9336 CH,CS,E,MS

Utah

Hewlett-Packard Co. 3530 W. 2100 South SALT LAKE CITY, UT 84119 Tel: (801) 974-1700 A,CH,CS,E,MS

Virginia

Hewlett-Packard Co. 4305 Cox Road GLEN ALLEN, VA 23060 P.O. Box 9669 RICHMOND, VA 23228 Tel: (804) 747-7750 A.CH.CS.E.MS

Washington

Hewlett-Packard Co. 15815 S.E. 37th Street BELLEVUE, WA 98006 Tel: (206) 643-4000 A,CH,CM,CS,E,MP Hewlett-Packard Co. Suite A 708 North Argonne Road SPOKANE, WA 99212 Tel: (509) 922-7000 CH,CS

West Virginia

Hewlett-Packard Co. 4604 MacCorkle Ave. P.O. Box 4297 CHARLESTON, WV 25304 Tel: (304) 925-0492 A.MS

Wisconsin

Hewlett-Packard Co. 150 S. Sunny Slope Road BROOKFIELD, WI 53005 Tel: (414) 784-8800 A,CH,CS,E*,MP

URUGUAY

Pablo Ferrando S.A.C. e I. Avenida Italia 2877 Casilla de Correo 370 MONTEVIDEO Tel: 80-2586 Telex: Public Booth 901 A.CM.E.M

VENEZUELA

Hewlett-Packard de Venezuela C.A. **3RA Transversal Los Ruices Norte** Edificio Segre 1, 2 & 3 Apartado 50933 CARACAS 1071 Tel: 239-4133 Telex: 251046 HEWPACK A,CH,CS,E,MS,P Hewlett-Packard de Venezuela C.A. Calle-72-Entre 3H y 3Y, No. 3H-40 Edificio Ada-Evelyn, Local B Apartado 2646 4001, MARACAIBO, Estado Zulia Tel: (061) 80.304 C.E. Hewlett-Packard de Venezuela C.A Calle Vargas Rondon Edificio Seguros Carabobo, Piso 10 VALENCIA Tel: (041) 51 385 CH.CS.P Bioelectronica Medica C.A. Calle Buen Pastor Edif, Cota Mil-Piso 2 y Semi Sotano 1 Boleita Norte Apartado 50710 CARACAS 1050A Tel: 239 84 41 Telex: 26518

ZIMBABWE

Field Technical Sales 45 Kelvin Road, North P.B. 3458 SALISBURY Tel: 705 231 Telex: 4-122 RH C.E.M.P

July 1983

Indicates main office

HP distributors are printed in italics.

5952-6900